Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites

Abstract

Perovskites with low ionic radii metal centres (for example, Ge perovskites) experience both geometrical constraints and a gain in electronic energy through distortion; for these reasons, synthetic attempts do not lead to octahedral [GeI6] perovskites, but rather, these crystallize into polar non-perovskite structures1,2,3,4,5,6. Here, inspired by the principles of supramolecular synthons7,8, we report the assembly of an organic scaffold within perovskite structures with the goal of influencing the geometric arrangement and electronic configuration of the crystal, resulting in the suppression of the lone pair expression of Ge and templating the symmetric octahedra. We find that, to produce extended homomeric non-covalent bonding, the organic motif needs to possess self-complementary properties implemented using distinct donor and acceptor sites. Compared with the non-perovskite structure, the resulting [GeI6]4− octahedra exhibit a direct bandgap with significant redshift (more than 0.5 eV, measured experimentally), 10 times lower octahedral distortion (inferred from measured single-crystal X-ray diffraction data) and 10 times higher electron and hole mobility (estimated by density functional theory). We show that the principle of this design is not limited to two-dimensional Ge perovskites; we implement it in the case of copper perovskite (also a low-radius metal centre), and we extend it to quasi-two-dimensional systems. We report photodiodes with Ge perovskites that outperform their non-octahedral and lead analogues. The construction of secondary sublattices that interlock with an inorganic framework within a crystal offers a new synthetic tool for templating hybrid lattices with controlled distortion and orbital arrangement, overcoming limitations in conventional perovskites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distorted germanium perovskites.
Fig. 2: Ge perovskites having a symmetric octahedral structure.
Fig. 3: Hydrogen and halogen intermolecular bonding as crystal forces.
Fig. 4: Effect of intermolecular bonding on perovskite properties.
Fig. 5: Photodiode studies and crystal structures of quasi-2D Ge perovskite.

Data availability

Crystallographic data for the structures reported in this article have also been deposited at the Cambridge Crystallographic Data Centre, with deposition numbers indicated in the Supplementary Information. Data are also available on request.

References

  1. Chiara, R., Morana, M. & Malavasi, L. Germanium-based halide perovskites: materials, properties, and applications. Chempluschem 86, 879–888 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Stoumpos, C. C. et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Ke, W. & Kanatzidis, M. G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10, 965 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Chen, M. et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 10, 16 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Glück, N. & Bein, T. Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy Environ. Sci. 13, 4691–4716 (2020).

    Article  Google Scholar 

  6. Xiao, Z., Song, Z. & Yan, Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31, 1803792 (2019).

    Article  CAS  Google Scholar 

  7. Desiraju, G. R. Crystal engineering: from molecule to crystal. J. Am. Chem. Soc. 135, 9952–9967 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Mukherjee, A. Building upon supramolecular synthons: some aspects of crystal engineering. Cryst. Growth Des. 15, 3076–3085 (2015).

    Article  CAS  Google Scholar 

  9. Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat Rev Mater 4, 169–188 (2019).

    Article  ADS  CAS  Google Scholar 

  10. Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater 4, 269–285 (2019).

    Article  ADS  CAS  Google Scholar 

  11. Kim, J. Y., Lee, J. W., Jung, H. S., Shin, H. & Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G. & Cahen, D. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Siebentritt, S. et al. Heavy alkali treatment of Cu(In,Ga)Se2 solar cells: surface versus bulk effects. Adv. Energy Mater. 10, 1903752 (2020).

    Article  CAS  Google Scholar 

  16. Hoye, R. L. Z. et al. Fundamental carrier lifetime exceeding 1 µs in Cs2AgBiBr6 double perovskite. Adv. Mater. Interfaces 5, 1800464 (2018).

    Article  Google Scholar 

  17. Seo, D. K., Gupta, N., Whangbo, M. H., Hillebrecht, H. & Thiele, G. Pressure-induced changes in the structure and band gap of CsGeX3 (X = Cl, Br) studied by electronic band structure calculations. Inorg. Chem. 37, 407–410 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Filip, M. R. & Giustino, F. The geometric blueprint of perovskites. Proc. Natl Acad. Sci. USA 115, 5397–5402 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, X. et al. Tolerance factor for stabilizing 3D hybrid halide perovskitoids using linear diammonium cations. J. Am. Chem. Soc. 144, 3902–3912 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Fedorovskiy, A. E., Drigo, N. A. & Nazeeruddin, M. K. The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range. Small Methods 4, 1900426 (2020).

    Article  CAS  Google Scholar 

  21. Yamada, K., Mikawa, K., Okuda, T. & Knight, K. S. Static and dynamic structures of CD3ND3GeCl3 studied by TOF high resolution neutron powder diffraction and solid state NMR. J. Chem. Soc. Dalton Trans. 10, 2112–2118 (2002).

    Article  Google Scholar 

  22. Yamada, K. et al. Structural phase transitions of the polymorphs of CsSnI3 by means of Rietveld analysis of the X-ray diffraction. Chem. Lett. 20, 801–804 (1991).

    Article  Google Scholar 

  23. Varignon, J., Bibes, M. & Zunger, A. Origins versus fingerprints of the Jahn–Teller effect in d-electron ABX3 perovskites. Phys Rev Res 1, 033131 (2019).

    Article  CAS  Google Scholar 

  24. Albright, T. A., Burdett, J. K. & Whangbo, M. H. Orbital Interactions in Chemistry. 2nd edn (Wiley, 2013).

  25. Schwarz, U., Wagner, F., Syassen, K. & Hillebrecht, H. Effect of pressure on the optical-absorption edges of CsGeBr3 and CsGeCl3. Phys. Rev. B Condens. Matter Mater. Phys. 53, 12545–12548 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Thiele, G., Rotter, H. W. & Schmidt, K. D. Kristallstrukturen und Phasentransformationen von Caesiumtrihalogenogermanaten(II) CsGeX3 (X = Cl, Br, I). ZAAC J. Inorg. Gen. Chem. 545, 148–156 (1987).

    CAS  Google Scholar 

  27. Christensen, A. N. et al. A ferroelectric chloride of perowskite type crystal structure of CsGeCl3. Acta Chem. Scand. 19, 421–428 (1965).

    Article  CAS  Google Scholar 

  28. Saparov, B. & Mitzi, D. B. Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Jana, M. K. et al. Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites. Nat. Commun. 12, 4982 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cavallo, G. et al. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Varadwaj, P. R., Varadwaj, A. & Marques, H. M. Halogen bonding: a halogen-centered noncovalent interaction yet to be understood. Inorganics (Basel) 7, 40 (2019).

    Article  CAS  Google Scholar 

  32. Metrangolo, P., Canil, L., Abate, A., Terraneo, G. & Cavallo, G. Halogen bonding in perovskite solar cells: a new tool for improving solar energy conversion. Angew. Chem. Int. Ed. Engl. 61, e202114793 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ball, M. L., Milic, J. V. & Loo, Y. L. The emerging role of halogen bonding in hybrid perovskite photovoltaics. Chem. Mater. 23, 8 (2021).

    Google Scholar 

  34. Fu, X. et al. Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics. Chem 7, 3131–3143 (2021).

    Article  CAS  Google Scholar 

  35. Baur, W. H. The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr. B 30, 1195–1215 (1974).

    Article  CAS  Google Scholar 

  36. Baldrighi, M. et al. Polymorphs and co-crystals of haloprogin: an antifungal agent. CrystEngComm 16, 5897–5904 (2014).

    Article  CAS  Google Scholar 

  37. Wang, P. X. et al. Structural distortion and bandgap increase of two-dimensional perovskites induced by trifluoromethyl substitution on spacer cations. J. Phys. Chem. Lett. 11, 10144–10149 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    Article  ADS  CAS  Google Scholar 

  42. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  43. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 5029 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the crystallographic services provided by J. Ovens from the X-Ray Core Facility at the University of Ottawa. This work was financially supported by Huawei Technologies Canada Co., Ltd and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

A.M.N., S.H. and E.H.S. conceived the idea. A.M.N. designed the experiments. A.M.N. synthesized and characterized the crystals. A.L. and T.M. resolved the crystal structures. A.M.N. and H.C. fabricated the devices. F.D., C.Z. and O.V. did the theoretical calculations and simulations. M.I.S., F.P.G.d.A., S.H. and E.H.S. provided advice. A.M.N., R.S. and E.H.S. composed the manuscript. All authors discussed the results, edited and commented on the manuscript.

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Comparison of different metrics for the quantification of octahedral distortion.

A plot of Baur distortion index vs a, Bond angle variance b, Quadratic elongation c, Effective coordination number d, Bond distortion \((\triangle d)\) e, Polyhedral volume f, Average bong length. Octahedral perovskites are identified by the yellow circles in each graph. See Supplementary note 4 for the definition of each metric.

Extended Data Fig. 2 Crystal structure of a.

(PMA)2GeI4; b, (4F-PMA)2GeI4; c, (4Cl-PMA)2GeI4 with indicated view axis.

Extended Data Fig. 3 Crystal structure of a.

(4Br-PMA)2GeI4; b, (4I-PMA)2GeI4; c, (3F-PMA)2GeI4 with indicated view axis.

Extended Data Fig. 4 Halogen bonding network in the Germanium perovskite structure using Br-PMA as the cation.

a, view at the a-c crystal axis of the crystal. b, Titled view to show donor and acceptor sites of the XB bonding.

Extended Data Fig. 5 Hydrogen bonding between the organic module and inorganic framework using F-PMA as the cation.

a, View at the a-b crystal axis. b, titled view to show donor and acceptor sites of the HB bonding.

Extended Data Fig. 6 DFT Calculated electronic band structure (total contribution) of the Ge perovskite.

using: a, F-PMA; b, Cl-PMA; c, I-PMA as cations.

Extended Data Fig. 7 Charge density mapping of conduction (CB) and valence band (VB) in the Ge perovskite.

using: a, F-PMA; b, Cl-PMA; c, I-PMA as cations. Note that for both cases, the contribution of the density of state on the organic parts is negligible, and thus organic molecules are not shown in the figure. Dark grey and red sphere represent the Ge and I atoms, respectively. Green and yellow colours are used for representation of positive and negative isosurfaces.

Extended Data Fig. 8 Organic design examples that potentially satisfy the criteria for extension of homomeric bonds.

Each example includes the possible route for the propagation of intermolecular bonding.

Extended Data Table 1 Distortion index of the previously published germanium perovskites
Extended Data Table 2 Crystallographic characteristics of the synthesized germanium perovskites

Supplementary information

Supplementary Information

Supplementary Information file containing Supplementary Notes 1–4, Supplementary Table 1 and Supplementary Figs. 1–18. The crystallographic data of the structures presented in this article have been archived at the Cambridge Crystallographic Data Centre, and the deposition numbers are specified. Additionally, we have made available the CIF files for these structures as Supplementary Data.

Supplementary Data

CIF files for the structures presented in this article are named according to the crystal composition, and the structure andmolecular entity abbreviations can be found in Fig. 2a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morteza Najarian, A., Dinic, F., Chen, H. et al. Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites. Nature 620, 328–335 (2023). https://doi.org/10.1038/s41586-023-06209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06209-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing