Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural infrastructure in sustaining global urban freshwater ecosystem services

Abstract

Rapid urbanization throughout the globe increases demand for fresh water and the ecosystem services associated with it. This need is conventionally met through the construction of infrastructure. Natural infrastructure solutions have increased to provide freshwater ecosystem services, but little global research has examined the intricate relationships between built and natural infrastructure for providing freshwater ecosystem services to cities across the globe. Using network analysis, here we examine the interrelationships between built and natural infrastructure in 2,113 watersheds for 317 cities worldwide, focusing on four key freshwater ecosystem services: freshwater provision, sediment regulation, flood mitigation and hydropower production. Our results indicate that protected wetlands contribute to sustaining freshwater provision to cities. Forest cover in protected areas can improve the capacity of large dams in reducing sediment loads and producing hydropower, but cities mainly depend on reduced impervious surfaces and more green spaces within urban areas for flood mitigation. Improved understandings of the role of natural infrastructure in urban water networks must underpin strategic decision-making to sustainably provide freshwater ecosystem services to global cities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual framework of freshwater ES flows between cities and source watersheds.
Fig. 2: Spatial changes in the numbers of dams and sizes of PAs from 2000 to 2016.

Similar content being viewed by others

Data availability

All data analysed during the current study are available from the corresponding author on reasonable request. Data that support the findings of this study are available within the paper and its Supplementary Information.

Code availability

Codes to perform our network models can be found at https://github.com/mingonchung/urbanfreshwaterES.

References

  1. Gartner, T., Mulligan, J., Schmidt, R. & Gunn, J. Natural Infrastructure (World Resources Institute, 2013).

  2. McDonald, R. I. et al. Water on an urban planet: urbanization and the reach of urban water infrastructure. Glob. Environ. Change 27, 96–105 (2014).

    Article  Google Scholar 

  3. Vorosmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  CAS  Google Scholar 

  4. Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Article  CAS  Google Scholar 

  5. Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

    Article  CAS  Google Scholar 

  6. Palmer, M. A. Water resources: beyond infrastructure. Nature 467, 534–535 (2010).

    Article  CAS  Google Scholar 

  7. Michalak, A. M. Study role of climate change in extreme threats to water quality. Nature 535, 349–350 (2016).

    Article  CAS  Google Scholar 

  8. McDonald, R. I., Weber, K. F., Padowski, J., Boucher, T. & Shemie, D. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Proc. Natl Acad. Sci. USA 113, 9117–9122 (2016).

    Article  CAS  Google Scholar 

  9. Romulo, C. L. et al. Global state and potential scope of investments in watershed services for large cities. Nat. Commun. 9, 4375 (2018).

    Article  Google Scholar 

  10. Tellman, B. et al. Opportunities for natural infrastructure to improve urban water security in Latin America. PLoS ONE 13, e0209470 (2018).

    Article  Google Scholar 

  11. United Nations World Water Assessment Programme/UN-Water The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (UNESCO, 2018).

  12. Palmer, M. A., Liu, J., Matthews, J. H., Mumba, M. & D’Odorico, P. Manage water in a green way. Science 349, 584–585 (2015).

    Article  CAS  Google Scholar 

  13. Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).

    Article  CAS  Google Scholar 

  14. Harrison, I. J. et al. Protected areas and freshwater provisioning: a global assessment of freshwater provision, threats and management strategies to support human water security. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 103–120 (2016).

    Article  Google Scholar 

  15. The World Database on Protected Areas (IUCN and UNEP-WCMC, 2017); http://www.protectedplanet.net

  16. Huber-Stearns, H. R., Goldstein, J. H., Cheng, A. S. & Toombs, T. P. Institutional analysis of payments for watershed services in the western United States. Ecosyst. Serv. 16, 83–93 (2015).

    Article  Google Scholar 

  17. Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).

    Article  CAS  Google Scholar 

  18. Zheng, H. et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. Proc. Natl Acad. Sci. USA 110, 16681–16686 (2013).

    Article  CAS  Google Scholar 

  19. Adamowicz, W. et al. Assessing ecological infrastructure investments. Proc. Natl Acad. Sci. USA 116, 201802883 (2019).

    Article  Google Scholar 

  20. McDonald R. I. Conservation for Cities: How to Plan & Build Natural Infrastructure (Island Press, 2015).

  21. Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10, 015001 (2015).

    Article  Google Scholar 

  22. Poff, N. L. & Schmidt, J. C. How dams can go with the flow. Science 353, 1099–1100 (2016).

    Article  CAS  Google Scholar 

  23. Liu, J. & Yang, W. Integrated assessments of payments for ecosystem services programs. Proc. Natl Acad. Sci. USA 110, 16297–16298 (2013).

    Article  CAS  Google Scholar 

  24. Muller, M., Biswas, A., Martin-Hurtado, R. & Tortajada, C. Built infrastructure is essential. Science 349, 585–586 (2015).

    Article  CAS  Google Scholar 

  25. Veldkamp, T. I. E. et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 8, 15697 (2017).

    Article  CAS  Google Scholar 

  26. Cohen, S., Kettner, A. J. & Syvitski, J. P. M. Global suspended sediment and water discharge dynamics between 1960 and 2010: continental trends and intra-basin sensitivity. Glob. Planet. Change 115, 44–58 (2014).

    Article  Google Scholar 

  27. Dottori, F. et al. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 94, 87–102 (2016).

    Article  Google Scholar 

  28. Byers L. et al. A Global Database of Power Plants (World Resources Institute, 2018); https://www.wri.org/publication/global-power-plant-database

  29. Liu, J. Integration across a metacoupled world. Ecol. Soc. 22, 29 (2017).

    Article  Google Scholar 

  30. Vercruysse, K., Grabowski, R. C. & Rickson, R. J. Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation. Earth Sci. Rev. 166, 38–52 (2017).

    Article  Google Scholar 

  31. Wu, X.-X., Gu, Z.-J., Luo, H., Shi, X.-Z. & Yu, D.-S. Analyzing forest effects on runoff and sediment production using leaf area index. J. Mt. Sci. 11, 119–130 (2014).

    Article  Google Scholar 

  32. Wang, Y. et al. Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China. Ecohydrology 4, 277–287 (2011).

    Article  CAS  Google Scholar 

  33. Bilotta, G. S. & Brazier, R. E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 42, 2849–2861 (2008).

    Article  CAS  Google Scholar 

  34. Stickler, C. M. et al. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl Acad. Sci. USA 110, 9601–9606 (2013).

    Article  CAS  Google Scholar 

  35. Maltby, E. & Acreman, M. C. Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrol. Sci. J. 56, 1341–1359 (2011).

    Article  Google Scholar 

  36. Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E. & Smith, D. R. Impacts of impervious surface on watershed hydrology: a review. Urban Water J. 2, 263–275 (2005).

    Article  Google Scholar 

  37. Borrelli, P. et al. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl Acad. Sci. USA 117, 21994–22001 (2020).

    Article  CAS  Google Scholar 

  38. Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Article  Google Scholar 

  39. Symes, W. S., Rao, M., Mascia, M. B. & Carrasco, L. R. Why do we lose protected areas? Factors influencing protected area downgrading, downsizing and degazettement in the tropics and subtropics. Glob. Change Biol. 22, 656–665 (2016).

    Article  Google Scholar 

  40. Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).

    Article  Google Scholar 

  41. Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).

    Article  CAS  Google Scholar 

  42. Liu, J. et al. China’s environment on a metacoupled planet. Annu. Rev. Environ. Resour. 43, 1–34 (2018).

    Article  CAS  Google Scholar 

  43. Viña, A., McConnell, W. J., Yang, H., Xu, Z. & Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2, e1500965 (2016).

    Article  Google Scholar 

  44. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article  Google Scholar 

  45. Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).

    Article  CAS  Google Scholar 

  46. Vörösmarty, C. J. et al. Ecosystem-based water security and the Sustainable Development Goals (SDGs). Ecohydrol. Hydrobiol. 18, 317–333 (2018).

    Article  Google Scholar 

  47. Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).

    Article  Google Scholar 

  48. Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018).

    Article  Google Scholar 

  49. McDonald, R. I. et al. Urban growth, climate change, and freshwater availability. Proc. Natl Acad. Sci. USA 108, 6312–6317 (2011).

    Article  CAS  Google Scholar 

  50. Willner, S. N., Otto, C. & Levermann, A. Global economic response to river floods. Nat. Clim. Change 8, 594–598 (2018).

    Article  Google Scholar 

  51. Cattaneo, A., Nelson, A. & McMenomy, T. Global mapping of urban–rural catchment areas reveals unequal access to services. Proc. Natl Acad. Sci. USA 118, e2011990118 (2021).

    Article  CAS  Google Scholar 

  52. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Article  Google Scholar 

  53. Schneider, A., Friedl, M. A. & Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4, 044003 (2009).

    Article  Google Scholar 

  54. Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. EOS 89, 93–94 (2008).

  55. Yang, H. et al. A global assessment of the impact of individual protected areas on preventing forest loss. Sci. Total Environ. 777, 145995 (2021).

    Article  CAS  Google Scholar 

  56. Smith, A. et al. New estimates of flood exposure in developing countries using high-resolution population data. Nat. Commun. 10, 1814 (2019).

    Article  Google Scholar 

  57. Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).

    Article  CAS  Google Scholar 

  58. Hanasaki, N. et al. An integrated model for the assessment of global water resources—Part 1: model description and input meteorological forcing. Hydrol. Earth Syst. Sci. 12, 1007–1025 (2008).

    Article  Google Scholar 

  59. Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

    Article  Google Scholar 

  60. Pokhrel, Y. N. et al. Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resour. Res. 51, 78–96 (2015).

    Article  Google Scholar 

  61. Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).

    Article  Google Scholar 

  62. Müller Schmied, H. et al. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol. Earth Syst. Sci. 20, 2877–2898 (2016).

    Article  Google Scholar 

  63. Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

    Article  Google Scholar 

  64. Dirmeyer, P. A. et al. GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull. Am. Meteorol. Soc. 87, 1381–1398 (2006).

    Article  Google Scholar 

  65. Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).

    Article  Google Scholar 

  66. Bingham, H. C. et al. Sixty years of tracking conservation progress using the World Database on Protected Areas. Nat. Ecol. Evol. 3, 737–743 (2019).

    Article  Google Scholar 

  67. ArcGIS Desktop: Release 10.3.1 (Environmental Systems Research Institution, 2015).

  68. Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).

    Article  CAS  Google Scholar 

  69. Bennett, G. & Ruef, F. Alliances for Green Infrastructure: State of Watershed Investment 2016 (Forest Trends, 2016).

  70. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  71. Wellman, B. & Frank, K. in Social Capital: Theory and Research (eds Lin, N. et al.) 233–273 (Routledge, 2001).

  72. Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Nichols and H. Kang for their helpful comments on earlier drafts and to the organizations that provided the data for this study. Funding was provided by the US National Science Foundation (grant no. 1924111, J.L.; grant no. 1752729, Y.P.), Michigan AgBioResearch (J.L. and T.D.) and Sustainable Michigan Endowment Project (M.G.C.).

Author information

Authors and Affiliations

Authors

Contributions

M.G.C., K.A.F., Y.P. and J.L. designed the research. M.G.C. and Y.P. contributed the data. M.G.C., K.A.F., T.D., Y.P. and J.L. analysed the model and drafted the manuscript. M.G.C. and J.L. interpreted the results. M.G.C., K.A.F., T.D., Y.P. and J.L. conceived of the study and revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jianguo Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Todd Gartner, Robert McDonald and Chelsie Romulo for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1–5.

Reporting Summary

Supplementary Data 1

Input data for egocentric network analyses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, M.G., Frank, K.A., Pokhrel, Y. et al. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nat Sustain 4, 1068–1075 (2021). https://doi.org/10.1038/s41893-021-00786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00786-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing