Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Hydropower expansion in eco-sensitive river basins under global energy-economic change

Abstract

Vast hydropower resources remain untapped globally, the deployment of which could provide energy-economic benefits but negatively impact riverine ecosystems. Across eco-sensitive river basins, it is unclear how drivers of hydropower expansion, such as rapid economic growth and a low-carbon energy transition, could interact with countervailing forces, such as increasingly cost-competitive variable renewable energy (VRE). Using an integrated energy–water–economy model, we explore the effects of these forces on long-term hydropower expansion in the world’s 20 most eco-sensitive basins, which have high ecological richness and untapped hydropower potential. We find that a low-carbon transition exerts the strongest development pressure, causing deployment exceeding 80% of exploitable potential in more than 72% of eco-sensitive basins by 2050, most of which have limited deployment today. Rapid economic growth induces such extensive deployment in only 44% of eco-sensitive basins. Enhanced integration of VRE reduces deployment, alleviating the impacts of rapid economic growth but not the low-carbon transition. Our findings will help to navigate sustainable hydropower development considering both energy-economic and eco-conservation goals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selection of eco-sensitive basins.
Fig. 2: Overall level of hydropower deployment in the eco-sensitive basins across eight scenarios.
Fig. 3: Basin-region-scale hydropower deployment.
Fig. 4: Uncertainty in basin-scale mid-century deployment.

Similar content being viewed by others

Data availability

The data used and generated in this study are available on Zenodo at https://doi.org/10.5281/zenodo.8008401. The data include a shapefile of the GCAM’s basin-regions, GCAM outputs of electricity generation for each of the eight scenarios and basin-scale untapped hydropower potential, planned hydropower capacity, fish richness and annual fish catch.

Code availability

The Python codes (in Jupyter Notebooks v.6.4.8 with Python 3.8) with relevant instructions to reproduce our analysis and results are available on GitHub at https://github.com/kamal0013/chowdhury-etal_2023_hydropower. The GCAM model is available at https://zenodo.org/records/8231148.

References

  1. Almeida, R. M. et al. Strategic planning of hydropower development: balancing benefits and socioenvironmental costs. Curr. Opin. Environ. Sustain. 56, 101175 (2022).

    Google Scholar 

  2. The Changing Role of Hydropower: Challenges and Opportunities Technical Report (IRENA, 2023).

  3. World Register of Dams (ICOLD, 2020).

  4. Zhou, Y. et al. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 8, 2622–2633 (2015).

    Google Scholar 

  5. Xu, R. et al. A global-scale framework for hydropower development incorporating strict environmental constraints. Nat. Water 1, 113–122 (2023).

    Google Scholar 

  6. Jacobson, M. Z. et al. Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries. Energy Environ. Sci. 15, 3343–3359 (2022).

  7. Cáceres, A. L., Jaramillo, P., Matthews, H. S., Samaras, C. & Nijssen, B. Potential hydropower contribution to mitigate climate risk and build resilience in Africa. Nat. Clim. Change 12, 719–727 (2022).

    ADS  Google Scholar 

  8. Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    CAS  PubMed  ADS  Google Scholar 

  9. Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Fan, P. et al. Recently constructed hydropower dams were associated with reduced economic production, population, and greenness in nearby areas. Proc. Natl Acad. Sci. USA 119, e2108038119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Google Scholar 

  12. Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Flecker, A. S. et al. Reducing adverse impacts of Amazon hydropower expansion. Science 375, 753–760 (2022).

    CAS  PubMed  ADS  Google Scholar 

  14. Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science https://doi.org/10.1126/science.aac7082 (2016).

  15. Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Net Zero by 2050 – A Roadmap for the Global Energy Sector Technical Report (IEA, 2021).

  17. Zhang, Y. et al. Long-term basin-scale hydropower expansion under alternative scenarios in a global multisector model. Environ. Res. Lett. 17, 114029 (2022).

    ADS  Google Scholar 

  18. Schmitt, R. J. P., Kittner, N., Kondolf, G. M. & Kammen, D. M. Deploy diverse renewables to save tropical rivers. Nature 569, 330–332 (2019).

    CAS  PubMed  ADS  Google Scholar 

  19. Waldman, J., Sharma, S., Afshari, S. & Fekete, B. Solar-power replacement as a solution for hydropower foregone in US dam removals. Nat. Sustain. 2, 872–878 (2019).

    Google Scholar 

  20. Almeida, R. M. et al. Floating solar power could help fight climate change – let’s get it right. Nature 606, 246–249 (2022).

    CAS  PubMed  ADS  Google Scholar 

  21. Gonzalez, J. M. et al. Designing diversified renewable energy systems to balance multisector performance. Nat. Sustain. 6, 415–427 (2023).

    Google Scholar 

  22. Siala, K., Chowdhury, A. K., Dang, T. & Galelli, S. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia. Nat. Commun. 12, 4159 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Schmitt, R. J. P., Kittner, N., Kondolf, G. M. & Kammen, D. M. Joint strategic energy and river basin planning to reduce dam impacts on rivers in Myanmar. Environ. Res. Lett. 16, 054054 (2021).

    CAS  ADS  Google Scholar 

  24. Chowdhury, A. F. M. K. et al. Enabling a low-carbon electricity system for Southern Africa. Joule 6, 1826–1844 (2022).

  25. de Faria, F. A. M. & Jaramillo, P. The future of power generation in Brazil: an analysis of alternatives to Amazonian hydropower development. Energy Sustain. Dev. 41, 24–35 (2017).

    Google Scholar 

  26. Opperman, J. J. et al. Balancing renewable energy and river resources by moving from individual assessments of hydropower projects to energy system planning. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.1036653 (2023).

  27. Calvin, K. et al. GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 12, 677–698 (2019).

    CAS  ADS  Google Scholar 

  28. van Vuuren, D. P. et al. The Shared Socio-economic Pathways: trajectories for human development and global environmental change. Glob. Environ. Change 42, 148–152 (2017).

    Google Scholar 

  29. Vimmerstedt, L. et al. 2021 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies (National Renewable Energy Laboratory, 2021).

  30. Schmitt, R. J. P., Bizzi, S., Castelletti, A., Opperman, J. J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci. Adv. 5, eaaw2175 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Galelli, S., Dang, T. D., Ng, J. Y., Chowdhury, A. F. M. K. & Arias, M. E. Opportunities to curb hydrological alterations via dam re-operation in the Mekong. Nat. Sustain. 5, 1058–1069 (2022).

    Google Scholar 

  32. World Energy Outlook 2021 Technical Report (IEA, 2021).

  33. International Energy Outlook 2021 Technical Report https://www.eia.gov/outlooks/ieo/index.php (US Energy Information Administration, 2021).

  34. SAPP Pool Plan 2017 Technical Report (Southern African Power Pool, 2017).

  35. Gleick, P. H. Transitions to freshwater sustainability. Proc. Natl Acad. Sci. USA 115, 8863–8871 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Almeida, R. M. et al. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 10, 4281 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  37. The State of Food Security and Nutrition in the World 2021 (FAO, IFAD, UNICEF, WFP and WHO, 2021).

  38. Zeng, R., Cai, X., Ringler, C. & Zhu, T. Hydropower versus irrigation – an analysis of global patterns. Environ. Res. Lett. 12, 034006 (2017)

    ADS  Google Scholar 

  39. Murshed, S. B. & Kaluarachchi, J. J. Scarcity of fresh water resources in the Ganges Delta of Bangladesh. Water Secur. 4–5, 8–18 (2018).

    Google Scholar 

  40. Shamsudduha, M. et al. The Bengal Water Machine: Quantified freshwater capture in Bangladesh. Science 377, 1315–1319 (2022).

    CAS  PubMed  ADS  Google Scholar 

  41. Chaudhari, S. et al. In-stream turbines for rethinking hydropower development in the Amazon basin. Nat. Sustain. 4, 680–687 (2021).

    Google Scholar 

  42. Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., Bejarano, M. D. & Garrote, L. Ecological impacts of run-of-river hydropower plants – current status and future prospects on the brink of energy transition. Renew. Sustain. Energy Rev. 142, 110833 (2021).

    Google Scholar 

  43. Hunt, J. D. et al. Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nat. Commun. 11, 947 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Schomberg, A. C., Bringezu, S., Flörke, M. & Biederbick, H. Spatially explicit life cycle assessments reveal hotspots of environmental impacts from renewable electricity generation. Commun. Earth Environ. 3, 197 (2022).

    ADS  Google Scholar 

  45. Wild, T. B., Reed, P. M., Loucks, D. P., Mallen-Cooper, M. & Jensen, E. D. Balancing hydropower development and ecological impacts in the Mekong: tradeoffs for Sambor Mega Dam. J. Water Resour. Plan. Manage. 145, 05018019 (2019).

    Google Scholar 

  46. Vinca, A. et al. Transboundary cooperation a potential route to sustainable development in the Indus basin. Nat. Sustain. 4, 331–339 (2021).

    Google Scholar 

  47. Guo, F. et al. Implications of intercontinental renewable electricity trade for energy systems and emissions. Nat. Energy 7, 1144–1156 (2022).

    ADS  Google Scholar 

  48. van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375–380 (2016).

    ADS  Google Scholar 

  49. Kondolf, G. M. et al. Sustainable sediment management in reservoirs and regulated rivers: experiences from five continents. Earths Future 2, 256–280 (2014).

    ADS  Google Scholar 

  50. Carlino, A. et al. Declining cost of renewables and climate change curb the need for African hydropower expansion. Science 381, eadf5848 (2023).

    CAS  PubMed  Google Scholar 

  51. Gernaat, D. E. H. J. et al. Climate change impacts on renewable energy supply. Nat. Clim. Change 11, 119–125 (2021).

    ADS  Google Scholar 

  52. Turner, S. W. D., Voisin, N., Nelson, K. & Tidwell, V. Drought Impacts on Hydroelectric Power Generation in the Western United States – A Multiregional Analysis of 21st Century Hydropower Generation Technical Report (US Pacific Northwest National Lab, 2022).

  53. Santos da Silva, S. R. et al. Power sector investment implications of climate impacts on renewable resources in Latin America and the Caribbean. Nat. Commun. 12, 1276 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Turner, S. W. D., Voisin, N., Fazio, J., Hua, D. & Jourabchi, M. Compound climate events transform electrical power shortfall risk in the Pacific Northwest. Nat. Commun. 10, 8 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Lamontagne, J. R. et al. Large ensemble analytic framework for consequence-driven discovery of climate change scenarios. Earths Future 6, 488–504 (2018).

    ADS  Google Scholar 

  56. Gernaat, D. E. H. J., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).

    ADS  Google Scholar 

  57. Garrett, K., McManamay, R. A. & Wang, J. Global hydropower expansion without building new dams. Environ. Res. Lett. 16, 114029 (2021).

    ADS  Google Scholar 

  58. Oberdorff, T. et al. Global and regional patterns in riverine fish species richness: a review. Int. J. Ecol. 2011, e967631 (2011).

    Google Scholar 

  59. McIntyre, P. B., Reidy Liermann, C. A. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Clarke, J. F. & Edmonds, J. A. Modelling energy technologies in a competitive market. Energy Econ. 15, 123–129 (1993).

    Google Scholar 

  61. Brinkerink, M. & Deane, P. PLEXOS-World 2015 (Harvard Dataverse, 2021); https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/CBYXBY

  62. Huppmann, D. et al. IAMC 1.5°C Scenario Explorer and Data hosted by IIASA (Integrated Assessment Modeling Consortium, International Institute for Applied Systems Analysis, 2018); https://data.ene.iiasa.ac.at/DOI/SR15/08-2018.15429/

  63. Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Muratori, M. et al. Cost of power or power of cost: a U.S. modeling perspective. Renew. Sustain. Energy Rev. 77, 861–874 (2017).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Science, as part of research in Multi-Sector Dynamics, Earth and Environmental System Modeling Program (contract number DE-AC05-76RL01830). The views and opinions expressed in this paper are those of the authors alone.

Author information

Authors and Affiliations

Authors

Contributions

A.F.M.K.C. and T.W. conceptualized the study; A.F.M.K.C. and Y.Z. ran the GCAM scenarios; A.F.M.K.C. conducted the analysis and visualization; A.F.M.K.C. and T.W. wrote the first draft; and A.F.M.K.C., T.W., Y.Z., M.B., G.I., S.H.K. and J.L. edited the paper.

Corresponding author

Correspondence to A. F. M. Kamal Chowdhury.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Noah Kittner, Jeffrey Opperman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1 and 2, Figs. 1–16, Tables 1–6 and the references cited in the Supplementary Information file.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, A.F.M.K., Wild, T., Zhang, Y. et al. Hydropower expansion in eco-sensitive river basins under global energy-economic change. Nat Sustain 7, 213–222 (2024). https://doi.org/10.1038/s41893-023-01260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01260-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing