Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

RNA splicing mechanisms

Decoding branch points and unlocking splicing secrets

Branch point selection is required for pre-mRNA splicing, and its mis-regulation is associated with many diseases. Two structural studies provide insights into the dynamics of active site formation and the spliceosomal proteins that may contribute to activation of the correct branch point in eukaryotic introns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conserved RNA structures form the active site.
Fig. 2: Spliceosomal proteins facilitate assembly onto, and interrogation of, the branch-point sequence.

References

  1. Lee, Y. & Rio, D. C. Ann. Rev. Biochem. 84, 291–323 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Scotti, M. M. & Swanson, M. S. Nat. Rev. Genet. 17, 19–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Galej, W. P., Toor, N., Newman, A. J. & Nagai, K. Chem. Rev. 118, 4156–4176 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Haack, D. B., Rudolfs, B., Zhang, C., Lyumkis, D. & Toor, N. Nat. Struct. Mol. Biol. 31, 179–189 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, X. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-023-01188-0 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Taggart, A. J., DeSimone, A. M., Shih, J. S., Filloux, M. E. & Fairbrother, W. G. Nat. Struct. Mol. Biol. 19, 719–721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ule, J. & Blencowe, B. J. Mol. Cell 76, 329–345 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Berget, S. M. J. Biol. Chem. 270, 2411–2414 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Xu, Y.-Z. & Query, C. C. Mol. Cell 28, 838–849 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshida, K. et al. Nature 478, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Rodnina, M. V. & Wintermeyer, W. Ann. Rev. Biochem. 70, 415–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Z. et al. Nature 583, 310–313 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Z. et al. Nature 596, 296–300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haack, D. B. & Toor, N. Wiley Interdiscip. Rev. RNA 11, e1589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health (NIH) grants R01GM098634 and R01GM140082 (to J.A.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Pleiss.

Ethics declarations

Competing interests

All authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Downs, S.R., Grace, B. & Pleiss, J.A. Decoding branch points and unlocking splicing secrets. Nat Struct Mol Biol 31, 732–734 (2024). https://doi.org/10.1038/s41594-024-01308-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-024-01308-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing