Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A GGC-repeat expansion in ZFHX3 encoding polyglycine causes spinocerebellar ataxia type 4 and impairs autophagy

Abstract

Despite linkage to chromosome 16q in 1996, the mutation causing spinocerebellar ataxia type 4 (SCA4), a late-onset sensory and cerebellar ataxia, remained unknown. Here, using long-read single-strand whole-genome sequencing (LR-GS), we identified a heterozygous GGC-repeat expansion in a large Utah pedigree encoding polyglycine (polyG) in zinc finger homeobox protein 3 (ZFHX3), also known as AT-binding transcription factor 1 (ATBF1). We queried 6,495 genome sequencing datasets and identified the repeat expansion in seven additional pedigrees. Ultrarare DNA variants near the repeat expansion indicate a common distant founder event in Sweden. Intranuclear ZFHX3–p62–ubiquitin aggregates were abundant in SCA4 basis pontis neurons. In fibroblasts and induced pluripotent stem cells, the GGC expansion led to increased ZFHX3 protein levels and abnormal autophagy, which were normalized with small interfering RNA-mediated ZFHX3 knockdown in both cell types. Improving autophagy points to a therapeutic avenue for this novel polyG disease. The coding GGC-repeat expansion in an extremely G+C-rich region was not detectable by short-read whole-exome sequencing, which demonstrates the power of LR-GS for variant discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of the repeat expansion in ZFHX3 as causative of SCA4.
Fig. 2: Correlation of age of onset with length of the GGC-repeat region, imaging and pathological features in patients with SCA4.
Fig. 3: Fibroblasts from patients with SCA4 show elevated ZFHX3 expression.
Fig. 4: SCA4 fibroblasts show abnormal mTOR signaling and increased ATXN2 levels.
Fig. 5: Molecular phenotypes in iPS cells derived from patients with SCA4.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding authors (S.M.P. and O.R.). The data are not publicly available as they contain information that could compromise the privacy of research participants. Source data are provided with this paper.

Code availability

(1) Open-source tools and pipelines: (1.1) in-house developed tools and pipelines: megSAP version 2022_08 (short-read WGS data): https://github.com/imgag/megSAP, https://doi.org/10.5281/zenodo.10817663 (ref. 57); megLR v1.0.0 (long-read WGS data): https://github.com/imgag/megLR, https://doi.org/10.5281/zenodo.10820153 (ref. 58); Expander (repeat expansion detection with Nanopore data): https://github.com/caspargross/expander, https://doi.org/10.5281/zenodo.10820172 (ref. 59); SCA4 project-specific scripts (scripts for data formatting, plotting, haplotype analysis and linkage analysis): https://github.com/imgag/sca4_project; (1.2) other open-source tools for long-read WGS analysis (used by in-house pipeline): trgt v0.4.0 (repeat expansion detection with long-read WGS HiFi): https://github.com/PacificBiosciences/trgt; Straglr v1.4.0 (repeat expansion detection with long-read WGS Nanopore): https://github.com/bcgsc/straglr; pbsv v2.9.0 (structural variant detection with long-read WGS HiFi): https://github.com/PacificBiosciences/pbsv; Sniffles2 v2.0.7 (structural variant detection with long-read WGS Nanopore): https://github.com/fritzsedlazeck/Sniffles; minimap2 v2.25 (long-read WGS alignment): https://github.com/lh3/minimap2; Flye v2.9.2 (genome assembly with long-read WGS): https://github.com/fenderglass/Flye; pb-assembly v1 (genome assembly with long-read WGS HiFi): https://github.com/PacificBiosciences/pb-assembly; hapdup v0.12 (haplotype phasing): https://github.com/KolmogorovLab/hapdup; hapdiff v0.8 (phased structural variant calling): https://github.com/KolmogorovLab/hapdiff; PEPPER-Margin-DeepVariant r0.8 (variant calling with long-read WGS Nanopore): https://github.com/kishwarshafin/pepper/releases/tag/r0.8. (2) Vendor software for sequencing platforms: (2.1) PacBio HiFi software platform: PacBio WGS Variant Pipeline: https://github.com/PacificBiosciences/HiFi-human-WGS-WDL; PacBio HiFi tools: https://github.com/PacificBiosciences; (2.2) ONT software: MinKNOW with Guppy basecaller: https://community.nanoporetech.com/docs/analyse; ONT basecallers: https://github.com/nanoporetech; (2.3) Illumina software (srWGS): Illumina DRAGEN Bio-IT Platform (release 4.2): https://support.illumina.com/sequencing/sequencing_software/dragen-bio-it-platform.html.

References

  1. Tsuji, S., Onodera, O., Goto, J., Nishizawa, M. & Study Group on Ataxic Diseases. Sporadic ataxias in Japan—a population-based epidemiological study. Cerebellum 7, 189–197 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Sullivan, R., Yau, W. Y., O’Connor, E. & Houlden, H. Spinocerebellar ataxia: an update. J. Neurol. 266, 533–544 (2019).

    Article  PubMed  Google Scholar 

  3. Flanigan, K. et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am. J. Hum. Genet. 59, 392–399 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weisschuh, N. et al. Diagnostic genome sequencing improves diagnostic yield: a prospective single-centre study in 1000 patients with inherited eye diseases. J. Med. Genet. 61, 186–195 (2024).

    Article  PubMed  Google Scholar 

  6. Dolzhenko, E. et al. Resolving the unsolved: comprehensive assessment of tandem repeats at scale. Preprint at bioRxiv https://doi.org/10.1101/2023.05.12.540470 (2023).

  7. Wallenius, J. et al. Exonic trinucleotide repeat expansions in ZFHX3 cause spinocerebellar ataxia type 4: a poly-glycine disease. Am. J. Hum. Genet. 111, 82–95 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Paucar, M. et al. Spinocerebellar ataxia type 4 is caused by a GGC expansion in the ZFHX3 gene and is associated with prominent dysautonomia and motor neuron signs. Preprint at medRxiv https://doi.org/10.1101/2023.10.03.23296230 (2023).

  9. Chen, Z. et al. Adaptive long-read sequencing reveals GGC repeat expansion in ZFHX3 associated with spinocerebellar ataxia type 4. Mov. Disord. 39, 486–497 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Del Rocío Pérez Baca, M. et al. A novel neurodevelopmental syndrome caused by loss-of-function of the zinc finger homeobox 3 (ZFHX3) gene. Preprint at medRxiv https://doi.org/10.1101/2023.05.22.23289895 (2023).

  11. Sagner, A. et al. A shared transcriptional code orchestrates temporal patterning of the central nervous system. PLoS Biol. 19, e3001450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishiura, H., Tsuji, S. & Toda, T. Recent advances in CGG repeat diseases and a proposal of fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, and oculophryngodistal myopathy (FNOP) spectrum disorder. J. Hum. Genet. 68, 169–174 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boivin, M. & Charlet-Berguerand, N. Trinucleotide CGG repeat diseases: an expanding field of polyglycine proteins? Front. Genet. 13, 843014 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liufu, T. et al. The polyG diseases: a new disease entity. Acta Neuropathol. Commun. 10, 79 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rafehi, H. et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA27B/ATX-FGF14. Am. J. Hum. Genet. 110, 1018 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pellerin, D. et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. N. Engl. J. Med. 388, 128–141 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Famula, J. L. et al. Presence of middle cerebellar peduncle sign in FMR1 premutation carriers without tremor and ataxia. Front. Neurol. 9, 695 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Podar, I. V. et al. First case of adult onset neuronal intranuclear inclusion disease with both typical radiological signs and NOTCH2NLC repeat expansions in a Caucasian individual. Eur. J. Neurol. 30, 2854–2858 (2023).

    Article  PubMed  Google Scholar 

  19. Liu, M. et al. A comprehensive study of clinicopathological and genetic features of neuronal intranuclear inclusion disease. Neurol. Sci. 44, 3545–3556 (2023).

    Article  PubMed  Google Scholar 

  20. Hellenbroich, Y. et al. Spinocerebellar ataxia type 4 (SCA4): initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration. J. Neural Transm. 113, 829–843 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Paul, S., Dansithong, W., Figueroa, K. P., Scoles, D. R. & Pulst, S. M. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat. Commun. 9, 3648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Paul, S. et al. Staufen1 in human neurodegeneration. Ann. Neurol. 89, 1114–1128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paul, S. et al. Staufen impairs autophagy in neurodegeneration. Ann. Neurol. 93, 398–416 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Scoles, D. R. & Pulst, S. M. Spinocerebellar ataxia type 2. Adv. Exp. Med. Biol. 1049, 175–195 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Huynh, D. P., Figueroa, K., Hoang, N. & Pulst, S. M. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat. Genet. 26, 44–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Mizushima, N. & Yoshimori, T. How to interpret LC3 immunoblotting. Autophagy 3, 542–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Hill, A. C. & Hall, J. The MOE modification of RNA: origins and widescale impact on the oligonucleotide therapeutics field. Helv. Chim. Acta 106, e202200169 (2023).

    Article  CAS  Google Scholar 

  28. Becker, L. A. et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544, 367–371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scoles, D. R. et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature 544, 362–366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rodriguez, C. M. & Todd, P. K. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol. Dis. 130, 104515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krans, A., Skariah, G., Zhang, Y., Bayly, B. & Todd, P. K. Neuropathology of RAN translation proteins in fragile X-associated tremor/ataxia syndrome. Acta Neuropathol. Commun. 7, 152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sellier, C. et al. Translation of expanded CGG repeats into FMRpolyG is pathogenic and may contribute to fragile X tremor ataxia syndrome. Neuron 93, 331–347 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhong, S. et al. Upstream open reading frame with NOTCH2NLC GGC expansion generates polyglycine aggregates and disrupts nucleocytoplasmic transport: implications for polyglycine diseases. Acta Neuropathol. 142, 1003–1023 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Boivin, M. et al. Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: the polyG diseases. Neuron 109, 1825–1835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sone, J. et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat. Genet. 51, 1215–1221 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Ishiura, H. et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat. Genet. 51, 1222–1232 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Tian, Y. et al. Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am. J. Hum. Genet. 105, 166–176 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kolmogorov, M. et al. Scalable Nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylation. Nat. Methods 20, 1483–1492 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02024-y (2024).

    Article  PubMed  Google Scholar 

  46. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat. Methods 18, 1322–1332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Robinson, J. T. et al. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dolzhenko, E. et al. ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics 35, 4754–4756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2, 3081–3089 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Fu, C. et al. The transcription factor ZFHX3 is crucial for the angiogenic function of hypoxia-inducible factor 1α in liver cancer cells. J. Biol. Chem. 295, 7060–7074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dong, X. Y. et al. ATBF1 inhibits estrogen receptor (ER) function by selectively competing with AIB1 for binding to the ER in ER-positive breast cancer cells. J. Biol. Chem. 285, 32801–32809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sturm, M. megSAP 2022_08. Zenodo https://doi.org/10.5281/zenodo.10817663 (2022).

  58. Groß, C. & Admard, J. megLR 1.0.0. Zenodo https://doi.org/10.5281/zenodo.10820153 (2023).

  59. Groß, C. expander. Zenodo https://doi.org/10.5281/zenodo.10820172 (2021).

Download references

Acknowledgements

We express our gratitude to the individuals with SCA4 and their relatives and caregivers. We thank L. Huynh, J. Hübener-Schmid, Q. Mao and the University of Utah Cell Imaging Core for their contributions. This work was supported by NIH grant R35 NS127253 to S.M.P. S.M.P. was partially supported by the Rindlisbacher Endowment for Research in Neurodegeneration. O.R. was partially supported by the Solve-RD project (European Union’s Horizon 2020 547 research and innovation program under grant agreement no. 779257). S.O. received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; OS 647/1-1). S.Z. was supported by the DFG, grant 465281508. T.B.H. was supported by the DFG, grants 418081722 and 433158657. J. Park was supported by the Else Kröner-Fresenius-Stiftung Clinician Scientist program ‘PRECISE.net’. NGS methods were performed with the support of the DFG-funded NGS Competence Center Tübingen (INST 37/1049-1). We thank our colleagues from the Clinical Long-read Genome Initiative (lonGER consortium) for valuable discussion and exchange on methodological aspects of ONT LR-GS.

Author information

Authors and Affiliations

Authors

Contributions

K.P.F., M. Spielmann, O.R., S.O., T.B.H. and S.M.P. jointly supervised the research. K.P.F., N.C. and S.M.P. conceptualized and designed the experiments. K.P.F., C.G., E.B.-A., S.P., M.G., T.B.H., N.K., J. Park, K.H., C.D. and A.K. performed the experiments. K.P.F. performed real-time PCR analyses. S.P. performed western blotting. M.G. produced iPS cells and iPS cell-derived neurons. M.G. and A.K. performed immunohistological stains. K.P.F., S.P., M.G., J. Park, D.R.S., S.O. and T.B.H. performed statistical tests. K.P.F., E.B.-A., S.P., M.G., N.K., M. Sturm, N.C., J.A., Y.H., J. Pozojevic, S.B., T.F. and S.O. performed data analyses. K.P.F., N.K., C.Z., Y.H., S.Z., D.T., F.E., L.H., M.Z., T.K., O.R. and S.M.P. contributed patient materials or patient data. K.P.F., E.B.-A., N.K., M. Sturm, N.C., J. Park, D.R.S., A.K., M. Spielmann, O.R., S.O., T.B.H. and S.M.P. contributed to writing the paper.

Corresponding authors

Correspondence to Olaf Riess or Stefan M. Pulst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Jianwen Deng, Clevio Nobrega and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 P-values associated with charts in Figure 4d
Extended Data Table 2 P-values associated with charts in Figure 5e

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Tables 1 and 2.

Reporting Summary

Peer Review File

Source data

Source Data Fig. 2

Quantifications of histological data presented in Fig. 2.

Source Data Fig. 3

Full unprocessed blots associated with Fig. 3.

Source Data Fig. 3

Quantifications of blots presented in Fig. 3.

Source Data Fig. 4

Full unprocessed blots associated with Fig. 4.

Source Data Fig. 4

Quantifications of blots presented in Fig. 4.

Source Data Fig. 5

Full unprocessed blots associated with Fig. 5.

Source Data Fig. 5

Quantifications of blots presented in Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueroa, K.P., Gross, C., Buena-Atienza, E. et al. A GGC-repeat expansion in ZFHX3 encoding polyglycine causes spinocerebellar ataxia type 4 and impairs autophagy. Nat Genet (2024). https://doi.org/10.1038/s41588-024-01719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41588-024-01719-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing