Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The delivery challenge: fulfilling the promise of therapeutic genome editing

Abstract

Genome editing has the potential to treat an extensive range of incurable monogenic and complex diseases. In particular, advances in sequence-specific nuclease technologies have dramatically accelerated the development of therapeutic genome editing strategies that are based on either the knockout of disease-causing genes or the repair of endogenous mutated genes. These technologies are progressing into human clinical trials. However, challenges remain before the therapeutic potential of genome editing can be fully realized. Delivery technologies that have serendipitously been developed over the past couple decades in the protein and nucleic acid delivery fields have been crucial to genome editing success to date, including adeno-associated viral and lentiviral vectors for gene therapy and lipid nanoparticle and other non-viral vectors for nucleic acid and protein delivery. However, the efficiency and tissue targeting capabilities of these vehicles must be further improved. In addition, the genome editing enzymes themselves need to be optimized, and challenges regarding their editing efficiency, specificity and immunogenicity must be addressed. Emerging protein engineering and synthetic chemistry approaches can offer solutions and enable the development of safe and efficacious clinical genome editing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of therapeutic genome editing strategies.
Fig. 2: Overview of viral vectors harnessed to deliver genome editing machinery.
Fig. 3: Overview of non-viral methods used to deliver genome editing cargo.

Similar content being viewed by others

References

  1. Boycott, K. M., Vanstone, M. R., Bulman, D. E. & MacKenzie, A. E. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat. Rev. Genet. 14, 681–691 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Nathwani, A. C. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371, 1994–2004 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hoggatt, J. Gene therapy for “bubble boy” disease. Cell 166, 263 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Maguire, A. M. et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 358, 2240–2248 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choo, K. H., Gould, K. G., Rees, D. J. & Brownlee, G. G. Molecular cloning of the gene for human anti-haemophilic factor IX. Nature 299, 178–180 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Valerio, D. et al. Isolation of cDNA clones for human adenosine deaminase. Gene 25, 231–240 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Gu, S. M. et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat. Genet. 17, 194–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Zamecnik, P. C. & Stephenson, M. L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl Acad. Sci. USA 75, 280–284 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stein, C. A. & Castanotto, D. FDA-approved oligonucleotide therapies in 2017. Mol. Ther. 25, 1069–1075 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mita, S., Maeda, S., Shimada, K. & Araki, S. Cloning and sequence analysis of cDNA for human prealbumin. Biochem. Biophys. Res. Commun. 124, 558–564 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Lauerman, J. Nobel winner on Alnylam’s breakthrough gene-muting therapy. https://www.bloomberg.com/news/articles/2018-08-13/nobel-winner-on-alnylam-s-breakthrough-gene-muting-therapy (13 August 2018).

  13. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, S. et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Invest. 127, 2719–2724 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gaj, T. et al. In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci. Adv. 3, eaar3952 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ruan, G. X. et al. CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10. Mol. Ther. 25, 331–341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441–443 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schiroli, G. et al. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci. Transl. Med. 9, eaan0820 (2017).

    Article  PubMed  CAS  Google Scholar 

  25. Sharma, R. et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126, 1777–1784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Kaczmarek, J. C., Kowalski, P. S. & Anderson, D. G. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 9, 60 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Brocchieri, L. & Karlin, S. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 33, 3390–3400 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen, J. CRISPR is too fat for many therapies, so scientists are putting the genome editor on a diet. Science https://doi.org/10.1126/science.aav2611 (2018).

  32. Counsell, J. R. et al. Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci. Rep. 7, 44775 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Tornabene, P. & Trapani, I. Can adeno-associated viral vectors deliver effectively large genes? Hum. Gene Ther. 31, 47–56 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Kumar, M., Keller, B., Makalou, N. & Sutton, R. E. Systematic determination of the packaging limit of lentiviral vectors. Hum. Gene Ther. 12, 1893–1905 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Epstein, B. E. & Schaffer, D. V. Engineering a self-inactivating CRISPR system for AAV vectors. Mol. Ther. 24, S50 (2016).

    Article  Google Scholar 

  39. Ascending dose study of genome editing by the zinc finger nuclease (ZFN) therapeutic SB-913 in subjects with MPS II. https://www.clinicaltrials.gov/ct2/show/NCT03041324 (2017).

  40. Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, S. et al. CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 28, 367–373 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  42. Wienert, B., Shin, J., Zelin, E., Pestal, K. & Corn, J. E. In vitro-transcribed guide RNAs trigger an innate immune response via the RIG-I pathway. PLoS Biol. 16, e2005840 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Hornung, V. & Latz, E. Intracellular DNA recognition. Nat. Rev. Immunol. 10, 123–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 01–910 (2014).

    Article  CAS  Google Scholar 

  48. Williams, M. R. et al. A retroviral CRISPR-Cas9 system for cellular autism-associated phenotype discovery in developing neurons. Sci. Rep. 6, 25611 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Park, A. et al. Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol. Ther. Methods Clin. Dev. 3, 16057 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hindriksen, S. et al. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells. PLoS One 12, e0179514 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kotterman, M. A. & Schaffer, D. V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 15, 445–451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Goldschmidt, D. & Scutti, S. FDA approves gene therapy for a type of blindness. https://www.cnn.com/2017/12/20/health/fda-gene-therapy-blindness-bn/index.html (21 December 2017).

  54. Dalkara, D. et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl. Med. 5, 189ra76 (2013).

    Article  PubMed  CAS  Google Scholar 

  55. Verdera, H. C., Kuranda, K. & Mingozzi, F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol. Ther. 28, 723–746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Calcedo, R., Vandenberghe, L. H., Gao, G., Lin, J. & Wilson, J. M. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J. Infect. Dis. 199, 381–390 (2009).

    Article  PubMed  Google Scholar 

  57. Tse, L. V. et al. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc. Natl Acad. Sci. USA 114, E4812 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maheshri, N., Koerber, J. T., Kaspar, B. K. & Schaffer, D. V. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24, 198–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Mullard, A. Second anticancer CAR T therapy receives FDA approval. Nat. Rev. Drug Discov. 16, 818 (2017).

    PubMed  Google Scholar 

  62. Joglekar, A. V. & Sandoval, S. Pseudotyped lentiviral vectors: one vector, many guises. Hum. Gene Ther. Methods 28, 291–301 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Vandendriessche, T. et al. Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy. J. Thromb. Haemost. 5, 16–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Harvey, A. R. et al. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. Mol. Cell. Neurosci. 21, 141–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Wolf, D. A. et al. Gene therapy for neurologic manifestations of mucopolysaccharidoses. Expert Opin. Drug Deliv. 12, 283–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Ortinski, P. I., O’Donovan, B., Dong, X. & Kantor, B. Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing. Mol. Ther. Methods Clin. Dev. 5, 153–164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rio, P. et al. Targeted gene therapy and cell reprogramming in Fanconi anemia. EMBO Mol. Med. 6, 835–848 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cai, Y., Bak, R. O. & Mikkelsen, J. G. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. Elife 3, e01911 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Choi, J. G. et al. Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther. 23, 627–633 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. ADVM-022 intravitreal gene therapy for wet AMD (OPTIC) https://clinicaltrials.gov/ct2/show/NCT03748784 (2018).

  72. Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Russell, D. W. & Hirata, R. K. Human gene targeting by viral vectors. Nat. Genet. 18, 325–330 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hiramoto, T., Li, L. B., Funk, S. E., Hirata, R. K. & Russell, D. W. Nuclease-free adeno-associated virus-mediated Il2rg gene editing in X-SCID mice. Mol. Ther. 26, 1255–1265 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sangamo announces 16 week clinical results including reductions in glycosaminoglycans in phase 1/2 trial evaluating SB-913, a zinc finger nuclease genome editing treatment for MPS II (Hunter syndrome). https://investor.sangamo.com/news-releases/news-release-details/sangamo-announces-16-week-clinical-results-including-reductions (5 September 2018).

  76. Song, C. Q. et al. In vivo genome editing partially restores alpha1-antitrypsin in a murine model of AAT deficiency. Hum. Gene Ther. 29, 853–860 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stephens, C. J., Kashentseva, E., Everett, W., Kaliberova, L. & Curiel, D. T. Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Ther. 25, 139–156 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stephens, C. J. et al. Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9. J. Control. Release 298, 128–141 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alapati, D. et al. In utero gene editing for monogenic lung disease. Sci. Transl. Med. 11, eaav8375 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Monteys, A. M., Ebanks, S. A., Keiser, M. S. & Davidson, B. L. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol. Ther. 25, 12–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ekman, F. K. et al. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol. Ther. Nucleic Acids 17, 829–839 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. György, B. et al. CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol. Ther. Nucleic Acids 11, 429–440 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Single ascending dose study in participants with LCA10 https://clinicaltrials.gov/ct2/show/NCT03872479 (2019).

  85. Holmgaard, A. et al. In vivo knockout of the Vegfa gene by lentiviral delivery of CRISPR/Cas9 in mouse retinal pigment epithelium cells. Mol. Ther. Nucleic Acids 9, 89–99 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bengtsson, N. E. et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat. Commun. 8, 14454 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kemaladewi, D. U. et al. Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat. Med. 23, 984–989 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Xie, C. et al. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res. 26, 1099–1111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pan, X. et al. In vivo Ryr2 editing corrects catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 123, 953–963 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, L., Hu, S. & Chen, X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials 171, 207–218 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cromer, M. K. et al. Global transcriptional response to CRISPR/Cas9-AAV6-based genome editing in CD34+ hematopoietic stem and progenitor cells. Mol. Ther. 26, 2431–2442 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hensley, S. E. & Amalfitano, A. Toll-like receptors impact on safety and efficacy of gene transfer vectors. Mol. Ther. 15, 1417–1422 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Alton, E. W. F. W. et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3, 684–691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl Acad. Sci. USA 112, 10437–10442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Farboud, B. et al. Enhanced genome editing with Cas9 ribonucleoprotein in diverse cells and organisms. J. Vis. Exp. https://doi.org/10.3791/57350 (2018).

  96. Gundry, M. C. et al. Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep. 17, 1453–1461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dever, D. P. et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539, 384–389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. DeWitt, M. A. et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 8, 360ra134 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. A safety and efficacy study evaluating CTX001 in subjects with transfusion-dependent β-thalassemia. https://clinicaltrials.gov/ct2/show/NCT03655678 (2018).

  100. Holmes, M. C. et al. A potential therapy for beta-thalassemia (ST-400) and sickle cell disease (BIVV003). Blood 130, 2066 (2017).

    Google Scholar 

  101. DiGiusto, D. L. et al. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol. Ther. Methods Clin. Dev. 3, 16067 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Repeat doses of SB-728mR-T after cyclophosphamide conditioning in HIV-infected subjects on HAART. https://www.clinicaltrials.gov/ct2/show/NCT02225665 (2014).

  103. Rouet, R. et al. Receptor-mediated delivery of CRISPR-Cas9 endonuclease for cell-type-specific gene editing. J. Am. Chem. Soc. 140, 6596–6603 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ramakrishna, S. et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020–1027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, K. et al. Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife 6, e25312 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Savic, N. et al. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife 7, e33761 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Aird, E. J., Lovendahl, K. N., St Martin, A., Harris, R. S. & Gordon, W. R. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun. Biol. 1, 54 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Potter, H. & Heller, R. Transfection by electroporation. Curr. Protoc. Mol. Biol. 121, 9.3.1–9.3.13 (2018).

    Article  CAS  Google Scholar 

  109. Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Edn Engl. 56, 1059–1063 (2017).

    Article  CAS  Google Scholar 

  111. Ball, R. L., Hajj, K. A., Vizelman, J., Bajaj, P. & Whitehead, K. A. Lipid nanoparticle formulations for enhanced co-delivery of siRNA and mRNA. Nano Lett. 18, 3814–3822 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Zatsepin, T. S., Kotelevtsev, Y. V. & Koteliansky, V. Lipid nanoparticles for targeted siRNA delivery — going from bench to bedside. Int. J. Nanomedicine 11, 3077–3086 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yanez Arteta, M. et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  114. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Barros, S. A. & Gollob, J. A. Safety profile of RNAi nanomedicines. Adv. Drug Deliv. Rev. 64, 1730–1737 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Xue, H. Y., Liu, S. & Wong, H. L. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (Lond.) 9, 295–312 (2014).

    Article  CAS  Google Scholar 

  118. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553, 217–221 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Yeh, W. H., Chiang, H., Rees, H. A., Edge, A. S. B. & Liu, D. R. In vivo base editing of post-mitotic sensory cells. Nat. Commun. 9, 2184 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Hansen-Bruhn, M. et al. Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew. Chem. Int. Edn Engl. 57, 2657–2661 (2018).

    Article  CAS  Google Scholar 

  124. Ju, E., Li, T., Ramos da Silva, S. & Gao, S. J. Gold nanocluster-mediated efficient delivery of Cas9 protein through pH-induced assembly-disassembly for inactivation of virus oncogenes. ACS Appl. Mater. Interfaces 11, 34717–34724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhou, W., Cui, H., Ying, L. & Yu, X. F. Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing. Angew. Chem. Int. Edn Engl. 57, 10268–10272 (2018).

    Article  CAS  Google Scholar 

  126. Alsaiari, S. K. et al. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc. 140, 143–146 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, B. et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2, 497–507 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mout, R. et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11, 2452–2458 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gaj, T., Guo, J., Kato, Y., Sirk, S. J. & Barbas, C. F. III. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat. Methods 9, 805–807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Staahl, B. T. et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35, 431–434 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sun, W. et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Edn Engl. 54, 12029–12033 (2015).

    Article  CAS  Google Scholar 

  133. Wang, J. et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 33, 1256–1263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. De Ravin, S. S. et al. Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat. Biotechnol. 34, 424–429 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Miller, D. G., Petek, L. M. & Russell, D. W. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat. Genet. 36, 767–773 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Huang, H.-R. et al. CRISPR/Cas9-mediated targeted insertion of human F9 achieves therapeutic circulating protein levels in mice and non-human primates. Mol. Ther. 27 (S1), 7 (2019).

    CAS  Google Scholar 

  137. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niren Murthy or David V. Schaffer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Haasteren, J., Li, J., Scheideler, O.J. et al. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat Biotechnol 38, 845–855 (2020). https://doi.org/10.1038/s41587-020-0565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-020-0565-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing