Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Solvent-assisted preparation of supported lipid bilayers

Abstract

The supported lipid bilayer (SLB) platform is a popular cell membrane mimic that is utilized in the chemical, biological, materials science, and medical fields. To date, SLB preparation has proven challenging because of the need for specialized fabrication equipment, domain-specific knowledge about topics relevant to lipid self-assembly, and extensive training in the interfacial science field. Existing methods, such as vesicle fusion, also work with only a narrow range of lipid compositions and material supports. Here, we describe a recently developed simple and versatile protocol to form SLBs. The protocol is simple because it requires minimal sample preparation and only basic microfluidics, making it technically accessible to researchers across different scientific disciplines. The protocol is versatile because it works on a wide range of material supports, such as silicon oxide, gold, and graphene, and is compatible with diverse lipid compositions, including sterols and signaling lipids. The main stages of the procedure involve dissolving a lipid sample in an organic solvent, depositing the lipid solution on a solid support, and replacing the organic solvent with aqueous buffer. In addition, we provide procedures for characterizing the quality of the prepared SLBs and present examples of biofunctionalization procedures. The protocol takes 1–2 h and is broadly useful in various application contexts, including clinical diagnostics, biosensing, and cellular interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular self-assembly of phospholipid molecules in different solvent systems.
Fig. 2: Schematic illustration of the stages of the SALB procedure.
Fig. 3: Comparison of SALB and vesicle fusion methods on silicon oxide and gold surfaces.
Fig. 4: Microfluidic chamber assembly and attachment in microscope setup.
Fig. 5: Observation of DOPC–cholesterol SLBs on a glass surface by epifluorescence microscopy.
Fig. 6: QCM-D of SLB formation on different substrates.
Fig. 7: QCM-D of streptavidin binding to functionalized SLBs.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors upon reasonable request.

References

  1. Richter, R. P., Bérat, R. & Brisson, A. R. Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22, 3497–3505 (2006).

    CAS  PubMed  Google Scholar 

  2. Castellana, E. T. & Cremer, P. S. Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Sci. Rep. 61, 429–444 (2006).

    CAS  Google Scholar 

  3. Chan, Y.-H. M. & Boxer, S. G. Model membrane systems and their applications. Curr. Opin. Chem. Biol. 11, 581–587 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Reimhult, E. & Kumar, K. Membrane biosensor platforms using nano-and microporous supports. Trends Biotechnol. 26, 82–89 (2008).

    CAS  PubMed  Google Scholar 

  5. Im, H., Wittenberg, N. J., Lesuffleur, A., Lindquist, N. C. & Oh, S.-H. Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem. Sci. 1, 688–696 (2010).

    CAS  PubMed  Google Scholar 

  6. Yang, T., Jung, S., Mao, H. & Cremer, P. S. Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. Anal. Chem. 73, 165–169 (2001).

    CAS  PubMed  Google Scholar 

  7. Junesch, J. et al. Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature. Nanoscale 7, 15080–15085 (2015).

    CAS  PubMed  Google Scholar 

  8. Mingeot-Leclercq, M.-P., Deleu, M., Brasseur, R. & Dufrêne, Y. F. Atomic force microscopy of supported lipid bilayers. Nat. Protoc. 3, 1654 (2008).

    PubMed  Google Scholar 

  9. Cho, N.-J., Frank, C. W., Kasemo, B. & Höök, F. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat. Protoc. 5, 1096–1106 (2010).

    CAS  PubMed  Google Scholar 

  10. Lee, T.-H., Hirst, D. J., Kulkarni, K., Del Borgo, M. P. & Aguilar, M.-I. Exploring molecular-biomembrane interactions with surface plasmon resonance and dual polarization interferometry technology: expanding the spotlight onto biomembrane structure. Chem. Rev. 118, 5392–5487 (2018).

    CAS  PubMed  Google Scholar 

  11. Höök, F. et al. Supported lipid bilayers, tethered lipid vesicles, and vesicle fusion investigated using gravimetric, plasmonic, and microscopy techniques. Biointerphases 3, FA108–FA116 (2008).

    PubMed  Google Scholar 

  12. Mashaghi, A. et al. Label-free characterization of biomembranes: from structure to dynamics. Chem. Soc. Rev. 43, 887–900 (2014).

    CAS  PubMed  Google Scholar 

  13. Limaj, O. et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano Lett. 16, 1502–1508 (2016).

    CAS  PubMed  Google Scholar 

  14. Tabaei, S. R., Choi, J.-H., Haw Zan, G., Zhdanov, V. P. & Cho, N.-J. Solvent-assisted lipid bilayer formation on silicon dioxide and gold. Langmuir 30, 10363–10373 (2014).

    CAS  PubMed  Google Scholar 

  15. Deshpande, S. & Dekker, C. On-chip microfluidic production of cell-sized liposomes. Nat. Protoc. 13, 856 (2018).

    CAS  PubMed  Google Scholar 

  16. Doktorova, M. et al. Preparation of asymmetric phospholipid vesicles for use as cell membrane models. Nat. Protoc. 13, 2086 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Szoka, F. & Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl Acad. Sci. 75, 4194–4198 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hohner, A. O., David, M. P. C. & Rädler, J. O. Controlled solvent-exchange deposition of phospholipid membranes onto solid surfaces. Biointerphases 5, 1–8 (2010).

    CAS  PubMed  Google Scholar 

  19. Tabaei, S. R., Jackman, J. A., Kim, S.-O., Zhdanov, V. P. & Cho, N.-J. Solvent-assisted lipid self-assembly at hydrophilic surfaces: factors influencing the formation of supported membranes. Langmuir 31, 3125–3134 (2015).

    CAS  PubMed  Google Scholar 

  20. Kim, M. C., Gillissen, J. J., Tabaei, S. R., Zhdanov, V. P. & Cho, N.-J. Spatiotemporal dynamics of solvent-assisted lipid bilayer formation. Phys. Chem. Chem. Phys. 17, 31145–31151 (2015).

    CAS  PubMed  Google Scholar 

  21. Gillissen, J. J., Tabaei, S. R. & Cho, N.-J. A phenomenological model of the solvent-assisted lipid bilayer formation method. Phys. Chem. Chem. Phys. 18, 24157–24163 (2016).

    CAS  PubMed  Google Scholar 

  22. Jackman, J. A., Tabaei, S. R., Zhao, Z., Yorulmaz, S. & Cho, N.-J. Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water. ACS Appl. Mater. Interfaces 7, 959–968 (2014).

    PubMed  Google Scholar 

  23. Tabaei, S. R., Ng, W. B., Cho, S.-J. & Cho, N.-J. Controlling the formation of phospholipid monolayer, bilayer, and intact vesicle layer on graphene. ACS Appl. Mater. Interfaces 8, 11875–11880 (2016).

    CAS  PubMed  Google Scholar 

  24. Losada-Pérez, P., Polat, O., Parikh, A. N., Seker, E. & Renner, F. U. Engineering the interface between lipid membranes and nanoporous gold: a study by quartz crystal microbalance with dissipation monitoring. Biointerphases 13, 011002 (2018).

    PubMed  Google Scholar 

  25. Tabaei, S. R., Vafaei, S. & Cho, N.-J. Fabrication of charged membranes by the solvent-assisted lipid bilayer (SALB) formation method on SiO2 and Al2O3. Phys. Chem. Chem. Phys. 17, 11546–11552 (2015).

    CAS  PubMed  Google Scholar 

  26. Tabaei, S. R. et al. Multistep compositional remodeling of supported lipid membranes by interfacially active phosphatidylinositol kinases. Anal. Chem. 88, 5042–5045 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tabaei, S. R. et al. Formation of cholesterol-rich supported membranes using solvent-assisted lipid self-assembly. Langmuir 30, 13345–13352 (2014).

    CAS  PubMed  Google Scholar 

  28. Tabaei, S. R., Jackman, J. A., Liedberg, B., Parikh, A. N. & Cho, N.-J. Observation of stripe superstructure in the β-two-phase coexistence region of cholesterol–phospholipid mixtures in supported membranes. J. Am. Chem. Soc. 136, 16962–16965 (2014).

    CAS  PubMed  Google Scholar 

  29. Kawakami, L. M. et al. Understanding how sterols regulate membrane remodeling in supported lipid bilayers. Langmuir 33, 14756–14765 (2017).

    CAS  PubMed  Google Scholar 

  30. Sundh, M., Svedhem, S. & Sutherland, D. S. Influence of phase separating lipids on supported lipid bilayer formation at SiO2 surfaces. Phys. Chem. Chem. Phys. 12, 453–460 (2010).

    CAS  PubMed  Google Scholar 

  31. Crane, J. M. & Tamm, L. K. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys. J. 86, 2965–2979 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stottrup, B. L., Veatch, S. L. & Keller, S. L. Nonequilibrium behavior in supported lipid membranes containing cholesterol. Biophys. J. 86, 2942–2950 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ziblat, R., Kjaer, K., Leiserowitz, L. & Addadi, L. Structure of cholesterol/lipid ordered domains in monolayers and single hydrated bilayers. Angew. Chem. Int. Ed. Engl. 48, 8958–8961 (2009).

    CAS  PubMed  Google Scholar 

  34. Lee, T.-H., Hirst, D. J. & Aguilar, M.-I. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology. Biochim. Biophys. Acta 1848, 1868–1885 (2015).

    CAS  PubMed  Google Scholar 

  35. Czogalla, A., Grzybek, M., Jones, W. & Coskun, Ü. Validity and applicability of membrane model systems for studying interactions of peripheral membrane proteins with lipids. Biochim. Biophys. Acta 1841, 1049–1059 (2014).

    CAS  PubMed  Google Scholar 

  36. Wittenberg, N. J. et al. High-affinity binding of remyelinating natural autoantibodies to myelin-mimicking lipid bilayers revealed by nanohole surface plasmon resonance. Anal. Chem. 84, 6031–6039 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rascol, E., Devoisselle, J.-M. & Chopineau, J. The relevance of membrane models to understand nanoparticles–cell membrane interactions. Nanoscale 8, 4780–4798 (2016).

    CAS  PubMed  Google Scholar 

  38. Costello, D. A., Villareal, V. A. & Yang, P. L. Desmosterol increases lipid bilayer fluidity during hepatitis C virus infection. ACS Infect. Dis. 2, 852–862 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Naumann, R. et al. Incorporation of membrane proteins in solid-supported lipid layers. Angew. Chem. Int. Ed. Engl. 34, 2056–2058 (1995).

    CAS  Google Scholar 

  40. Robelek, R. et al. Incorporation of in vitro synthesized GPCR into a tethered artificial lipid membrane system. Angew. Chem. Int. Ed. Engl. 46, 605–608 (2007).

    CAS  PubMed  Google Scholar 

  41. Chadli, M. et al. New tethered phospholipid bilayers integrating functional G-protein-coupled receptor membrane proteins. Langmuir 33, 10385–10401 (2017).

    CAS  PubMed  Google Scholar 

  42. Chadli, M. et al. A new functional membrane protein microarray based on tethered phospholipid bilayers. Analyst 143, 2165–2173 (2018).

    CAS  PubMed  Google Scholar 

  43. Boxer, S. G. Molecular transport and organization in supported lipid membranes. Curr. Opin. Chem. Biol. 4, 704–709 (2000).

    CAS  PubMed  Google Scholar 

  44. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Oudenaarden, A. & Boxer, S. G. Brownian ratchets: molecular separations in lipid bilayers supported on patterned arrays. Science 285, 1046–1048 (1999).

    PubMed  Google Scholar 

  46. Bally, M. et al. Liposome and lipid bilayer arrays towards biosensing applications. Small 6, 2481–2497 (2010).

    CAS  PubMed  Google Scholar 

  47. Yusko, E. C. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schiller, S. M., Naumann, R., Lovejoy, K., Kunz, H. & Knoll, W. Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces. Angew. Chem. Int. Ed. Engl. 42, 208–211 (2003).

    CAS  PubMed  Google Scholar 

  49. Naumann, R. et al. Tethered lipid bilayers on ultraflat gold surfaces. Langmuir 19, 5435–5443 (2003).

    CAS  Google Scholar 

  50. Keizer, H. M. et al. Functional ion channels in tethered bilayer membranes—implications for biosensors. ChemBioChem 8, 1246–1250 (2007).

    CAS  PubMed  Google Scholar 

  51. Wiegand, G., Arribas-Layton, N., Hillebrandt, H., Sackmann, E. & Wagner, P. Electrical properties of supported lipid bilayer membranes. J. Phys. Chem. B 106, 4245–4254 (2002).

    CAS  Google Scholar 

  52. Jackman, A. J., Knoll, W. & Cho, N.-J. Biotechnology applications of tethered lipid bilayer membranes. Materials 5, 2637–2657 (2012).

    CAS  PubMed Central  Google Scholar 

  53. Andersson, J., Köper, I. & Knoll, W. Tethered membrane architectures—design and applications. Front. Mater. 5, 55 (2018).

    Google Scholar 

  54. De Leo, V. et al. Liposome-modified titanium surface: a strategy to locally deliver bioactive molecules. Colloids Surf. B Biointerfaces 158, 387–396 (2017).

    PubMed  Google Scholar 

  55. Glasmästar, K., Larsson, C., Höök, F. & Kasemo, B. Protein adsorption on supported phospholipid bilayers. J. Colloid Interface Sci. 246, 40–47 (2002).

    PubMed  Google Scholar 

  56. Andersson, A. S., Glasmästar, K., Sutherland, D., Lidberg, U. & Kasemo, B. Cell adhesion on supported lipid bilayers. J. Biomed. Mater. Res. A 64, 622–629 (2003).

    PubMed  Google Scholar 

  57. van Weerd, J., Karperien, M. & Jonkheijm, P. Supported lipid bilayers for the generation of dynamic cell–material interfaces. Adv. Healthc. Mater. 4, 2743–2779 (2015).

    PubMed  Google Scholar 

  58. Koçer, G. & Jonkheijm, P. Guiding hMSC adhesion and differentiation on supported lipid bilayers. Adv. Healthc. Mater. 6, 1600862 (2017).

    Google Scholar 

  59. Nair, P. M., Salaita, K., Petit, R. S. & Groves, J. T. Using patterned supported lipid membranes to investigate the role of receptor organization in intercellular signaling. Nat. Protoc. 6, 523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Glazier, R. & Salaita, K. Supported lipid bilayer platforms to probe cell mechanobiology. Biochim. Biophys. Acta 1859, 1465–1482 (2017).

    CAS  PubMed Central  Google Scholar 

  61. Koçer, G. & Jonkheijm, P. About chemical strategies to fabricate cell‐instructive biointerfaces with static and dynamic complexity. Adv. Healthc. Mater. 7, 1701192 (2018).

    Google Scholar 

  62. Svedhem, S. et al. In situ peptide-modified supported lipid bilayers for controlled cell attachment. Langmuir 19, 6730–6736 (2003).

    CAS  Google Scholar 

  63. Huang, C.-J. et al. Type I collagen-functionalized supported lipid bilayer as a cell culture platform. Biomacromolecules 11, 1231–1240 (2010).

    CAS  PubMed  Google Scholar 

  64. Yorulmaz Avsar, S. et al. Immobilization strategies for functional complement convertase assembly at lipid membrane interfaces. Langmuir 33, 7332–7342 (2017).

    CAS  PubMed  Google Scholar 

  65. Wu, J.-C. et al. Antibody conjugated supported lipid bilayer for capturing and purification of viable tumor cells in blood for subsequent cell culture. Biomaterials 34, 5191–5199 (2013).

    CAS  PubMed  Google Scholar 

  66. Chen, J.-Y. et al. Sensitive and specific biomimetic lipid coated microfluidics to isolate viable circulating tumor cells and microemboli for cancer detection. PLoS One 11, e0149633 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Vafaei, S., Tabaei, S. R., Biswas, K. H., Groves, J. T. & Cho, N. J. Dynamic cellular interactions with extracellular matrix triggered by biomechanical tuning of low‐rigidity, supported lipid membranes. Adv. Healthc. Mater. 6, 1700243 (2017).

    Google Scholar 

  68. Kubalek, E. W., Le Grice, S. F. J. & Brown, P. O. Two-dimensional crystallization of histidine-tagged, HIV-1 reverse transcriptase promoted by a novel nickel-chelating lipid. J. Struct. Biol. 113, 117–123 (1994).

    CAS  PubMed  Google Scholar 

  69. Chikh, G. G., Li, W. M., Schutze-Redelmeier, M.-P., Meunier, J.-C. & Bally, M. B. Attaching histidine-tagged peptides and proteins to lipid-based carriers through use of metal-ion-chelating lipids. Biochim. Biophys. Acta 1567, 204–212 (2002).

    CAS  PubMed  Google Scholar 

  70. Lata, S., Gavutis, M. & Piehler, J. Monitoring the dynamics of ligand–receptor complexes on model membranes. J. Am. Chem. Soc. 128, 6–7 (2006).

    CAS  PubMed  Google Scholar 

  71. Nye, J. A. & Groves, J. T. Kinetic control of histidine-tagged protein surface density on supported lipid bilayers. Langmuir 24, 4145–4149 (2008).

    CAS  PubMed  Google Scholar 

  72. Galush, W. J. et al. A nanocube plasmonic sensor for molecular binding on membrane surfaces. Nano Lett. 9, 2077–2082 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Busch, D. J. et al. Intrinsically disordered proteins drive membrane curvature. Nat. Commun. 6, 7875 (2015).

    CAS  PubMed  Google Scholar 

  74. van der Meulen, S. A. J., Dubacheva, G. V., Dogterom, M., Richter, R. P. & Leunissen, M. E. Quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry measurements of the phospholipid bilayer anchoring stability and kinetics of hydrophobically modified DNA oligonucleotides. Langmuir 30, 6525–6533 (2014).

    PubMed  Google Scholar 

  75. Dubacheva, G. V. et al. Controlling multivalent binding through surface chemistry: model study on streptavidin. J. Am. Chem. Soc. 139, 4157–4167 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tamm, L. K. & McConnell, H. M. Supported phospholipid bilayers. Biophys. J. 47, 105–113 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Girard-Egrot, A. P. & Blum, L. J. Langmuir-Blodgett technique for synthesis of biomimetic lipid membranes. in Nanobiotechnology of Biomimetic Membranes (ed. Martin, D. K.) 23–74 (Springer, 2007).

  78. Hardy, G. J., Nayak, R. & Zauscher, S. Model cell membranes: techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Curr. Opin. Colloid Interface Sci. 18, 448–458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Keller, C. & Kasemo, B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 75, 1397–1402 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Keller, C., Glasmästar, K., Zhdanov, V. & Kasemo, B. Formation of supported membranes from vesicles. Phys. Rev. Lett. 84, 5443 (2000).

    CAS  PubMed  Google Scholar 

  81. Cremer, P. S. & Boxer, S. G. Formation and spreading of lipid bilayers on planar glass supports. J. Phys. Chem. B 103, 2554–2559 (1999).

    CAS  Google Scholar 

  82. Biswas, K. H., Jackman, J. A., Park, J. H., Groves, J. T. & Cho, N.-J. Interfacial forces dictate the pathway of phospholipid vesicle adsorption onto silicon dioxide surfaces. Langmuir 34, 1775–1782 (2018).

    CAS  PubMed  Google Scholar 

  83. Sackmann, E. Supported membranes: scientific and practical applications. Science 271, 43–48 (1996).

    CAS  PubMed  Google Scholar 

  84. Zwang, T. J., Fletcher, W. R., Lane, T. J. & Johal, M. S. Quantification of the layer of hydration of a supported lipid bilayer. Langmuir 26, 4598–4601 (2010).

    CAS  PubMed  Google Scholar 

  85. Reimhult, E., Höök, F. & Kasemo, B. Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir 19, 1681–1691 (2003).

    CAS  Google Scholar 

  86. Gracià, R. S., Bezlyepkina, N., Knorr, R. L., Lipowsky, R. & Dimova, R. Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matter 6, 1472–1482 (2010).

    Google Scholar 

  87. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605 (2005).

    CAS  PubMed  Google Scholar 

  88. Mager, M. D., Almquist, B. & Melosh, N. A. Formation and characterization of fluid lipid bilayers on alumina. Langmuir 24, 12734–12737 (2008).

    CAS  PubMed  Google Scholar 

  89. Mager, M. D. & Melosh, N. A. Lipid bilayer deposition and patterning via air bubble collapse. Langmuir 23, 9369–9377 (2007).

    CAS  PubMed  Google Scholar 

  90. Hirtz, M., Oikonomou, A., Georgiou, T., Fuchs, H. & Vijayaraghavan, A. Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nat. Commun. 4, 2591 (2013).

    PubMed  Google Scholar 

  91. Lenhert, S., Sun, P., Wang, Y., Fuchs, H. & Mirkin, C. A. Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small 3, 71–75 (2007).

    CAS  PubMed  Google Scholar 

  92. Mennicke, U. & Salditt, T. Preparation of solid-supported lipid bilayers by spin-coating. Langmuir 18, 8172–8177 (2002).

    CAS  Google Scholar 

  93. Dols-Perez, A., Fumagalli, L., Simonsen, A. C. & Gomila, G. Ultrathin spin-coated dioleoylphosphatidylcholine lipid layers in dry conditions: a combined atomic force microscopy and nanomechanical study. Langmuir 27, 13165–13172 (2011).

    CAS  PubMed  Google Scholar 

  94. Dols-Perez, A., Fumagalli, L. & Gomila, G. Structural and nanomechanical effects of cholesterol in binary and ternary spin-coated single lipid bilayers in dry conditions. Colloids Surf. B Biointerfaces 116, 295–302 (2014).

    CAS  PubMed  Google Scholar 

  95. Raedler, J., Strey, H. & Sackmann, E. Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces. Langmuir 11, 4539–4548 (1995).

    CAS  Google Scholar 

  96. Nissen, J., Gritsch, S., Wiegand, G. & Rädler, J. O. Wetting of phospholipid membranes on hydrophilic surfaces—concepts towards self-healing membranes. Eur. Phys. J. B 10, 335–344 (1999).

    CAS  Google Scholar 

  97. Ohlsson, G. et al. A miniaturized flow reaction chamber for use in combination with QCM-D sensing. Microfluid. Nanofluid. 9, 705–716 (2010).

    CAS  Google Scholar 

  98. Sauerbrey, G. Use of quartz vibration for weighing thin films on a microbalance. J. Phys. 155, 206–222 (1959).

    CAS  Google Scholar 

  99. Dodd, C. E. et al. Native E. coli inner membrane incorporation in solid-supported lipid bilayer membranes. Biointerphases 3, FA59–FA67 (2008).

    CAS  PubMed  Google Scholar 

  100. Hsia, C.-Y., Chen, L., Singh, R. R., DeLisa, M. P. & Daniel, S. A molecularly complete planar bacterial outer membrane platform. Scientific Rep. 6, 32715 (2016).

    CAS  Google Scholar 

  101. Liu, H.-Y. et al. Supported planar mammalian membranes as models of in vivo cell surface architectures. ACS Appl. Mater. Interfaces 9, 35526–35538 (2017).

    CAS  PubMed  Google Scholar 

  102. Pace, H. et al. Preserved transmembrane protein mobility in polymer-supported lipid bilayers derived from cell membranes. Anal. Chem. 87, 9194–9203 (2015).

    CAS  PubMed  Google Scholar 

  103. Pace, H. P. et al. Structure and composition of native membrane derived polymer-supported lipid bilayers. Anal. Chem. 90, 13065–13072 (2018).

    CAS  PubMed  Google Scholar 

  104. Peerboom, N. et al. Cell membrane derived platform to study virus binding kinetics and diffusion with single particle sensitivity. ACS Infect. Dis. 4, 944–953 (2018).

    CAS  PubMed  Google Scholar 

  105. Richards, M. J. et al. Membrane protein mobility and orientation preserved in supported bilayers created directly from cell plasma membrane blebs. Langmuir 32, 2963–2974 (2016).

    CAS  PubMed  Google Scholar 

  106. Simonsson, L., Gunnarsson, A., Wallin, P., Jönsson, P. & Höök, F. Continuous lipid bilayers derived from cell membranes for spatial molecular manipulation. J. Am. Chem. Soc. 133, 14027–14032 (2011).

    CAS  PubMed  Google Scholar 

  107. Griebenow, K. & Klibanov, A. M. On protein denaturation in aqueous–organic mixtures but not in pure organic solvents. J. Am. Chem. Soc. 118, 11695–11700 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Singapore through a Proof-of-Concept grant (NRF2015NRF-POC0001-19) to N.-J.C. Additional support was provided by the Creative Materials Discovery Program through the National Research Foundation of Korea, funded by the Ministry of Science, ICT and Future Planning (NRF-2016M3D1A1024098) to N.-J.C.

Author information

Authors and Affiliations

Authors

Contributions

A.R.F., J.A.J., and N.-J.C. designed the study. A.R.F., J.A.J., and N.-J.C. wrote the initial draft of the manuscript. B.K.Y., T.N.S., S.P., H.C., and J.H.P. contributed to protocol development. A.R.F., B.K.Y., T.N.S., S.P., H.C. J.H.P., and J.A.J. interpreted the results. N.-J.C. obtained funding. All authors reviewed, edited, and approved the paper.

Corresponding authors

Correspondence to Joshua A. Jackman or Nam-Joon Cho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Protocols thanks Ling Chao and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Tabaei, S. R., Jackman, J. A., Liedberg, B., Parikh, A. N. & Cho, N.-J. J. Am. Chem. Soc. 136, 16962–16965 (2014): https://doi.org/10.1021/ja5082537

Tabaei, S. R., Choi, J.-H., Haw Zan, G., Zhdanov, V. P. & Cho, N.-J. Langmuir 30, 10363–10373 (2014): https://doi.org/10.1021/la501534f

Tabaei, S. R., Jackman, J. A., Kim, S.-O., Zhdanov, V. P. & Cho, N.-J. Langmuir 31, 3125–3134 (2015): https://doi.org/10.1021/la5048497

Vafaei, S., Tabaei, S. R., Biswas, K. H., Groves, J. T. & Cho, N. J. Adv. Healthc. Mater. 6, 1700243 (2017): https://doi.org/10.1002/adhm.201700243

Integrated supplementary information

Supplementary Fig. 1 Direct comparison of the gradual solvent-exchange and SALB methods for SLB formation on a gold surface.

QCM-D measurements were conducted in order to track SLB formation on a gold surface by the (a) gradual solvent-exchange method and (b) SALB method. Briefly, a gold surface was first (i) incubated with 0.5 mg ml−1 DOPC phospholipids below the critical micelle-to-vesicle transition (80/20 isopropanol-water by volume percentage). Following the gradual solvent-exchange approach, we increased the aqueous content gradually in 10% increments, from (ii) 30% to (ix) 100%. Following the SALB method, we quickly performed (ii) the solvent-exchange with 100% aqueous buffer in a single exchange step. The results verify that the SALB method can be applied to form SLBs on gold surfaces (as indicated by Δf and ΔD shifts of around −27 Hz and 1 × 10−6, respectively) and further show that the gradual solvent-exchange method was not able to form SLBs on gold surfaces (minimal lipid adsorption, as indicated by Δf and ΔD shifts of around −3 Hz and 0.4 × 10−6, respectively).

Supplementary Fig. 2 QCM-D responses for pH-dependent lipid adsorption onto a silicon oxide surface after the SALB procedure was performed.

Final QCM-D (a) frequency and (b) energy dissipation shifts are reported after the SALB procedure was completed using 0.5 mg ml−1 DOPC lipid on a silicon oxide surface at two different pH conditions. At pH 7, typical values for SLB formation were obtained while smaller measurement responses were recorded at pH 12. The inability to form SLBs on silicon oxide at pH 12 is consistent with what is known about weaker lipid-substrate interactions under such conditions due to a strongly coupled, “ice-like” hydration layer on the silicon oxide surface. Results are expressed as mean ± standard deviation (n = 3) and all individual data points are plotted.

Supplementary information

Supplementary Information

Supplementary Figures 1 and 2

Reporting Summary

Supplementary Video 1

Lipid solubilization and sample preparation.

Supplementary Video 2

Microfluidic chamber assembly and attachment in microscope setup.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferhan, A.R., Yoon, B.K., Park, S. et al. Solvent-assisted preparation of supported lipid bilayers. Nat Protoc 14, 2091–2118 (2019). https://doi.org/10.1038/s41596-019-0174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0174-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research