Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The evolution of embryo models

The creation of multiple stem-cell-derived models of mammalian embryogenesis is opening many new doors to study human development and brings a need for scientists to demonstrate responsible dialog over the associated ethical issues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mouse and human embryogenesis.
Fig. 2: Three dimensional stem-cell-based embryo models in mouse and human.

References

  1. Evans, M. J. & Kaufman, M. H. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. ten Berge, D. et al. Cell Stem Cell 3, 508–518 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beccari, L. et al. Nature 562, 272–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Veenvliet, J. V. et al. Science 370, eaba4937 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Wolpert, L. Principles of Development (Oxford Univ. Press, 2011).

  6. Bedzhov, I. & Zernicka-Goetz, M. Cell 156, 1032–1044 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shahbazi, M. N. et al. Nat. Cell Biol. 18, 700–708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shahbazi, M. N. et al. Nature 552, 239–243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Orietti, L. C. et al. Stem Cell Rep. 16, 1182–1196 (2021).

    Article  CAS  Google Scholar 

  10. Christodoulou, N. et al. Nat. Cell Biol. 20, 1278–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Thomas, P. Q., Brown, A. & Beddington, R. S. Development 125, 85–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Morris, S. A. et al. Nat. Commun. 3, 673 (2012).

    Article  PubMed  Google Scholar 

  13. Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C. & Zernicka-Goetz, M. Science 356, eaal1810 (2017).

    Article  PubMed  Google Scholar 

  14. Girgin, M. U. et al. Nat. Commun. 12, 5140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sozen, B. et al. Nat. Cell Biol. 20, 979–989 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Bao, M. et al. Nat. Cell Biol. 24, 1341–1349 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kyprianou, C. et al. Nature 582, 253–258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amadei, G. et al. Dev. Cell 56, 366–382.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. New, D. A., Coppola, P. T. & Terry, S. J. Reprod. Fertil. 35, 135–138 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. Amadei, G. et al. Nature 610, 143–153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lau, K. Y. C. et al. Cell Stem Cell 29, 1445–1458.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tarazi, S. et al. Cell 185, 3290–3306.e25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. Nat. Methods 11, 847–854 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simunovic, M. et al. Nat. Cell Biol. 21, 900–910 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, Y. et al. Nature 573, 421–425 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moris, N. et al. Nature 582, 410–415 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Simunovic, M., Siggia, E. D. & Brivanlou, A. H. Cell Stem Cell 29, 962–972.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Mackinlay, K. M. et al. eLife 10, e63930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kagawa, H. et al. Nature 601, 600–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Weatherbee, B. A. T. et al. Nature 622, 584–593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pedroza, M. et al. Nature 622, 574–583 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hislop, J. et al. Preprint at bioRxiv https://doi.org/10.1101/2023.06.15.545118 (2023).

  33. Yuan, G. et al. Preprint at bioRxiv https://doi.org/10.1101/2023.06.28.546720 (2023).

  34. Ai, Z. et al. Cell Res. 33, 661–678 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu, L. et al. Cell 186, 3776–3792.e16 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Oldak, B. et al. Nature https://doi.org/10.1038/s41586-023-06604-5 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.Z.-G.’s work on mouse and human embryo models has been supported by the Wellcome Trust, ERC, Open Atlas and NOMIS Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Zernicka-Goetz.

Ethics declarations

Competing interests

M.Z.-G. is an inventor on patents for stem-cell-derived models of the mouse and of the human embryos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zernicka-Goetz, M. The evolution of embryo models. Nat Methods 20, 1844–1848 (2023). https://doi.org/10.1038/s41592-023-02077-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-023-02077-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing