Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cleavage of a carbon–fluorine bond by an engineered cysteine dioxygenase

Abstract

Cysteine dioxygenase (CDO) plays an essential role in sulfur metabolism by regulating homeostatic levels of cysteine. Human CDO contains a post-translationally generated Cys93–Tyr157 cross-linked cofactor. Here, we investigated this Cys–Tyr cross-linking by incorporating unnatural tyrosines in place of Tyr157 via a genetic method. The catalytically active variants were obtained with a thioether bond between Cys93 and the halogen-substituted Tyr157, and we determined the crystal structures of both wild-type and engineered CDO variants in the purely uncross-linked form and with a mature cofactor. Along with mass spectrometry and 19F NMR, these data indicated that the enzyme could catalyze oxidative C–F or C–Cl bond cleavage, resulting in a substantial conformational change of both Cys93 and Tyr157 during cofactor assembly. These findings provide insights into the mechanism of Cys–Tyr cofactor biogenesis and may aid the development of bioinspired aromatic carbon–halogen bond activation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structures of human CDO and incorporation of unnatural amino acids into the catalytic active site tyrosine.
Fig. 2: MS/MS spectra of cross-linked peptides of WT and F2-Tyr157 CDO proteins and 19F NMR detection of leaving fluoride.
Fig. 3: Crystal structures of F2-Tyr157 CDO.
Fig. 4: Crystal structures of Cl-Tyr157 CDO.

Similar content being viewed by others

References

  1. Walsh, C. T. Posttranslational Modification of Proteins: Expanding Nature’s Inventory. (Roberts & CompanyPublishers, Greenwood Village, CO, 2006).

  2. Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl. 44, 7342–7372 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Klinman, J. P. & Bonnot, F. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chem. Rev. 114, 4343–4365 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Stubbe, J. & van Der Donk, W. A. Protein radicals in enzyme catalysis. Chem. Rev. 98, 705–762 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Krebs, C., Bollinger, J. M. Jr. & Booker, S. J. Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like ‘di-iron-carboxylate’ proteins. Curr. Opin. Chem. Biol. 15, 291–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCoy, J. G. et al. Structure and mechanism of mouse cysteine dioxygenase. Proc. Natl. Acad. Sci. USA 103, 3084–3089 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Simmons, C. R. et al. Crystal structure of mammalian cysteine dioxygenase. A novel mononuclear iron center for cysteine thiol oxidation. J. Biol. Chem. 281, 18723–18733 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Whittaker, J. W. Free radical catalysis by galactose oxidase. Chem. Rev. 103, 2347–2363 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Cowley, R. E. et al. Structure of the reduced copper active site in preprocessed galactose oxidase: ligand tuning for one-electron O2 activation in cofactor biogenesis. J. Am. Chem. Soc. 138, 13219–13229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schnell, R., Sandalova, T., Hellman, U., Lindqvist, Y. & Schneider, G. Siroheme- and [Fe4-S4]-dependent NirA from Mycobacterium tuberculosis is a sulfite reductase with a covalent Cys-Tyr bond in the active site. J. Biol. Chem. 280, 27319–27328 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Polyakov, K. M. et al. High-resolution structural analysis of a novel octaheme cytochrome c nitrite reductase from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens. J. Mol. Biol. 389, 846–862 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Hromada, S. E. et al. Protein oxidation involved in Cys-Tyr post-translational modification. J. Inorg. Biochem. 176, 168–174 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Stipanuk, M. H., Ueki, I., Dominy, J. E. Jr., Simmons, C. R. & Hirschberger, L. L. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37, 55–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Ye, S. et al. An insight into the mechanism of human cysteine dioxygenase. Key roles of the thioether-bonded tyrosine-cysteine cofactor. J. Biol. Chem. 282, 3391–3402 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Dominy, J. E. Jr. et al. Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity. J. Biol. Chem. 283, 12188–12201 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niewiadomski, J. et al. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice. Ann. NY Acad. Sci. 1363, 99–115 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Gordon, C., Bradley, H., Waring, R. H. & Emery, P. Abnormal sulphur oxidation in systemic lupus erythematosus. Lancet 339, 25–26 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Kwon, D. Y. et al. Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats. J. Nutr. 139, 63–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Olson, K. R. et al. Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R592–R603 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Weits, D. A. et al. Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat. Commun. 5, 3425 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. White, M. D. et al. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nat. Commun. 8, 14690 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ueki, I. et al. Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am. J. Physiol. Endocrinol. Metab. 301, E668–E684 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bradley, H. et al. Sulfate metabolism is abnormal in patients with rheumatoid arthritis Confirmation by in vivo biochemical findings. J. Rheumatol. 21, 1192–1196 (1994).

    CAS  PubMed  Google Scholar 

  24. Jeschke, J. et al. Frequent inactivation of cysteine dioxygenase type 1 contributes to survival of breast cancer cells and resistance to anthracyclines. Clin. Cancer Res. 19, 3201–3211 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heafield, M. T. et al. Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson’s and Alzheimer’s disease. Neurosci. Lett. 110, 216–220 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Li, W., Blaesi, E. J., Pecore, M. D., Crowell, J. K. & Pierce, B. S. Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe site influence the O2 coupling efficiency in mouse cysteine dioxygenase. Biochemistry 52, 9104–9119 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Davies, C. G., Fellner, M., Tchesnokov, E. P., Wilbanks, S. M. & Jameson, G. N. The Cys-Tyr cross-link of cysteine dioxygenase changes the optimal pH of the reaction without a structural change. Biochemistry 53, 7961–7968 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Driggers, C. M. et al. Structure-based insights into the role of the Cys-Tyr crosslink and inhibitor recognition by mammalian cysteine dioxygenase. J. Mol. Biol. 428, 3999–4012 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Driggers, C. M. et al. Cysteine dioxygenase structures from pH4 to 9: consistent cys-persulfenate formation at intermediate pH and a Cys-bound enzyme at higher pH. J. Mol. Biol. 425, 3121–3136 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Souness, R. J. et al. Mechanistic implications of persulfenate and persulfide binding in the active site of cysteine dioxygenase. Biochemistry 52, 7606–7617 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Tchesnokov, E. P. et al. An iron-oxygen intermediate formed during the catalytic cycle of cysteine dioxygenase. Chem. Commun. (Camb.) 52, 8814–8817 (2016).

    Article  CAS  Google Scholar 

  33. Oyala, P. H. et al. Biophysical characterization of fluorotyrosine probes site-specifically incorporated into enzymes: E. coli ribonucleotide reductase as an example. J. Am. Chem. Soc. 138, 7951–7964 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ravichandran, K. R. et al. Formal reduction potentials of difluorotyrosine and trifluorotyrosine protein residues: defining the thermodynamics of multistep radical transfer. J. Am. Chem. Soc. 139, 2994–3004 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Minnihan, E. C., Young, D. D., Schultz, P. G. & Stubbe, J. Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase. J. Am. Chem. Soc. 133, 15942–15945 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, F. et al. A genetically encoded 19F NMR probe for tyrosine phosphorylation. Angew. Chem. Int. Edn Engl. 52, 3958–3962 (2013).

    Article  CAS  Google Scholar 

  37. Liu, X. et al. Significant expansion of fluorescent protein sensing ability through the genetic incorporation of superior photo-induced electron-transfer quenchers. J. Am. Chem. Soc. 136, 13094–13097 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 37, 308–319 (2008).

    Article  PubMed  Google Scholar 

  39. Suckau, D. et al. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 376, 952–965 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Fellner, M., Aloi, S., Tchesnokov, E. P., Wilbanks, S. M. & Jameson, G. N. Substrate and pH-dependent kinetic profile of 3-mercaptopropionate dioxygenase from Pseudomonas aeruginosa. Biochemistry 55, 1362–1371 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Cottrell, T.L. The Strengths of Chemical Bonds. 2nd edn. (Butterworths Scientific, 1958).

  42. Sahu, S. et al. Aromatic C-F hydroxylation by nonheme iron(IV)-oxo complexes: Structural, spectroscopic, and mechanistic Investigations. J. Am. Chem. Soc. 138, 12791–12802 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sahu, S. et al. Direct observation of a nonheme iron(IV)-oxo complex that mediates aromatic C-F hydroxylation. J. Am. Chem. Soc. 136, 13542–13545 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chan, P. W. Y., Yakunin, A. F., Edwards, E. A. & Pai, E. F. Mapping the reaction coordinates of enzymatic defluorination. J. Am. Chem. Soc. 133, 7461–7468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tiedt, O. et al. ATP-dependent C-F bond cleavage allows the complete degradation of 4-fluoroaromatics without oxygen. MBio 7, e00990–16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seyedsayamdost, M. R., Yee, C. S. & Stubbe, J. Site-specific incorporation of fluorotyrosines into the R2 subunit of E. coli ribonucleotide reductase by expressed protein ligation. Nat. Protoc. 2, 1225–1235 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Arjune, S., Schwarz, G. & Belaidi, A. A. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase. Amino Acids 47, 55–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Stipanuk, M. H., Dominy, J. E. Jr., Ueki, I. & Hirschberger, L. L. Measurement of cysteine dioxygenase activity and protein abundance. Curr. Protoc. Toxicol. 38, 6.15.11–16.15.25 (2008).

    Google Scholar 

  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, (213–221 (2010).

    Google Scholar 

  51. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Kleffmann, T., Jongkees, S. A. K., Fairweather, G., Wilbanks, S. M. & Jameson, G. N. L. Mass-spectrometric characterization of two posttranslational modifications of cysteine dioxygenase. J. Biol. Inorg. Chem. 14, 913–921 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work is supported in part by the National Institutes of Health grants GM107529, GM108988, and MH107985, the National Science Foundation grant CHE-1623856, and the Lutcher Brown Distinguished Chair Endowment fund (to A.L.). J.W. acknowledges the support of the National Science Foundation of China grants (91527302, 31370016, and U1532150). The mass spectrometry facility is sponsored by the National Institutes of Health grant G12MD007591. The MALDI-TOF and NMR spectrometers are shared instruments sponsored by the National Science Foundation under the award numbers #1126708 and 1625963, respectively. X-ray synchrotron data were collected at the beamlines of the Advanced Photon Source Section 19, Structural Biology Center user program GUP-48198, Argonne National Laboratory and at the beamline BL9-2 of the Stanford Synchrotron Radiation Lightsource (SSRL) under the user program #5B14, SLAC National Accelerator Laboratory. The beamline staff scientists are acknowledged for the assistance of the remote data collections. The Advanced Photon Source is a US Department of Energy, Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. SSRL is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515 and by the National Institutes of Health (P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of National Institutes of Health or National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Genetic incorporation of unnatural amino acids was performed by J.L. (cloning, protein expression and purification, and enzyme assays). J.W. and F.L. provided TyrRS. W.P.G. and J.L. conducted mass spectrometry analyses. J.L. obtained all protein crystals, collected X-ray diffraction data, and interpreted and refined the structural data together with I.S. The mechanistic models were proposed and refined by J.L., I.D., Y.W., and A.L. Y.W. participated in the unnatural amino acid production and isolation by an enzymatic method. D.J.W. performed the 19F NMR analysis. A.L. conceived the research and wrote the manuscript together with J.L. All authors contributed to data analysis and to the writing and editing of the manuscript.

Corresponding author

Correspondence to Aimin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–2, Supplementary Figures 1–11

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Griffith, W.P., Davis, I. et al. Cleavage of a carbon–fluorine bond by an engineered cysteine dioxygenase. Nat Chem Biol 14, 853–860 (2018). https://doi.org/10.1038/s41589-018-0085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0085-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing