Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fossils document evolutionary changes of jaw joint to mammalian middle ear

Abstract

The dual jaw joint of Morganucodon1,2 consists of the dentary–squamosal joint laterally and the articular–quadrate one medially. The articular–quadrate joint and its associated post-dentary bones constitute the precursor of the mammalian middle ear. Fossils documenting the transition from such a precursor to the mammalian middle ear are poor, resulting in inconsistent interpretations of this hallmark apparatus in the earliest stage of mammaliaform evolution1,2,3,4,5. Here we report mandibular middle ears from two Jurassic mammaliaforms: a new morganucodontan-like species and a pseudotribosphenic shuotheriid species6. The morganucodontan-like species shows many previously unknown post-dentary bone morphologies1,2 and exhibits features that suggest a loss of load-bearing function in its articular–quadrate joint. The middle ear of the shuotheriid approaches the mammalian condition in that it has features that are suitable for an exclusively auditory function, although the post-dentary bones are still attached to the dentary. With size reduction of the jaw-joint bones, the quadrate shifts medially at different degrees in relation to the articular in the two mammaliaforms. These changes provide evidence of a gradual loss of load-bearing function in the articular–quadrate jaw joint—a prerequisite for the detachment of the post-dentary bones from the dentary7,8,9,10,11,12 and the eventual breakdown of the Meckel’s cartilage13,14,15 during the evolution of mammaliaforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CT images of the holotype of Dianoconodon youngi (IVPP V4257).
Fig. 2: Lower jaw and mandibular middle ear of Dianoconodon youngi (IVPP V4257).
Fig. 3: Mandibular middle ear of the shuotheriid docodontiform Feredocodon chowi.
Fig. 4: Mandibular middle ears and transformation of the articular–quadrate joints in mammaliaforms.

Similar content being viewed by others

Data availability

All material related to the data for phylogenetic analyses is presented in this Article and its Supplementary Information. Life science identifiers for the new genera and species have been registered at Zoobank as Dianoconodon (LSIDurn:lsid:zoobank.org:act:81F7A97D-4CF1-4803-900C-55D8D63F41C4) and Dianoconodon youngi (LSIDurn:lsid:zoobank.org:act:E5077547−6D55-472D-875A-3012831C33AC). The character list and data matrix for the phylogenetic analysis can be found in ref. 6 and have been deposited in MorphoBank (https://morphobank.org/; project number 5075).

Code availability

The PAUP commands for parsimony-based analyses and the MrBayes commands for Bayesian analyses have been deposited in Zenodo (https://doi.org/10.5281/zenodo.10597270; see also ref. 6).

References

  1. Kermack, K. A., Mussett, F. & Rigney, H. W. The lower jaw of Morganucodon. Zool. J. Linn. Soc. 53, 87–175 (1973).

    Article  Google Scholar 

  2. Kermack, K. A., Mussett, F. & Rigney, H. W. The skull of Morganucodon. Zool. J. Linn. Soc. 71, 1–158 (1981).

    Article  Google Scholar 

  3. Lillegraven, J. A. & Krusat, G. Cranio-mandibular anatomy of Haldanodon exspectatus (Docodonta; Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian characters. Contrib. Geol. Univ. Wyoming 28, 39–138 (1991).

    Google Scholar 

  4. Ji, Q., Luo, Z.-X., Yuan, C.-X. & Tabrum, A. R. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311, 1123–1127 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Meng, Q.-J. et al. An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347, 764–768 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Mao, F. et al. Jurassic shuotheriids show earliest dental diversification of mammaliaforms. Nature https://doi.org/10.1038/s41586-024-07258-7 (2024).

  7. Wang, Y., Hu, Y., Meng, J. & Li, C. An ossified Meckel’s cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science 294, 357–361 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Meng, J., Hu, Y.-M., Wang, Y.-Q. & Li, C.-K. The ossified Meckel’s cartilage and internal groove in Mesozoic mammaliaforms: implications to origin of the definitive mammalian middle ear. Zool. J. Linn. Soc. 138, 431–448 (2003).

    Article  Google Scholar 

  9. Meng, J., Wang, Y.-Q. & Li, C.-K. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472, 181–185 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Luo, Z.-X., Chen, P.-J., Li, G. & Chen, M. A new eutriconodont mammal and evolutionary development in early mammals. Nature 446, 288–293 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Ji, Q., Luo, Z.-X., Zhang, X., Yuan, C.-X. & Xu, L. Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326, 278–281 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lautenschlager, S., Gill, P. G., Luo, Z.-X., Fagan, M. J. & Rayfield, E. J. The role of miniaturization in the evolution of the mammalian jaw and middle ear. Nature 561, 533–537 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Anthwal, N., Urban, D. J., Luo, Z.-X., Sears, K. E. & Tucker, A. S. Meckel’s cartilage breakdown offers clues to mammalian middle ear evolution. Nat. Ecol. Evol. 1, 0093 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Urban, D. J. et al. A new developmental mechanism for the separation of the mammalian middle ear ossicles from the jaw. Proc. R. Soc. B 284, 20162416 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mao, F.-Y. et al. Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. Science 367, 305–308 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Allin, E. F. Evolution of the mammalian middle ear. J. Morphol. 147, 403–437 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Allin, E. F. & Hopson, J. A. in The Evolutionary Biology of Hearing (eds Webster, D. B. et al.) 587–614 (Springer, 1992).

  18. Crompton, A. W. & Sun, A.-L. Cranial structure and relationships of the Liassic mammal Sinoconodon. Zool. J. Linn. Soc. 85, 99–119 (1985).

    Article  Google Scholar 

  19. Luo, Z. & Crompton, A. W. Transformation of the quadrate (incus) through the transition from non-mammalian cynodonts to mammals. J. Vertebr. Paleontol. 14, 341–374 (1994).

    Article  Google Scholar 

  20. Tucker, A. S., Watson, R. P., Lettice, L. A., Yamada, G. & Hill, R. E. Bapx1 regulates patterning in the middle ear: altered regulatory role in the transition from the proximal jaw during vertebrate evolution. Development 131, 1235–1245 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Meng, J., Bi, S., Zheng, X. & Wang, X. Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear. J. Morphol. 279, 441–457 (2018).

    Article  PubMed  Google Scholar 

  22. Meng, J. et al. A comparative study on auditory and hyoid bones of Jurassic euharamiyidans and contrasting evidence for mammalian middle ear evolution. J. Anat. 236, 50–71 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mao, F., Liu, C., Chase, M. H., Smith, A. K. & Meng, J. Exploring ancestral phenotypes and evolutionary development of the mammalian middle ear based on Early Cretaceous Jehol mammals. Natl Sci. Rev. 8, nwaa188 (2021).

    Article  PubMed  Google Scholar 

  24. Wang, J. et al. A monotreme-like auditory apparatus in a Middle Jurassic haramiyidan. Nature 590, 279–283 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. You, H.-L., Azuma, Y., Wang, T., Wang, Y.-M. & Dong, Z.-M. The first well-preserved coelophysoid theropod dinosaur from Asia. Zootaxa 3873, 233–249 (2014).

    Article  PubMed  Google Scholar 

  26. Mills, J. R. E. in Early Mammals Vol. 50 (eds Kermack, D. M. & Kermack, K. A.) 29–63 (Linnean Society, 1971).

  27. Parrington, F. R. On the Upper Triassic mammals. Phil. Trans. R. Soc. B 261, 231–272 (1971).

    ADS  Google Scholar 

  28. Clemens, W. A. New morganucodontans from an Early Jurassic fissure filling in Wales (United Kingdom). Palaeontology 54, 1139–1156 (2011).

    Article  Google Scholar 

  29. Debuysschere, M., Gheerbrant, E. & Allain, R. Earliest known European mammals: a review of the Morganucodonta from Saint-Nicolas-de-Port (Upper Triassic, France). J. Syst. Palaeontol. 13, 825–855 (2015).

    Article  Google Scholar 

  30. Crompton, A. W. & Luo, Z.-X. in Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials (eds Szalay, F. S. et al.) 30–44 (Springer, 1993).

  31. Luo, Z.-X. & Wu, X.-C. in In the Shadow of the Dinosaurs—Early Mesozoic Tetrapods (eds Fraser, N. C. & Sues, H.-D.) 251–270 (Cambridge Univ. Press, 1994).

  32. Kielan-Jaworowska, Z., Cifelli, R. L. & Luo, Z. X. Mammals from the Age of Dinosaurs: Origins, Evolutions, and Structure (Columbia Univ. Press, 2004).

  33. Davis, B. M., Cifelli, R. L. & Rougier, G. W. Mammalian petrosals from the Upper Jurassic Morrison Formation (Utah, USA) reveal non-canonical evolution of middle and inner ear characters. J. Mamm. Evol. 28, 1027–1049 (2021).

    Article  Google Scholar 

  34. Meng, J. & Hou, S.-L. Earliest known mammalian stapes from an early cretaceous eutriconodontan mammal and implications for evolution of mammalian middle ear. Palaeontol. Pol. 67, 181–196 (2016).

    Google Scholar 

  35. Schultz, J. A., Ruf, I. & Martin, T. Oldest known multituberculate stapes suggests an asymmetric bicrural pattern as ancestral for Multituberculata. Proc. R. Soc. B 285, 20172779 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Han, G., Mao, F.-Y., Bi, S.-D., Wang, Y.-Q. & Meng, J. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones. Nature 551, 451–456 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Wible, J. R. & Hopson, J. A. in Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials (eds Szalay, F. S. et al.) 45–62 (Springer, 1993).

  38. Crompton, A. W. in Studies in Vertebrate Evolution (eds Joysey, K. A. & Kemp, T. S.) 231–251 (Oliver & Boyd, 1972).

  39. Crompton, A. W. & Hylander, W. L. in The Ecology and Biology of Mammal-like Reptiles (eds Hotton, N. et al.) 263–282 (Smithsonian Inst. Press, 1986).

  40. Kemp, T. S. The Origin and Evolution of Mammals (Oxford Univ. Press, 2005).

  41. Luo, Z. X. Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Zhou, C.-F., Bhullar, B. A. S., Neander, A. I., Martin, T. & Luo, Z.-X. New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science 365, 276–279 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Schultz, J. A., Bhullar, B. A. S. & Luo, Z.-X. Re-examination of the Jurassic mammaliaform Docodon victor by computed tomography and occlusal functional analysis. J. Mamm. Evol. 26, 9–38 (2017).

    Article  Google Scholar 

  44. Butler, P. M. in Teeth Revisited: Proc. VIIth International Symposium on Dental Morphology Vol. 53 (eds Russell, D. E. et al.) 329–340 (Muséum National d'Histoire Naturelle, 1988).

  45. Martin, T. & Rauhut, O. W. M. Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth. J. Vertebr. Paleontol. 25, 414–425 (2005).

    Article  Google Scholar 

  46. Pfretzschner, H. U., Martin, T., Maisch, M. W., Matzke, A. T. & Sun, G. A new docodont mammal from the Late Jurassic of the Junggar Basin in Northwest China. Acta Palaeontol. Pol. 50, 799–808 (2005).

    Google Scholar 

  47. Brinkkötter, J. J. Molar Dentition of the Docodontan Haldanodon (Mammaliaformes) as Functional Analog to Tribosphenic Teeth. PhD thesis, Universitäts-und Landesbibliothek Bonn (2019).

  48. Panciroli, E. et al. New species of mammaliaform and the cranium of Borealestes (Mammaliformes: Docodonta) from the Middle Jurassic of the British Isles. Zool. J. Linn. Soc. 192, 1323–1362 (2021).

    Article  Google Scholar 

  49. Rauhut, O. W., Martin, T., Ortiz-Jaureguizar, E. & Puerta, P. A Jurassic mammal from South America. Nature 416, 165–168 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Rougier, G. W., Martinelli, A. G., Forasiepi, A. M. & Novacek, M. J. New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Am. Mus. Novit. 3566, 1–54 (2007).

    Article  Google Scholar 

  51. Sun, A. L., Cui, C., Li, Y. & Wu, X. C. A verified list of the Lufeng Saurischian Fauna. Vert. Palasiat. 22, 1–12 (1985).

    Google Scholar 

  52. Crompton, A. & Parker, P. Evolution of the mammalian masticatory apparatus. Am. Sci. 66, 192–201 (1978).

    ADS  CAS  PubMed  Google Scholar 

  53. Van Heerden, J. Intraspecific variations and growth changes in the Cynodont reptile Thrinaxodon liorhinus: junior synonyms of Thrinaxodon liorhinus and Galesaurus planiceps. Res. Natl Mus. 2, 318–336 (1974).

    Google Scholar 

  54. Martin, T. & Schultz, J. A. Deciduous dentition, tooth replacement, and mandibular growth in the Late Jurassic docodontan Haldanodon exspectatus (Mammaliaformes). J. Mamm. Evol. 30, 507–531 (2023).

    Article  Google Scholar 

  55. Swofford, D. L. Phylogenetic Analysis Using Parsimony v.4.0b10 (Sinauer Associates, 2002).

  56. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10, e1003919 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).

    Article  PubMed  Google Scholar 

  59. Kermack, D. M. & Kermack, K. A. The Evolution of Mammalian Characters (Kapitan Szabo Publishers, 1984).

Download references

Acknowledgements

We thank Z. Li and Z. Liu for access to the specimens reported in this study; H. You for discussions about localities and stratigraphy; M. Chase, A. Smith, Y. Hou, P. Yin and J. Wang for CT scanning of the specimens; A. Shi and Y. Xu for help with drawings; and N. Wong for CT reconstruction. F.M. was supported by the National Natural Science Foundation of China (42122010, 42288201 and 42072002) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019076).

Author information

Authors and Affiliations

Authors

Contributions

F.M. and J.M. conceived the study and wrote the paper. F.M. performed the CT scanning and rendering work. C.Z. ran the Bayesian analyses. J.R. rendered the CT data. T.W. and G.W. participated in the fieldwork and provided stratigraphic data. F.Z. participated in early discussions of the work. T.R. and P.V.-R. provided discussions and manuscript edits. All authors edited and approved the manuscript.

Corresponding authors

Correspondence to Fangyuan Mao or Jin Meng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Guillermo Rougier, Julia Schultz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 CT reconstruction of the skull and mandibles of Dianoconodon youngi (IVPP V4257, holotype).

a,b, Right (a) and left (b) view of the skull with partial associated skeleton. ch, Dorsal (c), ventral (d), left (e), right (f), posterior (g), and anterior (h) views of the cranium. i, Dorsal view of the two mandibles as preserved (see Extended Data Fig. 4 for other aspects of the mandible). Abbreviations: anp, angular process of the dentary; C (c), upper (lower) canine; cop, coronoid process; dec, dentary condyle; fr, frontal; glf, glenoid fossa of the squamosal; I (i), upper (lower) incisor; inf, infraorbital foramen; ju, jugal; M (m), upper (lower) molar; max, maxilla; na, nasal; occ, occipital condyles; P(p), upper (lower) premolar; pa, parietal; pod, post-dentary bones; pmx, premaxilla; prm, promontorium of the petrosal; qua, quadrate; qun, quadrate notch; squ, squamosal; st, stapes; vet, vertebrae.

Extended Data Fig. 2 CT reconstruction of the upper dentitions of Dianoconodon youngi (IVPP V4257, holotype).

ac, Left upper dentition in labial (a), occlusal (b) and lingual (c) views. df, Right upper dentition in lingual (d), occlusal (e) and labial (f) views. See also Extended Data Fig. 1.

Extended Data Fig. 3 CT reconstruction of the lower dentitions of Dianoconodon youngi (IVPP V4257, holotype).

ac, Left lower dentition in labial (a), occlusal (b) and lingual (c) views. df, Right lower dentition in lingual (d), occlusal (e) and labial (f) views.

Extended Data Fig. 4 Comparison of the mandible and post-dentary trough, and reconstruction of the mandibular middle ears in Morganucodon and Dianoconodon youngi.

ad, Reconstructed lower jaw of Morganucodon in labial (a), lingual (b, with the post-dentary bones; c, without the post-dentary bones) and posterior views. eh, CT-rendered lower jaw of Dianoconodon in labial (e), lingual (f, with the post-dentary bones and quadrate; g, without the post-dentary bones and quadrate), and posterior (h) views. ik, Drawings of the post-dentary trough (i, j) and ventral aspect (k) of the mandible of Morganucodon. lo, Medial (l, without post-dentary bones; m, with postdentary bones) and posteromedial (n, without post-dentary bones; o, with postdentary bones) views of the posterior mandible showing the post-dentary trough and attached post-dentary bones, the quadrate, and quadratojugal. p,q, Ventral (p) and dorsal (q) views of the posterior portion of the dentary and post-dentary bones and quadrate. rv, Comparison of Dianoconodon (V) with various versions of the reconstructed MdME of Morganucodon. Abbreviations: apd, angular process of the dentary; arf, articular fossa; dec, dentary condyle; mcg, Meckelian groove; mdf, mandibular foramen; mdr, medial ridge; pdt, post-dentary trough; pod, post-dentary bones. A-Q with the same scale. Some images have been reversed for convenience of comparison. Drawings are modified from the following sources: ad and ik (adapted from figures 7, 14 and 20A of ref. 1), r (redrawn from figure 8 of ref. 52), s (redrawn from figure 9A of ref. 59), t (redrawn from plate 3-11 of ref. 16) and u (redrawn from figure 28.7G of ref. 17). Red arrows in d and h indicate difference in the relationship of the post-dentary bones with the dentary and the joint condition (single or dual) in each form. Blue shaded oval areas highlight various interpretations of the Morganucodon middle ear; in particular note the reflected lamina, the retroarticular process and the quadrate–articular joint in different shapes and positions. See Supplementary Information for additional details.

Extended Data Fig. 5 The stapes, quadrate and quadratojugal of Dianoconodon youngi in comparison with the corresponding bones of Morganucodon.

a, The right middle ear of Dianoconodon (a1, medial view; a2, posterior view with the petrosal; a3, posterior view without the petrosal) b, The left quadrate and quadratojugal (partial) in roughly dorsal (b1), ventral (b2), medial (b3), posterior (b4), and lateral (b5) views. c, The right quadrate in anterior (c1), posterior (c2), lateral (c3), dorsal (c4), ventral (c5), and medial (c6) views. d, The right stapes in medial (d1), ventral (d2), and dorsal (d3) views. e, The left stapes of Morganucodon in medial (e1), anterior (e2), and dorsal (e3) views. f, The left quadratojugal of Dianoconodon in lateral (f1), medial (f2), and posterior (f3) views. g, The left quadrate of Morganucodon in anterior (g, posterior (g2), lateral (g3), dorsal (g4), ventral (g5), and medial (g6) views (corresponding to C1−6). Abbreviations: acs, anterior crus of the stapes; ang, angular bone (ectotympanic); apd, angular process of the dentary; art, articular (malleus); asq, articulation for the squamosal; cob, coronoid bone; cop, coronoid process; dec, dentary condyle; dop, dorsal plate of the quadrate; fps, footplate of the stapes; fqu, facet for the quadrate; glf, glenoid fossa; ju, jugal; omc, ossified Meckel’s cartilage; pcs, posterior crus of the stapes; pef, perilymphatic foramen; pet, petrosal; pstm?, posterior process for the stapedial muscle?; qua, quadrate; quj, quadratojugal; qun, quadrate notch; rla, reflected lamina of the angular bone (ventral limb of the ectotympanic); squ, squamosal; st, stapes; stp, stapedial process of the quadrate; tro, trochlea of the quadrate. e and g are adapted from figures 85 and 86 of ref. 2.

Extended Data Fig. 6 The post-dentary bones, angular, and articular complex of Dianoconodon youngi in comparison with the corresponding bones of Morganucodon.

a, The mandibles with the middle-ear bones in ventral view. b, The middle-ear bones in medial (left side, upper) and lateral (right side, lower) views. ce, Right angular in medial (c), lateral (d), and dorsal (e) views. fg, Left angular bone in lateral (f) and medial (g) views. hj, Left articular complex in dorsal (h), lateral (i), and medial (j) views. k,l, Right articular complex in posterior views (slightly different in angle in k and l). m, Posterior view of the articular complex of Morganucodon. n,o, Close-up medial (n) and dorsal (o) views of the posterior end of the right articular complex of Dianoconodon, showing the facet for trochlea of the quadrate. p,q, Articular complex of Morganucodon in medial (p) and dorsal (q) views. Abbreviations: ang, angular (ectotympanic); apa, anterior process of the angular (anterior limb of the ectotympanic); apm, anterior process of the articular; aps?, articular-prearticular suture?; art, articular (malleus); asur, anterior process of the surangular; dap, dorsal articular process; den, dentary; dpa, dorsal process of the angular; ftq, facet for trochlea of quadrate; omc, ossified Meckel’s cartilage; pod, post-dentary bones; ppa, posterior process of the angular; pra, prearticular (anterior process of the malleus); qua, quadrate; quj, quadratojugal; rar, retroarticular process of the articular (base of the manubrium of the malleus in mammals); rla, reflected lamina of the angular bone (ventral limb of the ectotympanic); sas?, surangular-articular suture?; st, stapes; sur, surangular. m is adapted from figure 88A(v) of ref. 2 and p and q are adapted from figure 33 of ref. 1.

Extended Data Fig. 7 Comparison of the mandible and post-dentary trough, and reconstruction of the mandibular middle ears in shuotheriid Feredocodon and docodontans.

a, The reconstructed mandible and middle ear in medial view. b, Lateral view of the reconstructed dentary. c,d, CT-rendered left (c) and right (d, reversed) posterior portions of the mandible with the middle-ear bones, showing their relative sizes with the reconstructed mandibles. e,f, CT-rendered mandibles of the paratype of Feredocodon chowi (IMMNH-PV01925, Mao et al., Feredocodon) in medial (e) and lateral (f) views. gj, Medial views of the mandible of Docodon (g, adapted from figure 5a of ref. 43), Borealestes (h, adapted from figure 7A1 of ref. 48), Agilodocodon (i, adapted from figure 2i of ref. 5) and Microdocodon (j, adapted from figure S2J of ref. 42). kn, Medial (slightly dorsal, k), medial (slightly ventral, l), dorsal (m), and ventral (n) views of the posterior portion of the left dentary of Feredocodon chowi (IMMNH-PV01925), showing the structure of the post-dentary trough. Abbreviations: ang, angular (ectotympanic); apd, angular process of the dentary; art, articular (malleus); cop, coronoid process; cor, coronoid; dec, dentary condyle; ean, efflected angular process; mde, middle ear; mdf, mandibular foramen; mdr, medial ridge; mrp, medial ridge protuberance43; omc, ossified Meckel’s cartilage; pdt, post-dentary trough; qua, quadrate (incus).

Extended Data Fig. 8 CT reconstruction of the middle-ear bones of Feredocodon chowi (IMMNH-PV01925, paratype) in relation to the surrounding structures.

a,b, Ventral (a) and ventrolateral (b) views of the basicranial region, showing the relationship of the middle-ear bones with the promontorium and dentary. c, Posterior (nearly) view. df, Various angles of primarily ventral views (d shows the ventral view of the dentary, same as in Extended Data Fig. 7n). g,h, Posterodorsal (g) and posteroventral (h) views. ik, Posterodorsal views at different angles. Abbreviations: afq, articular facet for the quadrate; ang, angular (ectotympanic) art, articular (malleus); asur, anterior process of the surangular; cri, crista interfenestralis; dec, dentary condyle; den, dentary; ean, efflected angular process; juf, jugular foramen; mrp, medial ridge protuberance43,48; occ, occipital condyles; omc, ossified Meckel’s cartilage; pef, perilymphatic foramen; pmp, promontorium of the petrosal; pra, prearticular (anterior process of the malleus); qua, quadrate (incus); rar, retroarticular process (base of the manubrium); rla, reflected lamina of the angular (ventral limb of the ectotympanic); squ, squamosal; st, stapes; stp, stapedial process of the quadrate; sub?, surangular boss?; sur, surangular.

Extended Data Fig. 9 Middle-ear bones of the shuotheriid Feredocodon in comparison with those of docodontans and Sinoconodon.

a, Lateral (a1) and medial (a2) views of the middle-ear bones. b, The stapes in lateral view. c, The quadrate (incus) in medial (c1), lateral (c2), dorsal (c3), and anterior (c4) views. c, The articular complex in medial (d1), lateral (d2), and posterior (d3) views. e, Medial (e1) and lateral (e2) views of the angular (ectotympanic). A-E are from the left middle ear. f, Lateral (f1) and medial (f2) views of the right middle ears. g, Partial stapes of Haldanodon in lateral (g1) and medial (g2) views (adapted from figure 12A-B of ref. 3. hj, Reconstructed middle ears of Agilodocodon, Castorocauda, and Sinoconodon. k, Sinoconodon quadrate (incus) in anterior and posterior views. l, Agilodocodon quadrate (incus) in anterior and posterior views. Drawlings of hl are adapted from figure S5 of ref. 5. Abbreviations: acs, anterior crus of the stapes; afa, articular facet for the articular; afq, articular facet for the quadrate; ang, angular bone (ectotympanic); apa, anterior process of the angular (anterior limb of ectotympanic); aps?, articular-surangular suture?; art, articular (malleus); asur, anterior process of the surangular; crs, crus of the stapes; dop, dorsal plate of the quadrate; fps, footplate of the stapes; omc, ossified Meckel’s cartilage; pcs, posterior crus of the stapes; ppa, posterior process of the angular (dorsal limb of the ectotympanic); pra, prearticular (anterior process of the malleus); qua, quadrate (incus); rar, retroarticular process (base of the manubrium but not the manubrium); rla, reflected lamina of the angular (ventral limb of the ectotympanic); st, stapes; stp, stapedial process of the quadrate; sub?, surangular boss?; sur, surangular; tro, trochlea of the quadrate.

Extended Data Table 1 Measurements of Dianoconodon

Supplementary information

Supplementary Information

The Supplementary Information provides information about the systematic palaeontology of the study, including the taxonomy and a detailed description of the new genus and species, Dianoconodon youngi, with the focus on the mandibular middle ear. It also provides a detailed description of the mandibular middle ear of the Middle Jurassic shuotheriid Feredocodon chowi. A brief introduction about the phylogenetic analyses is also included. The data matrix and results from PAUP and from the Bayesian tip-dating analyses are presented. The related character list and dataset are presented in MorphoBank (http://www.morphobank.org; project number 5075), and the related detailed settings and logs of these analyses are deposited in Zenodo (https://doi.org/10.5281/zenodo.10597270; ref. 6); see also Methods in the main text). The subjects treated and presented in the Supplementary Information are listed at the start of the Supplementary file.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, F., Zhang, C., Ren, J. et al. Fossils document evolutionary changes of jaw joint to mammalian middle ear. Nature 628, 576–581 (2024). https://doi.org/10.1038/s41586-024-07235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07235-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing