Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Remarkable improvement in low temperature performance of model three-way catalysts through solution atomic layer deposition

Abstract

The development of three-way catalysts with improved low temperature activity is essential for automotive catalysis. Here, we show that solution atomic layer deposition (SALD) of titania or zirconia promoters on alumina supports lowers the light-off temperatures of rhodium-based catalysts by 50–150 °C compared to a commercial benchmark three-way catalyst. X-ray diffraction, scanning transmission electron microscopy–electron energy loss spectroscopy, diffuse reflectance UV–visible spectroscopy and X-ray absorption near edge structure results indicate that titania incorporated by SALD at one monolayer loading is present primarily as atomically disperse 5-coordinate Ti4+ species. These species persist after exposure to steam and corrosive gases at temperatures up to 960 °C. Zirconia incorporated onto alumina by SALD is present as few-nanometre oxide particles and supports a three-way catalyst activity that is superior to that of Rh on either alumina or zirconia. Our results show that molecularly precise synthesis can lead to robust promotion of precious metal activity and provide a promising path towards reducing emissions from gasoline vehicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light-off performance of powder catalysts after accelerated aging.
Fig. 2: Impact of titania promoter loading on catalyst performance.
Fig. 3: STEM and EDS elemental mapping of 0.5% Rh on 12% TiO2-promoted Al2O3 (SALD).
Fig. 4: DRUVS spectra of TiO2–Al2O3 catalysts.
Fig. 5: Titanium K-edge XANES spectra of anatase and 12% TiO2 (SALD) promoted Al2O3.
Fig. 6: Structural model for a TiO2 monolayer on γ-Al2O3.

Similar content being viewed by others

Data availability

The data presented here are available in raw or as-presented form (.csv,.xlsx,.jpg, or.pptx files) upon request to the corresponding author.

References

  1. CACR Organization Committee Clean Air Car Race 1970: A Summary Report (Massachusetts Institute of Technology, 1971).

  2. Host, R., Moilanen, P., Fried, M. & Bogi, B. Exhaust System Thermal Management: A Process to Optimize Exhaust Enthalpy for Cold Start Emissions Reduction SAE Technical Paper 2017-01-0141 (SAE, 2017).

  3. Whitaker, P., Kapus, P., Ogris, M. & Hollerer, P. Measures to Reduce Particulate Emissions from Gasoline DI Engines SAE Technical Paper 2011-01-1219 (SAE, 2011).

  4. Environmental Protection Agency. Control of air pollution from motor vehicles: tier 3 motor vehicle emission and fuel standards; final rule. Federal Register 79, 23414–23886 (2014).

  5. Zammit, M. et al. Future Automotive Aftertreatment Solutions: The 150 °C Challenge Workshop Report (US Drive Workshop, 2012); https://www.pnnl.gov/main/publications/external/technical_Reports/PNNL-22815.pdf.

  6. Gu, D. et al. Gold on different manganeseoxides: ultra-low-temperature CO oxidation over colloidal gold supported on bulk-MnO2 nanomaterials. J. Am. Chem. Soc. 44, 9572–9580 (2016).

    Article  Google Scholar 

  7. Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

    Article  CAS  Google Scholar 

  8. Haruta, M. et al. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3 and Co3O4. J. Catal. 144, 175–192 (1993).

    Article  CAS  Google Scholar 

  9. Sachtler, W. M. H. & Ichikawa, M. Catalytic site requirements for elementary steps in syngas conversion to oxygenates over promoted rhodium. J. Phys. Chem. 90, 4752–4758 (1986).

    Article  CAS  Google Scholar 

  10. Kip, B. J. et al. Preparation and characterization of vanadium oxide promoted rhodium catalysts. Appl. Catal. 33, 157–180 (1987).

    Article  CAS  Google Scholar 

  11. Stevenson, S. A., Lisitsyn, A. & Knözinger, H. Adsorption of carbon monoxide on manganese-promoted rhodium/silica catalysts as studied by infrared spectroscopy. J. Phys. Chem. 94, 1576–1581 (1990).

    Article  CAS  Google Scholar 

  12. Skoglundh, M. et al. Cobalt-promoted palladium as a three-way catalyst. Appl. Catal. B 7, 299–319 (1996).

    Article  CAS  Google Scholar 

  13. Chen, H.-Y. & Chang, H. L. Development of low-temperature three-way catalysts for future fuel efficient vehicles. Johnson Matthey Technol. Rev. 59, 64–67 (2015).

    Article  CAS  Google Scholar 

  14. Wu, Y. et al. Atomic layer deposition from dissolved precursors. Nano Lett. 15, 6379–6385 (2015).

    Article  CAS  Google Scholar 

  15. Yan, W. et al. Surface sol–gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles. J. Phys. Chem. B 108, 2793–2796 (2004).

    Article  CAS  Google Scholar 

  16. Ramírez, J., Rayo, P., Gutiérrez-Alejandre, A., Ancheyta, J. & Rana, M. S. Analysis of the hydrotreatment of Maya heavy crude with NiMo catalysts supported on TiO2–Al2O3 binary oxides: effect of the incorporation method of Ti. Catal. Today 109, 54–60 (2005).

    Article  Google Scholar 

  17. Damyanova, S., Grange, P. & Delmon, B. Surface characterization of zirconia-coated alumina and silica carriers. J. Catal. 168, 421–430 (1997).

    Article  CAS  Google Scholar 

  18. Iengoa, P. et al. Preparation and properties of new acid catalysts obtained by grafting alkoxides and derivatives on the most common supports. Part II: grafting zirconium and silicon alkoxides on γ-alumina. Appl. Catal. A 170, 225–244 (1998).

    Article  Google Scholar 

  19. Rohr, F., Lindvåg, O. A., Holmen, A. & Blekkan, E. A. Fischer–Tropsch synthesis over cobalt catalysts supported on zirconia-modified alumina. Catal. Today 58, 247–254 (2000).

    Article  CAS  Google Scholar 

  20. O’Neill, B. J. et al. Catalyst design with atomic layer deposition. ACS Catal. 5, 1804–1825 (2015).

    Article  Google Scholar 

  21. Onn, T. M. et al. High-surface-area ceria prepared by ALD on Al2O3 support. Appl. Catal. B 201, 430–437 (2017).

    Article  CAS  Google Scholar 

  22. Onn, T. M. et al. Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2. ACS Catal. 5, 5696–5701 (2015).

    Article  CAS  Google Scholar 

  23. Getsoian, A.G., Theis, J.R. & Lambert, C.K. Catalyst for automotive emissions control. US patent 9,914,095B1 (2018).

  24. Rappé, K.G. et al. Aftertreatment protocols for catalyst characterization and performance evaluation: low-temperature oxidation, storage, three-way, and NH3-SCR catalyst test protocols. Emiss. Control Sci. Technol. 6, 1–32 (2019).

    Google Scholar 

  25. Theis, J., Getsoian, A. & Lambert, C. The development of low temperature three-way catalysts for high efficiency gasoline engines of the future. SAE Int. J. Fuels Lubr. 10, 583–592 (2017).

    Article  Google Scholar 

  26. Lui, Y. K.& Dettling, J. C. Evolution of Pd/Rh TWC Catalyst Technology SAE Technical Paper 930249 (SAE, 1993).

  27. Digne, M., Sautet, P., Raybaud, P., Euzen, P. & Toulhoat, H. Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces. J. Catal. 226, 54–68 (2004).

    Article  CAS  Google Scholar 

  28. Waqif, M., Bachelier, J., Saur, O. & Lavalley, J.-C. Acidic properties and stability of sulfate-promoted metal oxides. J. Mol. Catal. 72, 127–138 (1992).

    Article  CAS  Google Scholar 

  29. Vayssieres, L., Persson, C. & Guo, J.-H. Size effects on the conduction band orbital character of anatase TiO2 nanocrystals. Appl. Phys. Lett. 99, 183101 (2011).

    Article  Google Scholar 

  30. Monticone, S., Tufeu, R., Kanaev, A., Scolan, E. & Sanchez, C. Quantum size effect in TiO2 nanoparticles: does it exist? Appl. Surf. Sci. 162–163, 565–570 (2000).

    Article  Google Scholar 

  31. Benedict, J. B., Freidorf, R., Trzop, E., Cogswell, J. & Coppens, P. Large polyoxotitanate clusters: well-defined models for pure-phase TiO2 structures and surfaces. J. Am. Chem. Soc. 132, 13669–13671 (2010).

    Article  CAS  Google Scholar 

  32. Lin, C.-H., Huang, C.-N., Chen, S.-Y., Zheng, Y. & Shen, P. On the enhanced solute content, shape, defect microstructures and optical properties of Ti-doped γ-Al2O3 nanocondensates. J. Phys. Chem. C 113, 19112–19118 (2009).

    Article  CAS  Google Scholar 

  33. Liu, X. et al. Ti3+ self-doped TiO2 − x anatase nanoparticles via oxidation of TiH2 in H2O2. Catal. Today 225, 80–89 (2014).

    Article  CAS  Google Scholar 

  34. Aggarwal, R. L., Sanchez, A., Fahey, R. E. & Strauss, A. J. Magnetic and optical measurements on Ti:Al2O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions. Appl. Phys. Lett. 48, 1345 (1986).

    Article  CAS  Google Scholar 

  35. Manzini, I., Antonioli, G., Lottici, P. P., Gnappi, G. & Montenero, A. X-ray absorption study of titanium coordination in sol-gel derived TiO2. Phys. B 208–209, 607–608 (1995).

    Article  Google Scholar 

  36. Mountjoy, G. et al. XANES study of Ti coordination in heat-treated (TiO2)x(SiO2)1 − x xerogels. Chem. Mater. 11, 1253–1258 (1999).

    Article  CAS  Google Scholar 

  37. Angelomé, P. C. et al. Mesoporous anatase TiO2 films: use of Ti K XANES for the quantification of the nanocrystalline character and substrate effects in the photocatalysis behavior. J. Phys. Chem. C 111, 10886–10893 (2007).

    Article  Google Scholar 

  38. Farges, F., Brown, G. E. Jr. & Rehr, J. J. Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: comparison between theory and experiment. Phys. Rev. B 56, 1809–1819 (1997).

    Article  CAS  Google Scholar 

  39. Coey, J. M. D. The crystal structure of Rh2O3. Acta Cryst. B26, 1876–1877 (1970).

    Article  Google Scholar 

  40. de Resende, N. S., Eon, J.-G. & Schmal, M. Pt-TiO2-γ Al2O3 catalyst: I. Dispersion of platinum on alumina-grafted titanium oxide. J. Catal. 183, 6–13 (1999).

    Article  Google Scholar 

  41. Wang, C.-B., Lin, H.-K. & Ho, C.-M. Effects of the addition of titania on the thermal characterization of alumina-supported palladium. J. Mol. Catal. A 180, 285–291 (2002).

    Article  CAS  Google Scholar 

  42. Kim, M.-Y., Park, J.-H., Shin, C.-H., Han, S.-W. & Seo, G. Dispersion improvement of platinum catalysts supported on silica, silica–alumina and alumina by titania incorporation and pH adjustment. Catal. Lett. 133, 288–298 (2009).

    Article  CAS  Google Scholar 

  43. Chattha, M. S. & Montreuil, C. N. High surface area, thermally stabilized titania automotive catalyst support. US patent 5,922,294 (1997).

  44. Sivakumar, S., Sibu, C. P., Mukundan, P., Pillai, P. K. & Warrier, K. G. K. Nanoporous titania–alumina mixed oxides—an alkoxide free sol–gel synthesis. Mater. Lett. 58, 2664–2669 (2004).

    Article  CAS  Google Scholar 

  45. Perera, S. & Gillan, E, G. High-temperature stabilized anatase TiO2 from an aluminum-doped TiCl3 precurso. Chem. Commun. 2005, 5988–5990 (2005).

    Article  Google Scholar 

  46. Zhaobin, W., Qin, X., XieXian, G., Grange, P. & Delmon, B. Titania-modified hydrodesulfurization catalysts: II. Dispersion state and catalytic activity of molybdena supported on titania–alumina carrier. Appl. Catal. 75, 179–191 (1991).

    Article  Google Scholar 

  47. Petkov, V., Holzhüter, G., Tröge, U., Gerber Th. & Himmel, B. Atomic-scale structure of amorphous TiO2 by electron, X-ray diffraction and reverse Monte Carlo simulations. J. Non-Cryst. Solids 231, 17–30 (1998).

    Article  CAS  Google Scholar 

  48. Zhang, H., Chen, B., Banfield, J. F. & Waychunas, G. A. Atomic structure of nanometer-sized amorphous TiO2. Phys. Rev. B 78, 214106 (2008).

    Article  Google Scholar 

  49. Levin, I. & Brandon, D. Metastable alumina polymorphs: crystal structures and transition sequences. J. Am. Ceram. Soc. 81, 1995–2012 (1998).

    Article  CAS  Google Scholar 

  50. Samain, L. et al. Structural analysis of highly porous γ-Al2O3. J. Solid State Chem. 217, 1–8 (2014).

    Article  CAS  Google Scholar 

  51. Krokidis, X. et al. Theoretical study of the dehydration process of boehmite to γ-Al2O3. J. Phys. Chem. B 105, 5121–5130 (2001).

    Article  CAS  Google Scholar 

  52. Ferreira, A. R. et al. Direct comparison between two γ-Al2O3 structural models by DFT calculations. J. Solid State Chem. 184, 1105–1111 (2011).

    Article  CAS  Google Scholar 

  53. Zope, B. N., Hibbitts, D. D., Neurock, M. & Davis, R. J. Reactivity of the gold/water interface during selective oxidation catalysis. Science 330, 74–78 (2010).

    Article  CAS  Google Scholar 

  54. Kim, T. S., Gong, J., Ojifinni, R. A., White, J. M. & Mullins, C. B. Water activated by atomic oxygen on Au(111) to oxidize CO at low temperatures. J. Am. Chem. Soc. 128, 6282–6283 (2006).

    Article  CAS  Google Scholar 

  55. Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role of water at the gold–titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    Article  CAS  Google Scholar 

  56. Levin, M. E., Williams, K. J., Salmeron, M., Bell, A. T. & Somorjai, G. A. Alumina and titania overlayers on rhodium: a comparison of the chemisorption catalytic properties. Surf. Sci. 195, 341–351 (1988).

    Article  CAS  Google Scholar 

  57. Fornasiero, P., Ranga Rao, G., Kašpar, J., L’Erario, F. & Graziani, M. Reduction of NO by CO over Rh/CeO2-ZrO2 catalysts: evidence for a support-promoted catalytic activity. J. Catal. 175, 269–279 (1998).

    Article  CAS  Google Scholar 

  58. Chen, S.-L., Heck, R., Hu, Z. & Deeba, M. Catalytic converter system for internal combustion engine powered vehicles. US patent 20040166036A (2004).

  59. Takahashi, R. et al. Structural study of mesoporous titania and titanium–stearic acid complex prepared from titanium alkoxide. J. Chem. Soc. Faraday Trans. 94, 3161–3168 (1998).

    Article  CAS  Google Scholar 

  60. Getsoian, A., Theis, J. & Lambert, C. Sensitivity of three way catalyst light-off temperatures to air–fuel ratio. Emiss. Control Sci. Technol. 4, 136–142 (2018).

    Article  CAS  Google Scholar 

  61. Hepburn, J. S., Dobson, D. A., Hubbard, C. P. & Otto, K. The Pulse Flame Combustor Revisited SAE Technical Paper 1996-10-2118 (SAE, 1996).

  62. US Federal Govenment. Emission durability procedures for new light-duty vehicles, light-duty trucks and heavy-duty vehicles. 40 CFR Part 86. Fed. Regist. 69, 17531 (2004).

  63. Kropf, A. J. et al. The new MRCAT (Sector 10) bending magnet beamline at the advanced photon source. AIP Conf. Proc. 1234, 299–302 (2010).

    Article  CAS  Google Scholar 

  64. Ravel, B. & Newville, M. Athena, Artemis, hepaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, Propulsion Materials Program under grant no. DE-EE0006845. Electron microscopy on the FEI Talos F200X STEM was provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program and the Nuclear Science User Facilities. This research used resources of the Materials Research Collaborative Access Team at the Advanced Photon Source, a US Department of Energy Office of Science User Facility operated for the DOE by Argonne National Laboratory under contract no. DE-AC02-06CH11357. The authors thank K. Nietering for assistance with diffuse reflectance UV–vis spectroscopy, J. Wu and J. Kropf for assistance with X-ray absorption spectroscopy, and J. Hepburn, T. Toops, A. Binder, E. Kyriakidou, J. Schwank, G. Fisher, J. Hoard and C.-Y. Seo for useful discussions. This manuscript was co-authored by UT-Battelle, LLC, under contract no. DE-AC05-00OR22725 with the US Department of Energy (DOE).

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by C.K.L. and J.R.T. and supervised by C.K.L. Catalyst synthesis, DRUVS and XANES/EXAFS analyses were conducted by A.G. Catalyst performance was evaluated by J.R.T. and A.G. XRD analysis was conducted by W.A.P. and STEM-EDS by M.J.L. All authors contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Andrew (Bean) Getsoian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4; Supplementary Figs. 1–7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getsoian, A.(., Theis, J.R., Paxton, W.A. et al. Remarkable improvement in low temperature performance of model three-way catalysts through solution atomic layer deposition. Nat Catal 2, 614–622 (2019). https://doi.org/10.1038/s41929-019-0283-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0283-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing