Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct observation of a magnetic-field-induced Wigner crystal

Abstract

Wigner predicted that when the Coulomb interactions between electrons become much stronger than their kinetic energy, electrons crystallize into a closely packed lattice1. A variety of two-dimensional systems have shown evidence for Wigner crystals2,3,4,5,6,7,8,9,10,11 (WCs). However, a spontaneously formed classical or quantum WC has never been directly visualized. Neither the identification of the WC symmetry nor direct investigation of its melting has been accomplished. Here we use high-resolution scanning tunnelling microscopy measurements to directly image a magnetic-field-induced electron WC in Bernal-stacked bilayer graphene and examine its structural properties as a function of electron density, magnetic field and temperature. At high fields and the lowest temperature, we observe a triangular lattice electron WC in the lowest Landau level. The WC possesses the expected lattice constant and is robust between filling factor ν ≈ 0.13 and ν ≈ 0.38 except near fillings where it competes with fractional quantum Hall states. Increasing the density or temperature results in the melting of the WC into a liquid phase that is isotropic but has a modulated structure characterized by the Bragg wavevector of the WC. At low magnetic fields, the WC unexpectedly transitions into an anisotropic stripe phase, which has been commonly anticipated to form in higher Landau levels. Analysis of individual lattice sites shows signatures that may be related to the quantum zero-point motion of electrons in the WC lattice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emergent triangular lattice at partial filling of a N = 0 Landau level in BLG.
Fig. 2: Identification of the WC.
Fig. 3: Temperature and magnetic field dependence of WC and observation of stripe phase.
Fig. 4: The quantum nature of the WC.

Similar content being viewed by others

Data availability

Other data that support the findings of this study are available from the corresponding author upon request. Source data are provided with this paper for the main figures and Extended Data figures.

References

  1. Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934).

    Article  ADS  CAS  Google Scholar 

  2. Grimes, C. C. & Adams, G. Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons. Phys. Rev. Lett. 42, 795–798 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Lozovik, Y. E. & Yudson, V. I. Crystallization of a two-dimensional electron gas in a magnetic field. J. Exp. Theor. Phys. Lett. 22, 11–12 (1975).

    Google Scholar 

  4. Andrei, E. Y. et al. Observation of a magnetically induced Wigner solid. Phys. Rev. Lett. 60, 2765–2768 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Santos, M. B. et al. Observation of a reentrant insulating phase near the 1/3 fractional quantum Hall liquid in a two-dimensional hole system. Phys. Rev. Lett. 68, 1188–1191 (1991).

    Article  ADS  Google Scholar 

  6. Yoon, J., Li, C. C., Shahar, D., Tsui, D. C. & Shayegan, M. Wigner crystallization and metal-insulator transition of two-dimensional holes in GaAs at B = 0. Phys. Rev. Lett. 82, 1744–1747 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Hossain, M. S. et al. Observation of spontaneous ferromagnetism in a two-dimensional electron system. Proc. Natl Acad. Sci. USA 117, 32244–32250 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    Article  ADS  PubMed  Google Scholar 

  9. Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Yang, F. et al. Experimental determination of the energy per particle in partially filled Landau levels. Phys. Rev. Lett. 126, 156802 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Falson, J. et al. Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions. Nat. Mater. 21, 311–316 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Tanatar, B. & Ceperley, D. M. Ground state of the two-dimensional electron gas. Phys. Rev. B 39, 5005–5016 (1988).

    Article  ADS  Google Scholar 

  13. Levesque, D., Weis, J. J. & MacDonald, A. H. Crystallization of the incompressible quantum-fluid state of a two-dimensional electron gas in a strong magnetic field. Phys. Rev. B 30, 1056–1058 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Lam, P. K. & Girvin, S. M. Liquid-solid transition and the fractional quantum-Hall effect. Phys. Rev. B 30, 473–475 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Tiemann, L., Rhone, T. D., Shibata, N. & Muraki, K. NMR profiling of quantum electron solids in high magnetic fields. Nat. Phys. 10, 648–652 (2014).

    Article  CAS  Google Scholar 

  16. Willett, R. L. et al. Termination of the series of fractional quantum hall states at small filling factors. Phys. Rev. B 38, 7881–7884 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Goldman, V. J., Santos, M., Shayegan, M. & Cunningham, J. E. Evidence for two-dimensional quantum Wigner crystal. Phys. Rev. Lett. 65, 2189–2192 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Buhmann, H. et al. Novel magneto-optical behavior in the Wigner-solid regime. Phys. Rev. Lett. 66, 926–929 (1990).

    Article  ADS  Google Scholar 

  19. Jiang, H. W. et al. Quantum liquid versus electron solid around ν = 1/5 Landau-level filling. Phys. Rev. Lett. 65, 633–636 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Li, Y. P., Sajoto, T., Engel, L. W., Tsui, D. C. & Shayegan, M. Low-frequency noise in the reentrant insulating phase around the 1/5 fractional quantum Hall liquid. Phys. Rev. Lett. 67, 1630–1633 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Paalanen, M. A. et al. rf conductivity of a two-dimensional electron system at small Landau-level filling factors. Phys. Rev. B 45, 11342–11345 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Ye, P. D. et al. Correlation lengths of the Wigner-crystal order in a two-dimensional electron system at high magnetic fields. Phys. Rev. Lett. 89, 176802 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Chen, Y. P. et al. Melting of a 2D quantum electron solid in high magnetic field. Nat. Phys. 2, 452–455 (2006).

    Article  CAS  Google Scholar 

  24. Zhang, D., Huang, X., Dietsche, W., Klitzing, Kvon & Smet, J. H. Signatures for Wigner crystal formation in the chemical potential of a two-dimensional electron system. Phys. Rev. Lett. 113, 076804 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Deng, H. et al. Commensurability oscillations of composite fermions induced by the periodic potential of a Wigner crystal. Phys. Rev. Lett. 117, 096601 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Jang, J., Hunt, B. M., Pfeiffer, L. N., West, K. W. & Ashoori, R. C. Sharp tunnelling resonance from the vibrations of an electronic Wigner crystal. Nat. Phys. 13, 340–344 (2017).

    Article  CAS  Google Scholar 

  27. Shapir, I. et al. Imaging the electronic Wigner crystal in one dimension. Science 364, 870–875 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Li, S.-Y., Zhang, Y., Yin, L.-J. & He, L. Scanning tunneling microscope study of quantum Hall isospin ferromagnetic states in the zero Landau level in a graphene monolayer. Phys. Rev. B 100, 085437 (2019).

    Article  ADS  CAS  Google Scholar 

  30. Liu, X. et al. Visualizing broken symmetry and topological defects in a quantum Hall ferromagnet. Science 375, 321–326 (2021).

    Article  ADS  PubMed  Google Scholar 

  31. Coissard, A. et al. Imaging tunable quantum Hall broken-symmetry orders in graphene. Nature 605, 51–56 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Farahi, G. et al. Broken symmetries and excitation spectra of interacting electrons in partially filled Landau levels. Nat. Phys. 19, 1482–1488 (2023).

    Article  CAS  Google Scholar 

  33. Hu, Y. et al. High-resolution tunneling spectroscopy of fractional quantum Hall states. Preprint at arxiv.org/abs/2308.05789 (2023).

  34. Aoki, H. Effect of coexistence of random potential and electron-electron interaction in two-dimensional systems: Wigner glass. J. Phys. C Solid State Phys. 12, 633 (2001).

    Article  ADS  Google Scholar 

  35. Spivak, B. & Kivelson, S. A. Phases intermediate between a two-dimensional electron liquid and Wigner crystal. Phys. Rev. B 70, 155114 (2004).

    Article  ADS  Google Scholar 

  36. Zhu, X. & Louie, S. G. Wigner crystallization in the fractional quantum Hall regime: a variational quantum Monte Carlo study. Phys. Rev. Lett. 70, 335–338 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Halperin, B. I., Lee, P. A. & Read, N. Theory of the half-filled Landau level. Phys. Rev. B 47, 7312–7343 (1993).

    Article  ADS  CAS  Google Scholar 

  38. Girvin, S. M., MacDonald, A. H. & Platzman, P. M. Magneto-roton theory of collective excitations in the fractional quantum Hall effect. Phys. Rev. B 33, 2481–2494 (1986).

    Article  ADS  CAS  Google Scholar 

  39. Falakshahi, H. & Waintal, X. Hybrid phase at the quantum melting of the Wigner crystal. Phys. Rev. Lett. 94, 046801 (2005).

    Article  ADS  PubMed  Google Scholar 

  40. Ma, M. K. et al. Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid. Phys. Rev. Lett. 125, 036601 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Zou, K., Hong, X. & Zhu, J. Effective mass of electrons and holes in bilayer graphene: electron-hole asymmetry and electron-electron interaction. Phys. Rev. B 84, 085408 (2011).

    Article  ADS  Google Scholar 

  42. Koulakov, A. A., Fogler, M. M. & Shklovskii, B. I. Charge density wave in two-dimensional electron liquid in weak magnetic field. Phys. Rev. Lett. 76, 499–502 (1995).

    Article  ADS  Google Scholar 

  43. Fradkin, E. & Kivelson, S. A. Liquid-crystal phases of quantum Hall systems. Phys. Rev. B 59, 8065–8072 (1999).

    Article  ADS  CAS  Google Scholar 

  44. Lilly, M. P., Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett. 82, 394–397 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Du, R. R. et al. Strongly anisotropic transport in higher two-dimensional Landau levels. Solid State Commun. 109, 389–394 (1999).

    Article  ADS  CAS  Google Scholar 

  46. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Cazorla, C. & Boronat, J. Simulation and understanding of atomic and molecular quantum crystals. Rev. Mod. Phys. 89, 035003 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  48. Lindemann, F. About the calculation of molecular own frequencies. Z. Phys. 11, 609–612 (1910).

    CAS  Google Scholar 

  49. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181 (1973).

    Article  ADS  CAS  Google Scholar 

  50. Halperin, B. I. & Nelson, D. R. Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121–124 (1978).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful discussions with D. Huse, S. Kivelson and M. Heiblum. This work was primarily supported by DOE-BES grant DE-FG02-07ER46419 and the EPiQS initiative grants GBMF9469 of the Gordon and Betty Moore Foundation to A.Y. Other support for the experimental infrastructure was provided by NSF-MRSEC through the Princeton Center for Complex Materials NSF-DMR-2011750, DMR-2312311, ARO MURI (W911NF-21-2-0147) and ONR N00012-21-1-2592. A.Y. acknowledges the hospitality of the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611, where part of this work was carried out. M.P.Z. and T.W. were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05CH11231, in the van der Waals Heterostructures Program (KCWF16).

Author information

Authors and Affiliations

Authors

Contributions

Y.-C.T., M.H., Y.H. and A.Y. devised the experiments; Y.-C.T., M.H. and Y.H. created the structures of the devices and carried out the STM measurements and data analysis. E.L., T.W. and M.P.Z. carried out the theoretical calculations. K.W. and T.T. provided the h-BN substrates. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Ali Yazdani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Benjamin Sacepe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Effects of the bias voltage VB on the Wigner crystal images.

The two Idc images show the WC imaged at the same area, same ν with different bias voltages. Left: VB = 5 mV; right: VB = −5 mV. Notice that the Idc > 0 for VB > 0, and Idc < 0 for VB < 0. With the bias voltage VB applied on the sample and the tip grounded, the electron is tunneled from tip (sample) to the sample (tip) for positive (negative) bias voltage VB. The observed suppression (enhancement) of current indicates the presence of a localized electron. When VB > 0, a larger energy penalty is required for tunneling into the site, therefore a suppression of the current for a fixed bias voltage image; whereas for VB < 0, since there’s an extra charge to contribute from the site, an enhancement of the current for a fixed bias voltage image is expected. However, a slight shift of the positions of the sites is detected in these images with reversed bias, along with slight shape changes. These observations could potentially be explained by the tip perturbation. For example, it could be tip gating effects which can slightly change the local filling factor ν, resulting in the slight shift. Other than potential local gating from tip, the spatial shift of the localized electron might also be explained as results of a small horizontal electric field E (in the graphene sample) from voltage Vt (sum of work function mismatch and bias voltage VB) which is different for measurements taken at positive/negative coulmb gap edges. Other possibility, such as the piezo drifting effect has been excluded.

Source Data

Extended Data Fig. 2 Full data set (I) of electronic ground state imaging at B = 13.95 T.

The data are presented in the sequence in rows of δIdc, \(S({\boldsymbol{q}})\), and autocorrelation of δIdc. The filling factor ν of each set is noted on the top. The scale bars for δIdc, \(S({\boldsymbol{q}})\), autocorrelation of δIdc are 100 nm, 0.2 nm−1, 100 nm, respectively.

Source Data

Extended Data Fig. 3 Full data set (II) of electronic ground state imaging at B = 13.95 T.

The data are presented in the sequence in rows of δIdc, \(S({\boldsymbol{q}})\), and autocorrelation of δIdc. The filling factor ν of each set is noted on the top. The scale bars for δIdc, \(S({\boldsymbol{q}})\), autocorrelation of δIdc are 100 nm, 0.2 nm−1, 100 nm, respectively.

Source Data

Extended Data Fig. 4 Full data set (III) of electronic ground state imaging at B = 13.95 T.

The data are presented in the sequence in rows of δIdc, \(S({\boldsymbol{q}})\), and autocorrelation of δIdc. The filling factor ν of each set is noted on the top. The scale bars for δIdc, \(S({\boldsymbol{q}})\), autocorrelation of δIdc are 100 nm, 0.2 nm−1, 100 nm, respectively.

Source Data

Extended Data Fig. 5 Phase diagram and the extracted \(|{\bf{q}}|\) near the ν = 1/3 FQH state at B = 13.95 T.

The solid line is the expected magnitude \(|{{\bf{q}}}_{{\rm{W}}{\rm{C}}}|\) of the Bragg peaks of the WC. The grey mask represents where the FQHs ν = 1/3 sets in. The data are presented in solid triangles (WC), hollow triangles (distorted WC), and hollow circles (liquid). As approaching the ν = 1/3 FQH state, the extracted \(|{\bf{q}}|\) starts deviating away from the expected \(|{{\bf{q}}}_{{\rm{W}}{\rm{C}}}|\), but still the values are very close to one another. And on both sides of the FQHs there are liquid states, signifying a solid to liquid/liquid to solid transition near ν = 1/3.

Source Data

Extended Data Fig. 6 Filling factor ν dependence of the extracted \({\boldsymbol{|}}{\bf{q}}{\boldsymbol{|}}\) at B = 13.95 T.

The solid line is the expected magnitude \(|{{\bf{q}}}_{{\rm{W}}{\rm{C}}}|\) of the Bragg peaks of the WC. The dashed line is the expected magnitude \(|{{\bf{q}}}_{{\rm{F}}{\rm{L}}}|\) for Fermi liquid or composite Fermi liquid, if we assume the interference pattern originates from the scattering between two opposite points \(\pm {{\bf{k}}}_{{\rm{F}}}\) on the Fermi surface at zero magnetic field. The data are presented in filled red circle (WC), hollow red circles (distorted WC), and filled blue circles (liquid). Most points are below \(|{{\bf{q}}}_{{\rm{W}}{\rm{C}}}|\). Interestingly, deviations of \(|{{\bf{q}}}_{{\rm{W}}{\rm{C}}}|\) are towards the direction away from \(|{{\bf{q}}}_{{\rm{F}}{\rm{L}}}|=2|{{\bf{k}}}_{{\rm{F}}}|=2\sqrt{4{\rm{\pi }}n}\). The error bars in vertical direction represent the fitting error of determining \(|{\bf{q}}|\), and horizontal error bars denote the uncertainty of the filling factor ν determination (see Method).

Source Data

Supplementary information

Supplementary Information

Supplementary Note 1, Supplementary Figs. 1–17 and Supplementary Tables 1–6.

Supplementary Video 1

Imaging of a WC. Filling factor ν dependence of δIdc and S(q) maps at magnetic field B = 13.95 T and T = 210 mK.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsui, YC., He, M., Hu, Y. et al. Direct observation of a magnetic-field-induced Wigner crystal. Nature 628, 287–292 (2024). https://doi.org/10.1038/s41586-024-07212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07212-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing