Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Triple-junction solar cells with cyanate in ultrawide-bandgap perovskites

Subjects

Abstract

Perovskite bandgap tuning without quality loss makes perovskites unique among solar absorbers, offering promising avenues for tandem solar cells1,2. However, minimizing the voltage loss when their bandgap is increased to above 1.90 eV for triple-junction tandem use is challenging3,4,5. Here we present a previously unknown pseudohalide, cyanate (OCN), with a comparable effective ionic radius (1.97 Å) to bromide (1.95 Å) as a bromide substitute. Electron microscopy and X-ray scattering confirm OCN incorporation into the perovskite lattice. This contributes to notable lattice distortion, ranging from 90.5° to 96.6°, a uniform iodide–bromide distribution and consistent microstrain. Owing to these effects, OCN-based perovskite exhibits enhanced defect formation energy and substantially decreased non-radiative recombination. We achieved an inverted perovskite (1.93 eV) single-junction device with an open-circuit voltage (VOC) of 1.422 V, a VOC × FF (fill factor) product exceeding 80% of the Shockley–Queisser limit and stable performance under maximum power point tracking, culminating in a 27.62% efficiency (27.10% certified efficiency) perovskite–perovskite–silicon triple-junction solar cell with 1 cm2 aperture area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of OCN-substituted perovskite film.
Fig. 2: TEM characterization of perovskite films.
Fig. 3: Single-junction device VOC loss analysis and device performance.
Fig. 4: Device characteristics of dual-junction solar cell and TJSCs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Yeom, K. M., Kim, S. U., Woo, M. Y., Noh, J. H. & Im, S. H. Recent progress in metal halide perovskite-based tandem solar cells. Adv. Mater. 32, 2002228 (2020).

    Article  CAS  Google Scholar 

  2. Li, H. & Zhang, W. Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Xu, F., Zhang, M., Li, Z., Yang, X. & Zhu, R. Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics. Adv. Energy Mater. 13, 2203911 (2023).

    Article  CAS  Google Scholar 

  4. Zhou, Y., Poli, I., Meggiolaro, D., De Angelis, F. & Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6, 986–1002 (2021).

    Article  ADS  Google Scholar 

  5. Caprioglio, P. et al. Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells. Nat. Commun. 14, 932 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Article  ADS  CAS  Google Scholar 

  7. Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

    Article  Google Scholar 

  8. Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 381, 63–69 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Zhu, J. et al. A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nat. Energy 8, 714–724 (2023).

    Article  ADS  CAS  Google Scholar 

  11. Wen, J. et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34, 2110356 (2022).

    Article  CAS  Google Scholar 

  12. Best research-cell efficiency chart. NREL https://www.nrel.gov/pv/cell-efficiency.html (2023).

  13. Ho-Baillie, A. W. Y. et al. Recent progress and future prospects of perovskite tandem solar cells. Appl. Phys. Rev. 8, 041307 (2021).

    Article  ADS  CAS  Google Scholar 

  14. Wang, Z. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618, 74–79 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Choi, Y. J., Lim, S. Y., Park, J. H., Ji, S. G. & Kim, J. Y. Atomic layer deposition-free monolithic perovskite/perovskite/silicon triple-junction solar cells. ACS Energy Lett. 8, 3141–3146 (2023).

    Article  ADS  CAS  Google Scholar 

  16. Yin, W.-J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, J. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Jang, D. M. et al. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 15, 5191–5199 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Liang, P.-W. et al. High-performance planar-heterojunction solar cells based on ternary halide large-band-gap perovskites. Adv. Energy Mater. 5, 1400960 (2015).

    Article  Google Scholar 

  21. Lin, P.-Y. et al. Pseudo-halide perovskite solar cells. Adv. Energy Mater. 11, 2100818 (2021).

    Article  CAS  Google Scholar 

  22. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Lu, H. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Xu, Z., Chen, M. & Liu, S. Pseudohalide induced tunable electronic and excitonic properties in two-dimensional single-layer perovskite for photovoltaics and photoelectronic applications. J. Energy Chem. 36, 106–113 (2019).

    Article  Google Scholar 

  25. Li, J. et al. Linear pseudo-halogen anion passivating defects for MAPbI3 perovskite solar cells. Phys. B Condens. Matter 651, 414591 (2023).

    Article  CAS  Google Scholar 

  26. Tao, J. et al. Additive engineering for efficient and stable MAPbI3-perovskite solar cells with an efficiency of over 21%. ACS Appl. Mater. Interfaces 13, 44451–44459 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Schlipf, J. & Müller-Buschbaum, P. Structure of organometal halide perovskite films as determined with grazing-incidence X-ray scattering methods. Adv. Energy Mater. 7, 1700131 (2017).

    Article  ADS  Google Scholar 

  28. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    Article  ADS  CAS  Google Scholar 

  29. Wei, W. et al. An unusual phase transition driven by vibrational entropy changes in a hybrid organic-inorganic perovskite. Angew. Chem. Int. Ed. 57, 8932–8936 (2018).

    Article  CAS  Google Scholar 

  30. Huang, T. et al. Performance-limiting formation dynamics in mixed-halide perovskites. Sci. Adv. 7, eabj1799 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tian, J. et al. Quantifying the energy losses in CsPbI2Br perovskite solar cells with an open-circuit voltage of up to 1.45 V. ACS Energy Lett. 7, 4071–4080 (2022).

    Article  CAS  Google Scholar 

  32. Stolterfoht, M. et al. How to quantify the efficiency potential of neat perovskite films: perovskite semiconductors with an implied efficiency exceeding 28%. Adv. Mater. 32, 2000080 (2020).

    Article  CAS  Google Scholar 

  33. Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Zhang, Y. et al. Improved fatigue behaviour of perovskite solar cells with an interfacial starch-polyiodide buffer layer. Nat. Photon. 17, 1066–1073 (2023).

    Article  ADS  CAS  Google Scholar 

  35. Deng, Y. et al. Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 6, 633–641 (2021).

    Article  ADS  CAS  Google Scholar 

  36. Game, O. S. et al. Ions matter: description of the anomalous electronic behavior in methylammonium lead halide perovskite devices. Adv. Funct. Mater. 27, 1606584 (2017).

    Article  Google Scholar 

  37. Bu, T. et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372, 1327–1332 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Chen, W. et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7, 229–237 (2022).

    Article  ADS  CAS  Google Scholar 

  39. Tang, T. et al. Achievement of 25.54% power conversion efficiency by optimization of current losses at the front side of silicon heterojunction solar cells. Prog. Photovolt. Res. Appl. 5, 449–460 (2023).

    Article  Google Scholar 

  40. Buffet, A. et al. P03, the microfocus and nanofocus X-ray scattering (MiNaXS) beamline of the PETRA III storage ring: the microfocus endstation. J. Synchrotron Radiat. 19, 647–653 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y.H. acknowledges support from the MOE Tier 2 grant (MOE-T2EP10122-0005), the Ministry of Education (Singapore) and the National University of Singapore Presidential Young Professorship (A-0009174-03-00 and A-0009174-02-00). This research is supported by the National Research Foundation, Singapore, and A*STAR (Agency for Science, Technology and Research) under its LCERFI program award no. U2102d2002. Y.L. acknowledges support from the National Natural Science Foundation of China (grant nos. 12074016 and 12274009), Beijing Natural Science Foundation (Z210016) and the General Program of Science and Technology Development Project of Beijing Municipal Education Commission (KM202110005003), the Research and Development Project from the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2022SX-TD001). P.M.-B. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Excellence Strategy-EXC 2089/1-390776260 (e-conversion) of Germany and TUM.solar in the context of the Bavarian Collaborative Research Project Solar Technologies Go Hybrid (SolTech). The authors of this paper are affiliated with the Solar Energy Research Institute of Singapore (SERIS), a research institute at the National University of Singapore. SERIS is supported by the National University of Singapore, the National Research Foundation Singapore, the Energy Market Authority of Singapore and the Singapore Economic Development Board. The computational work for this article was entirely performed on the resources of the National Supercomputing Centre (NSCC), Singapore (https://www.nscc.sg). We thank M. Schwartzkopf, K. Sun, Z. Li and X. Jiang for the support of beamtime at the DESY P03 beamline.

Author information

Authors and Affiliations

Authors

Contributions

S.L. and Y.H. conceived the idea and designed the experiments. Y.H. directed and supervised the project. S.L. fabricated the single-junction and triple-junction solar cells. Y.L. and M.S. conducted the TEM measurements. J.L. and H.L. assisted with the middle cell fabrication. R.G. and P.M.-B. conducted the GIWAXS measurement. X.J. assisted with VOC loss and photoluminescence analysis. X.G. assisted with confocal photoluminescence measurements. R.L. assisted with the defect formation energy calculation. Y.-D.W. and X.W. assisted with the SEM measurement. Q.Z. assisted with the solar cell characterizations. C.Y. and S.Y. conducted the fabrication of silicon solar cells. S.L., Y.L., R.G., X.J. and Y.H. analysed the data and wrote the paper. All authors read and commented on the paper.

Corresponding author

Correspondence to Yi Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Hairen Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–28, Supplementary Tables 1–5 and Supplementary References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Lu, Y., Yu, C. et al. Triple-junction solar cells with cyanate in ultrawide-bandgap perovskites. Nature 628, 306–312 (2024). https://doi.org/10.1038/s41586-024-07226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07226-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing