Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signatures of metabolic diseases on spermatogenesis and testicular metabolism

Abstract

Diets leading to caloric overload are linked to metabolic disorders and reproductive function impairment. Metabolic and hormonal abnormalities stand out as defining features of metabolic disorders, and substantially affect the functionality of the testis. Metabolic disorders induce testicular metabolic dysfunction, chronic inflammation and oxidative stress. The disruption of gastrointestinal, pancreatic, adipose tissue and testicular hormonal regulation induced by metabolic disorders can also contribute to a state of compromised fertility. In this Review, we will delve into the effects of high-fat diets and metabolic disorders on testicular metabolism and spermatogenesis, which are crucial elements for male reproductive function. Moreover, metabolic disorders have been shown to influence the epigenome of male gametes and might have a potential role in transmitting phenotype traits across generations. However, the existing evidence strongly underscores the unmet need to understand the mechanisms responsible for transgenerational paternal inheritance of male reproductive function impairment related to metabolic disorders. This knowledge could be useful for developing targeted interventions to prevent, counteract, and most of all break the perpetuation chain of male reproductive dysfunction associated with metabolic disorders across generations.

Key points

  • Diets rich in sugar and fat are associated with metabolic disorders and poor reproductive health.

  • The testis is highly sensitive to the metabolic status of the organism, as metabolic disorders promote metabolic and hormonal testicular dysregulation.

  • Metabolic disorders are associated with testicular fat accumulation, inflammation, and oxidative stress, which might trigger male reproductive dysfunction.

  • Hormonal imbalance stands out as a hallmark of obesity, with the gastrointestinal system and adipose tissue hormones having a pivotal role in testicular metabolism and function.

  • The epigenetic profile of male gametes is responsive to the metabolic state of the organism and is potentially inheritable, in turn predisposing the offspring to metabolic disorders and potentially prompting the transgenerational perpetuation of acquired metabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fat accumulation in the adipose tissue — chronic inflammation and effect on testicular metabolism.
Fig. 2: High-fat diet-induced metabolic and hormonal testicular dysregulation.
Fig. 3: Putative signalling pathways involved in the energetic regulation of Sertoli cells by gut and adipose hormones.
Fig. 4: Overview of the proposed model of paternal inheritance of metabolic diseases.

Similar content being viewed by others

References

  1. Saklayen, M. G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20, 12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. WHO. Obesity and Overweight (WHO, 2021).

  3. Rudic, R. D. et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2, e377 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huvenne, H. & Dubern, B. in: Nóbrega, C. & Rodriguez-López, R. (eds) Molecular Mechanisms Underpinning the Development of Obesity 9–21 (Springer International Publishing, 2014).

  5. Leon-Mimila, P. et al. Contribution of common genetic variants to obesity and obesity-related traits in Mexican children and adults. PLoS ONE 8, e70640 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hotta, K. et al. Association between obesity and polymorphisms in SEC16B, TMEM18, GNPDA2, BDNF, FAIM2 and MC4R in a Japanese population. J. Hum. Genet. 54, 727–731 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira, P. F., Sousa, M., Silva, B. M., Monteiro, M. P. & Alves, M. G. Obesity, energy balance and spermatogenesis. Reproduction 153, R173–R185 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y. & Ding, Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction 154, R123–R131 (2017).

    Article  PubMed  Google Scholar 

  9. Du Plessis, S. S., Cabler, S., McAlister, D. A., Sabanegh, E. & Agarwal, A. The effect of obesity on sperm disorders and male infertility. Nat. Rev. Urol. 7, 153–161 (2010).

    Article  PubMed  Google Scholar 

  10. Chavarro, J. E., Toth, T. L., Wright, D. L., Meeker, J. D. & Hauser, R. Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil. Steril. 93, 2222–2231 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Jensen, T. K. et al. Body mass index in relation to semen quality and reproductive hormones among 1,558 Danish men. Fertil. Steril. 82, 863–870 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Sermondade, N. et al. BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis. Hum. Reprod. Update 19, 221–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Hammoud, A. O. et al. Male obesity and alteration in sperm parameters. Fertil. Steril. 90, 2222–2225 (2008).

    Article  PubMed  Google Scholar 

  14. Hofny, E. R. et al. Semen parameters and hormonal profile in obese fertile and infertile males. Fertil. Steril. 94, 581–584 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, E. Y., Huang, Y., Du, Q. Y., Yao, G. D. & Sun, Y. P. Body mass index effects sperm quality: a retrospective study in Northern China. Asian J. Androl. 19, 234–237 (2017).

    Article  PubMed  Google Scholar 

  16. Swan, S. H., Elkin, E. P. & Fenster, L. The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996. Env. Health Perspect. 108, 961–966 (2000).

    Article  CAS  Google Scholar 

  17. Pereira, S. C., Crisóstomo, L., Sousa, M., Oliveira, P. F. & Alves, M. G. Metabolic diseases affect male reproduction and induce signatures in gametes that may compromise the offspring health. Environ. Epigenet. 6, dvaa019 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Reuter, S. & Mrowka, R. The metabolic syndrome: the future is now. Acta Physiol. 214, 291–294 (2015).

    Article  CAS  Google Scholar 

  19. Mruk, D. D. & Cheng, C. Y. Sertoli–Sertoli and Sertoli–germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr. Rev. 25, 747–806 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Mruk, D. D. & Cheng, C. Y. The mammalian blood–testis barrier: its biology and regulation. Endocr. Rev. 36, 564–591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weber, J. E., Russell, L. D., Wong, V. & Peterson, R. N. Three-dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli–Sertoli and Sertoli–germ-cell relationships. Am. J. Anat. 167, 163–179 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Alves, M. G. et al. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell Mol. Life Sci. 70, 777–793 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Oliveira, P. F. et al. Effect of insulin deprivation on metabolism and metabolism-associated gene transcript levels of in vitro cultured human Sertoli cells. Biochim. Biophys. Acta 1820, 84–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Kokk, K. et al. Immunohistochemical detection of glucose transporters class I subfamily in the mouse, rat and human testis. Medicina 40, 156–160 (2004).

    PubMed  Google Scholar 

  25. Oliveira, P. F., Martins, A. D., Moreira, A. C., Cheng, C. Y. & Alves, M. G. The Warburg effect revisited — lesson from the Sertoli cell. Med. Res. Rev. 35, 126–151 (2015).

    Article  PubMed  Google Scholar 

  26. Boussouar, F. & Benahmed, M. Lactate and energy metabolism in male germ cells. Trends Endocrinol. Metab. 15, 345–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Eslamian, G. et al. Dietary fatty acid intakes and asthenozoospermia: a case-control study. Fertil. Steril. 103, 190–198 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Attaman, J. A. et al. Dietary fat and semen quality among men attending a fertility clinic. Hum. Reprod. 27, 1466–1474 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan, Y. et al. Diet-induced obesity in male C57BL/6 mice decreases fertility as a consequence of disrupted blood–testis barrier. PLoS ONE 10, e0120775 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ye, J. et al. Metformin improves fertility in obese males by alleviating oxidative stress-induced blood–testis barrier damage. Oxid. Med. Cell Longev. 2019, 9151067 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jarvis, S. et al. High fat diet causes distinct aberrations in the testicular proteome. Int. J. Obes. 44, 1958–1969 (2020).

    Article  CAS  Google Scholar 

  32. Hu, X. et al. Effects of saturated palmitic acid and omega-3 polyunsaturated fatty acids on Sertoli cell apoptosis. Syst. Biol. Reprod. Med. 64, 368–380 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Luo, D. et al. High fat diet impairs spermatogenesis by regulating glucose and lipid metabolism in Sertoli cells. Life Sci. 257, 118028 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Crisostomo, L. et al. A switch from high-fat to normal diet does not restore sperm quality but prevents metabolic syndrome. Reproduction 158, 377–387 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Crisostomo, L. et al. Diet during early life defines testicular lipid content and sperm quality in adulthood. Am. J. Physiol. Endocrinol. Metab. 319, E1061–E1073 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Shafik, A. & Olfat, S. Scrotal lipomatosis. Br. J. Urol. 53, 50–54 (1981).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, M. et al. Autophagy and apoptosis act as partners to induce germ cell death after heat stress in mice. PLoS ONE 7, e41412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Campos-Silva, P., Furriel, A., Costa, W. S., Sampaio, F. J. & Gregorio, B. M. Metabolic and testicular effects of the long-term administration of different high-fat diets in adult rats. Int. Braz. J. Urol. 41, 569–575 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moreira, S. et al. Pesticides and male fertility: a dangerous crosstalk. Metabolites 11, 799 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coelho, M., Oliveira, T. & Fernandes, R. Biochemistry of adipose tissue: an endocrine organ. Arch. Med. Sci. 9, 191–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ellulu, M. S., Patimah, I., Khaza’ai, H., Rahmat, A. & Abed, Y. Obesity and inflammation: the linking mechanism and the complications. Arch. Med. Sci. 13, 851–863 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Konner, A. C. & Bruning, J. C. Toll-like receptors: linking inflammation to metabolism. Trends Endocrinol. Metab. 22, 16–23 (2011).

    Article  PubMed  Google Scholar 

  43. Hommelberg, P. P., Plat, J., Langen, R. C., Schols, A. M. & Mensink, R. P. Fatty acid-induced NF-κB activation and insulin resistance in skeletal muscle are chain length dependent. Am. J. Physiol. Endocrinol. Metab. 296, E114–E120 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, Y. H., Giraud, J., Davis, R. J. & White, M. F. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J. Biol. Chem. 278, 2896–2902 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Dutta, S., Sengupta, P., Slama, P. & Roychoudhury, S. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int. J. Mol. Sci. 22, 10043 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sabeti, P., Pourmasumi, S., Rahiminia, T., Akyash, F. & Talebi, A. R. Etiologies of sperm oxidative stress. Int. J. Reprod. Biomed. 14, 231–240 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tremellen, K. Oxidative stress and male infertility — a clinical perspective. Hum. Reprod. Update 14, 243–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Shekarriz, M., Thomas, A. J. Jr. & Agarwal, A. Incidence and level of seminal reactive oxygen species in normal men. Urology 45, 103–107 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Iwasaki, A. & Gagnon, C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril. 57, 409–416 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Agarwal, A., Saleh, R. A. & Bedaiwy, M. A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 79, 829–843 (2003).

    Article  PubMed  Google Scholar 

  52. Said, T. M. et al. Human sperm superoxide anion generation and correlation with semen quality in patients with male infertility. Fertil. Steril. 82, 871–877 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Aziz, N. et al. Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil. Steril. 81, 349–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Moustafa, M. H. et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum. Reprod. 19, 129–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Carrageta, D. F. et al. Mitochondrial activation and reactive oxygen-species overproduction during sperm capacitation are independent of glucose stimuli. Antioxidants 9, 750 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Monteiro, B. S., Freire-Brito, L., Carrageta, D. F., Oliveira, P. F. & Alves, M. G. Mitochondrial Uncoupling Proteins (UCPs) as key modulators of ROS homeostasis: a crosstalk between diabesity and male infertility? Antioxidants 10, 1746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Du Plessis, S. S., Agarwal, A., Halabi, J. & Tvrda, E. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J. Assist. Reprod. Genet. 32, 509–520 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Martin-Hidalgo, D., Bragado, M. J., Batista, A. R., Oliveira, P. F. & Alves, M. G. Antioxidants and male fertility: from molecular studies to clinical evidence. Antioxidants 8, 89 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Carrageta, D. F. et al. Inhibition of mitochondrial uncoupling proteins arrests human spermatozoa motility without compromising viability. Antioxidants 12, 409 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thompson, I. R. & Kaiser, U. B. GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Mol. Cell Endocrinol. 385, 28–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Shah, W. et al. The molecular mechanism of sex hormones on Sertoli cell development and proliferation. Front. Endocrinol. 12, 648141 (2021).

    Article  Google Scholar 

  62. Clavijo, R. I. & Hsiao, W. Update on male reproductive endocrinology. Transl. Androl. Urol. 7, S367–S372 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pasquali, R. et al. European Society of Endocrinology Clinical Practice Guideline: endocrine work-up in obesity. Eur. J. Endocrinol. 182, G1–G32 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Pivonello, R. et al. Metabolic disorders and male hypogonadotropic hypogonadism. Front. Endocrinol. 10, 345 (2019).

    Article  Google Scholar 

  65. Carrageta, D. F., Oliveira, P. F., Alves, M. G. & Monteiro, M. P. Obesity and male hypogonadism: tales of a vicious cycle. Obes. Rev. 20, 1148–1158 (2019).

    Article  PubMed  Google Scholar 

  66. Monteiro, M. P. & Batterham, R. L. The importance of the gastrointestinal tract in controlling food intake and regulating energy balance. Gastroenterology 152, 1707–1717.e2 (2017).

    Article  PubMed  Google Scholar 

  67. Muller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shah, M. & Vella, A. Effects of GLP-1 on appetite and weight. Rev. Endocr. Metab. Disord. 15, 181–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Buteau, J. et al. Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic β-cell proliferation. Diabetes 50, 2237–2243 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Rowlands, J., Heng, J., Newsholme, P. & Carlessi, R. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front. Endocrinol. 9, 672 (2018).

    Article  Google Scholar 

  72. Smith, N. K., Hackett, T. A., Galli, A. & Flynn, C. R. GLP-1: molecular mechanisms and outcomes of a complex signaling system. Neurochem. Int. 128, 94–105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lester, L. B., Langeberg, L. K. & Scott, J. D. Anchoring of protein kinase A facilitates hormone-mediated insulin secretion. Proc. Natl Acad. Sci. USA 94, 14942–14947 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meloni, A. R., DeYoung, M. B., Lowe, C. & Parkes, D. G. GLP-receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence. Diabetes Obes. Metab. 15, 15–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. MacDonald, P. E. et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51, S434–S442 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Hinnen, D. Glucagon-Like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr. 30, 202–210 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Martins, A. D. et al. Metabolic dynamics of human Sertoli cells are differentially modulated by physiological and pharmacological concentrations of GLP-1. Toxicol. Appl. Pharmacol. 362, 1–8 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Rago, V. et al. Human sperm express the receptor for glucagon-like peptide-1 (GLP-1), which affects sperm function and metabolism. Endocrinology 161, bqaa031 (2020).

    Article  PubMed  Google Scholar 

  79. van der Lely, A. J., Tschop, M., Heiman, M. L. & Ghigo, E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr. Rev. 25, 426–457 (2004).

    Article  PubMed  Google Scholar 

  80. Wren, A. M. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Tschop, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Yanagi, S., Sato, T., Kangawa, K. & Nakazato, M. The homeostatic force of ghrelin. Cell Metab. 27, 786–804 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Hedegaard, M. A. & Holst, B. The complex signaling pathways of the ghrelin receptor. Endocrinology 161, bqaa020 (2020).

    Article  PubMed  Google Scholar 

  84. Park, S., Jiang, H., Zhang, H. & Smith, R. G. Modification of ghrelin receptor signaling by somatostatin receptor-5 regulates insulin release. Proc. Natl Acad. Sci. USA 109, 19003–19008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dezaki, K., Kakei, M. & Yada, T. Ghrelin uses Gɑi2 and activates voltage-dependent K+ channels to attenuate glucose-induced Ca2+ signaling and insulin release in islet β-cells: novel signal transduction of ghrelin. Diabetes 56, 2319–2327 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Ishikawa, T., Fujioka, H., Ishimura, T., Takenaka, A. & Fujisawa, M. Ghrelin expression in human testis and serum testosterone level. J. Androl. 28, 320–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Dupont, J., Maillard, V., Coyral-Castel, S., Rame, C. & Froment, P. Ghrelin in female and male reproduction. Int. J. Pept. 2010, 158102 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gaytan, F. et al. Expression of ghrelin and its functional receptor, the type 1a growth hormone secretagogue receptor, in normal human testis and testicular tumors. J. Clin. Endocrinol. Metab. 89, 400–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Barreiro, M. L. & Tena-Sempere, M. Ghrelin and reproduction: a novel signal linking energy status and fertility? Mol. Cell Endocrinol. 226, 1–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Kheradmand, A., Dezfoulian, O., Alirezaei, M. & Rasoulian, B. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats. Biochem. Biophys. Res. Commun. 419, 299–304 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Martins, A. D. et al. Ghrelin acts as energy status sensor of male reproduction by modulating Sertoli cells glycolytic metabolism and mitochondrial bioenergetics. Mol. Cell Endocrinol. 434, 199–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Lukaszyk, A. et al. Expression of ghrelin receptor (GHSR-1a) in rat epididymal spermatozoa and the effects of its activation. Reprod. Biol. 12, 293–300 (2012).

    Article  PubMed  Google Scholar 

  93. Benoit, S. C., Clegg, D. J., Seeley, R. J. & Woods, S. C. Insulin and leptin as adiposity signals. Recent. Prog. Horm. Res. 59, 267–285 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Qaid, M. M., Abdelrahman, M. M. & Gonzalez-Redondo, P. Role of insulin and other related hormones in energy metabolism — a review. Cogent Food Agric. 2, 1267691 (2016).

    Google Scholar 

  95. Kersten, S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2, 282–286 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. White, M. F. & Kahn, C. R. Insulin action at a molecular level — 100 years of progress. Mol. Metab. 52, 101304 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Boucher, J., Kleinridders, A. & Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6, a009191 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hardy, O. T., Czech, M. P. & Corvera, S. What causes the insulin resistance underlying obesity? Curr. Opin. Endocrinol. Diabetes Obes. 19, 81–87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Barazzoni, R., Gortan Cappellari, G., Ragni, M. & Nisoli, E. Insulin resistance in obesity: an overview of fundamental alterations. Eat. Weight. Disord. 23, 149–157 (2018).

    Article  PubMed  Google Scholar 

  100. Bruce, C. R. et al. Overexpression of sphingosine kinase 1 prevents ceramide accumulation and ameliorates muscle insulin resistance in high-fat diet-fed mice. Diabetes 61, 3148–3155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Szendroedi, J. et al. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc. Natl Acad. Sci. USA 111, 9597–9602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Petersen, M. C. et al. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J. Clin. Invest. 126, 4361–4371 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Leisegang, K., Bouic, P. J., Menkveld, R. & Henkel, R. R. Obesity is associated with increased seminal insulin and leptin alongside reduced fertility parameters in a controlled male cohort. Reprod. Biol. Endocrinol. 12, 34 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pralong, F. P. Insulin and NPY pathways and the control of GnRH function and puberty onset. Mol. Cell Endocrinol. 324, 82–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Burcelin, R., Thorens, B., Glauser, M., Gaillard, R. C. & Pralong, F. P. Gonadotropin-releasing hormone secretion from hypothalamic neurons: stimulation by insulin and potentiation by leptin. Endocrinology 144, 4484–4491 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Natah, T. M., Wtwt, M. A., Al-Saadi, H. K., Al-Saadi, A. H. & Farhood, H. F. Study the levels of adiponectin, FSH, LH, and sex hormone in type 2 diabetes (NIIDDM). J. Biol. Agric. Healthc. 3, 81 (2013).

    Google Scholar 

  107. Boukhliq, R., Miller, D. W. & Martin, G. B. Relationship between nutritional stimulation of gonadotrophin secretion and the peripheral and cerebrospinal fluid (CSF) concentrations of glucose and insulin in rams. Anim. Reprod. Sci. 41, 201–214 (1996).

    Article  CAS  Google Scholar 

  108. Nef, S. et al. Testis determination requires insulin receptor family function in mice. Nature 426, 291–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Pitetti, J. L. et al. An essential role for insulin and IGF1 receptors in regulating Sertoli cell proliferation, testis size, and FSH action in mice. Mol. Endocrinol. 27, 814–827 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Oonk, R. B. & Grootegoed, J. A. Identification of insulin receptors on rat Sertoli cells. Mol. Cell Endocrinol. 49, 51–62 (1987).

    Article  CAS  PubMed  Google Scholar 

  111. Escott, G. M., Jacobus, A. P. & Loss, E. S. PI3K-dependent actions of insulin and IGF-I on seminiferous tubules from immature rats. Pflugers Arch. 465, 1497–1505 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Alves, M. G. et al. In vitro cultured human Sertoli cells secrete high amounts of acetate that is stimulated by 17β-estradiol and suppressed by insulin deprivation. Biochim. Biophys. Acta 1823, 1389–1394 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Pitteloud, N. et al. Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J. Clin. Endocrinol. Metab. 90, 2636–2641 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Charreau, E. H., Calvo, J. C., Tesone, M., de Souza Valle, L. B. & Baranao, J. L. Insulin regulation of Leydig cell luteinizing hormone receptors. J. Biol. Chem. 253, 2504–2506 (1978).

    Article  CAS  PubMed  Google Scholar 

  115. Ahn, S. W. et al. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. J. Biol. Chem. 288, 15937–15946 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nakane, Y. et al. Hyperglycemia contributes to the development of Leydig cell hyperplasia in male Spontaneously Diabetic Torii rats. J. Toxicol. Pathol. 33, 121–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Leisegang, K. & Henkel, R. The in vitro modulation of steroidogenesis by inflammatory cytokines and insulin in TM3 Leydig cells. Reprod. Biol. Endocrinol. 16, 26 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ando, S. & Aquila, S. Arguments raised by the recent discovery that insulin and leptin are expressed in and secreted by human ejaculated spermatozoa. Mol. Cell Endocrinol. 245, 1–6 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Lampiao, F. & du Plessis, S. S. Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production. Asian J. Androl. 10, 799–807 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, J. et al. Quantitative phosphoproteomics analysis reveals a key role of insulin growth factor 1 receptor (IGF1R) tyrosine kinase in human sperm capacitation. Mol. Cell Proteom. 14, 1104–1112 (2015).

    Article  CAS  Google Scholar 

  121. Aitken, R. J. et al. Evidence that extrapancreatic insulin production is involved in the mediation of sperm survival. Mol. Cell Endocrinol. 526, 111193 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Aquila, S., Gentile, M., Middea, E., Catalano, S. & Ando, S. Autocrine regulation of insulin secretion in human ejaculated spermatozoa. Endocrinology 146, 552–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Rogge, G., Jones, D., Hubert, G. W., Lin, Y. & Kuhar, M. J. CART peptides: regulators of body weight, reward and other functions. Nat. Rev. Neurosci. 9, 747–758 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tartaglia, L. A. The leptin receptor. J. Biol. Chem. 272, 6093–6096 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Evans, M. C., Lord, R. A. & Anderson, G. M. Multiple leptin signalling pathways in the control of metabolism and fertility: a means to different ends? Int. J. Mol. Sci. 22, 9210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Frederich, R. C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311–1314 (1995).

    Article  CAS  PubMed  Google Scholar 

  129. Enriori, P. J. et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 5, 181–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Parent, A. S., Lebrethon, M. C., Gerard, A., Vandersmissen, E. & Bourguignon, J. P. Leptin effects on pulsatile gonadotropin releasing hormone secretion from the adult rat hypothalamus and interaction with cocaine and amphetamine regulated transcript peptide and neuropeptide Y. Regul. Pept. 92, 17–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Tezuka, M. et al. Effects of leptin on gonadotropin secretion in juvenile female rat pituitary cells. Eur. J. Endocrinol. 146, 261–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Strobel, A., Issad, T., Camoin, L., Ozata, M. & Strosberg, A. D. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat. Genet. 18, 213–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. O’Rahilly, S. Life without leptin. Nature 392, 330–331 (1998).

    Article  PubMed  Google Scholar 

  135. Malik, I. A., Durairajanayagam, D. & Singh, H. J. Leptin and its actions on reproduction in males. Asian J. Androl. 21, 296–299, (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Moreira, B. P., Monteiro, M. P., Sousa, M., Oliveira, P. F. & Alves, M. G. Insights into leptin signaling and male reproductive health: the missing link between overweight and subfertility? Biochem. J. 475, 3535–3560 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Barash, I. A. et al. Leptin is a metabolic signal to the reproductive system. Endocrinology 137, 3144–3147 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Mounzih, K., Lu, R. & Chehab, F. F. Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology 138, 1190–1193 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Hoffmann, A. et al. Leptin within the subphysiological to physiological range dose dependently improves male reproductive function in an obesity mouse model. Endocrinology 157, 2461–2468 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Licinio, J. et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc. Natl Acad. Sci. USA 101, 4531–4536 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Singireddy, A. V., Inglis, M. A., Zuure, W. A., Kim, J. S. & Anderson, G. M. Neither signal transducer and activator of transcription 3 (STAT3) or STAT5 signaling pathways are required for leptin’s effects on fertility in mice. Endocrinology 154, 2434–2445 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Garcia-Galiano, D. et al. PI3Kɑ inactivation in leptin receptor cells increases leptin sensitivity but disrupts growth and reproduction. JCI Insight 2, e96728 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Guo, J. et al. Sperm motility inversely correlates with seminal leptin levels in idiopathic asthenozoospermia. Int. J. Clin. Exp. Med. 7, 3550–3555 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Mo, Y. et al. Leptin levels in serum or semen and its association with male infertility: a meta-analysis with 1138 cases. Int. J. Endocrinol. 2022, 9462683 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wang, X., Zhang, X., Hu, L. & Li, H. Exogenous leptin affects sperm parameters and impairs blood testis barrier integrity in adult male mice. Reprod. Biol. Endocrinol. 16, 55 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abbasihormozi, S. et al. Relationship of leptin administration with production of reactive oxygen species, sperm DNA fragmentation, sperm parameters and hormone profile in the adult rat. Arch. Gynecol. Obstet. 287, 1241–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Almabhouh, F. A. et al. Effects of leptin on sperm count and morphology in Sprague‐Dawley rats and their reversibility following a 6‐week recovery period. Andrologia 47, 751–758 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Haron, M. N., D’Souza, U. J., Jaafar, H., Zakaria, R. & Singh, H. J. Exogenous leptin administration decreases sperm count and increases the fraction of abnormal sperm in adult rats. Fertil. Steril. 93, 322–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Soyupek, S. et al. Leptin expression in the testicular tissue of fertile and infertile men. Arch. Androl. 51, 239–246 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Landry, D. A., Sormany, F., Hache, J., Roumaud, P. & Martin, L. J. Steroidogenic genes expressions are repressed by high levels of leptin and the JAK/STAT signaling pathway in MA-10 Leydig cells. Mol. Cell Biochem. 433, 79–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Martins, A. D. et al. Leptin modulates human Sertoli cells acetate production and glycolytic profile: a novel mechanism of obesity-induced male infertility? Biochim. Biophys. Acta 1852, 1824–1832 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Jope, T., Lammert, A., Kratzsch, J., Paasch, U. & Glander, H. J. Leptin and leptin receptor in human seminal plasma and in human spermatozoa. Int. J. Androl. 26, 335–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Aquila, S. et al. Leptin secretion by human ejaculated spermatozoa. J. Clin. Endocrinol. Metab. 90, 4753–4761 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Li, H. W., Chiu, P. C., Cheung, M. P., Yeung, W. S. & O, W. S. Effect of leptin on motility, capacitation and acrosome reaction of human spermatozoa. Int. J. Androl. 32, 687–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Li, E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3, 662–673 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Nilsson, E. E., Sadler-Riggleman, I. & Skinner, M. K. Environmentally induced epigenetic transgenerational inheritance of disease. Env. Epigenet 4, dvy016 (2018).

    Article  Google Scholar 

  158. Skinner, M. K. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 6, 838–842 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. King, S. E. & Skinner, M. K. Epigenetic transgenerational inheritance of obesity susceptibility. Trends Endocrinol. Metab. 31, 478–494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lehtiniemi, T. & Kotaja, N. Germ granule-mediated RNA regulation in male germ cells. Reproduction 155, R77–R91 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Gui, Y. & Yuan, S. Epigenetic regulations in mammalian spermatogenesis: RNA-m6A modification and beyond. Cell Mol. Life Sci. 78, 4893–4905 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Fernandez-Perez, D., Brieno-Enriquez, M. A., Isoler-Alcaraz, J., Larriba, E. & Del Mazo, J. MicroRNA dynamics at the onset of primordial germ and somatic cell sex differentiation during mouse embryonic gonad development. RNA 24, 287–303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Baxter, F. A. & Drake, A. J. Non-genetic inheritance via the male germline in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180118 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Donkin, I. & Barres, R. Sperm epigenetics and influence of environmental factors. Mol. Metab. 14, 1–11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Schagdarsurengin, U. & Steger, K. Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat. Rev. Urol. 13, 584–595 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Steger, K. et al. Expression of mRNA and protein of nucleoproteins during human spermiogenesis. Mol. Hum. Reprod. 4, 939–945 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Carrell, D. T. & Hammoud, S. S. The human sperm epigenome and its potential role in embryonic development. Mol. Hum. Reprod. 16, 37–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Gunes, S. & Esteves, S. C. Role of genetics and epigenetics in male infertility. Andrologia 53, e13586 (2021).

    Article  PubMed  Google Scholar 

  169. Liu, W. M. et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc. Natl Acad. Sci. USA 109, 490–494 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Baldeon, R. L. et al. Type 2 diabetes monocyte MicroRNA and mRNA expression: dyslipidemia associates with increased differentiation-related genes but not inflammatory activation. PLoS ONE 10, e0129421 (2015).

    Article  Google Scholar 

  171. Mahmoud, A. M. An overview of epigenetics in obesity: the role of lifestyle and therapeutic interventions. Int. J. Mol. Sci. 23, 1341 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Guerra-Carvalho, B. et al. Molecular mechanisms regulating spermatogenesis in vertebrates: environmental, metabolic, and epigenetic factor effects. Anim. Reprod. Sci. 246, 106896 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Donkin, I. et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. 23, 369–378 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Pereira, S. C. et al. Expression of obesity-related genes in human spermatozoa affects the outcomes of reproductive treatments. F. S Sci. 2, 164–175 (2021).

    PubMed  Google Scholar 

  175. Relier, S., Rivals, E. & David, A. The multifaceted functions of the fat mass and obesity-associated protein (FTO) in normal and cancer cells. RNA Biol. 19, 132–142 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pereira, S. C. et al. Obesity-related genes are expressed in human Sertoli cells and modulated by energy homeostasis regulating hormones. J. Cell Physiol. 236, 5265–5277 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Palmer, N. O., Fullston, T., Mitchell, M., Setchell, B. P. & Lane, M. SIRT6 in mouse spermatogenesis is modulated by diet-induced obesity. Reprod. Fertil. Dev. 23, 929–939 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. McPherson, N. O., Owens, J. A., Fullston, T. & Lane, M. Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am. J. Physiol. Endocrinol. Metab. 308, E805–E821 (2015).

    Article  PubMed  Google Scholar 

  179. Heller, C. G. & Clermont, Y. Spermatogenesis in man: an estimate of its duration. Science 140, 184–186 (1963).

    Article  CAS  PubMed  Google Scholar 

  180. Sullivan, R. Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian J. Androl. 17, 726–729 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Belleannee, C. Extracellular microRNAs from the epididymis as potential mediators of cell-to-cell communication. Asian J. Androl. 17, 730–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Reilly, J. N. et al. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci. Rep. 6, 31794 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ding, Y. et al. MicroRNA-222 transferred from semen extracellular vesicles inhibits sperm apoptosis by targeting BCL2L11. Front. Cell Dev. Biol. 9, 736864 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Nixon, B. et al. The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation. Biol. Reprod. 93, 91 (2015).

    Article  PubMed  Google Scholar 

  185. Trigg, N. A., Eamens, A. L. & Nixon, B. The contribution of epididymosomes to the sperm small RNA profile. Reproduction 157, R209–R223 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Chen, H., Alves, M. B. R. & Belleannee, C. Contribution of epididymal epithelial cell functions to sperm epigenetic changes and the health of progeny. Hum. Reprod. Update 28, 51–66 (2021).

    Article  PubMed  Google Scholar 

  187. Alshanbayeva, A., Tanwar, D. K., Roszkowski, M., Manuella, F. & Mansuy, I. M. Early life stress affects the miRNA cargo of epididymal extracellular vesicles in mousedagger. Biol. Reprod. 105, 593–602 (2021).

    Article  PubMed  Google Scholar 

  188. Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature 403, 501–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  190. Noble, D., Jablonka, E., Joyner, M. J., Muller, G. B. & Omholt, S. W. Evolution evolves: physiology returns to centre stage. J. Physiol. 592, 2237–2244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Paranjpe, S. S. & Veenstra, G. J. Establishing pluripotency in early development. Biochim. Biophys. Acta 1849, 626–636 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tang, W. W., Kobayashi, T., Irie, N., Dietmann, S. & Surani, M. A. Specification and epigenetic programming of the human germ line. Nat. Rev. Genet. 17, 585–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Gkountela, S. et al. DNA demethylation dynamics in the human prenatal germline. Cell 161, 1425–1436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Braun, R. E. Packaging paternal chromosomes with protamine. Nat. Genet. 28, 10–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  195. Wykes, S. M. & Krawetz, S. A. The structural organization of sperm chromatin. J. Biol. Chem. 278, 29471–29477 (2003).

    Article  CAS  PubMed  Google Scholar 

  196. van der Heijden, G. W. et al. Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev. Biol. 8, 34 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Hammoud, S. S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Miller, D. Ensuring continuity of the paternal genome: potential roles for spermatozoal RNA in mammalian embryogenesis. Soc. Reprod. Fertil. Suppl. 65, 373–389 (2007).

    CAS  PubMed  Google Scholar 

  199. Perez, M. F. & Lehner, B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat. Cell Biol. 21, 143–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Ding, G. L. et al. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J. Androl. 17, 948–953 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Stunkard, A. J. et al. An adoption study of human obesity. N. Engl. J. Med. 314, 193–198 (1986).

    Article  CAS  PubMed  Google Scholar 

  202. Silventoinen, K., Rokholm, B., Kaprio, J. & Sorensen, T. I. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. Int. J. Obes. 34, 29–40 (2010).

    Article  CAS  Google Scholar 

  203. Lecomte, V., Maloney, C. A., Wang, K. W. & Morris, M. J. Effects of paternal obesity on growth and adiposity of male rat offspring. Am. J. Physiol. Endocrinol. Metab. 312, E117–E125 (2017).

    Article  PubMed  Google Scholar 

  204. Crisostomo, L. et al. Inheritable testicular metabolic memory of high-fat diet causes transgenerational sperm defects in mice. Sci. Rep. 11, 9444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Crisostomo, L. et al. Inherited metabolic memory of high-fat diet impairs testicular fatty acid content and sperm parameters. Mol. Nutr. Food Res. 66, e2100680 (2022).

    Article  PubMed  Google Scholar 

  206. Crisostomo, L. et al. Testicular “Inherited Metabolic Memory” of ancestral high-fat diet is associated with sperm sncRNA content. Biomedicines 10, 909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Cropley, J. E. et al. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol. Metab. 5, 699–708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. de Castro Barbosa, T. et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol. Metab. 5, 184–197 (2016).

    Article  PubMed  Google Scholar 

  210. Pepin, A. S., Lafleur, C., Lambrot, R., Dumeaux, V. & Kimmins, S. Sperm histone H3 lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is associated with the inheritance of metabolic dysfunction. Mol. Metab. 59, 101463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Grandjean, V. et al. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 5, 18193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wegner, C. C., Clifford, A. L., Jilbert, P. M., Henry, M. A. & Gentry, W. L. Abnormally high body mass index and tobacco use are associated with poor sperm quality as revealed by reduced sperm binding to hyaluronan-coated slides. Fertil. Steril. 93, 332–334 (2010).

    Article  PubMed  Google Scholar 

  213. Rybar, R., Kopecka, V., Prinosilova, P., Markova, P. & Rubes, J. Male obesity and age in relationship to semen parameters and sperm chromatin integrity. Andrologia 43, 286–291 (2011).

    Article  CAS  PubMed  Google Scholar 

  214. Al-Ali, B. M. et al. Body mass index has no impact on sperm quality but on reproductive hormones levels. Andrologia 46, 106–111 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology: D.F. Carrageta (SFRH/BD/136779/2018 and COVID/BD/153209/2023), S.C. Pereira (2021.05487.BD), UMIB (UIDB/00215/2020 and UIDP/00215/2020), ITR (LA/P/0064/2020), IBiMED (UIDP/04501/2020 and UIDB/04501/2020) and LAQV/REQUIMTE (UIDB/50006/2020), co-funded by FEDER funds through the COMPETE/QREN, FSE/POPH, and POCI — COMPETE 2020 (POCI-01-0145-FEDER- 007491) funds; co-funded by the Portuguese Society of Diabetology (Sociedade Portuguesa de Diabetologia) through the Charneco da Costa Grant (2021).

Author information

Authors and Affiliations

Authors

Contributions

M.G.A., D.F.C. and S.C.P. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Marco G. Alves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Adam Watkins, Jorma Toppari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrageta, D.F., Pereira, S.C., Ferreira, R. et al. Signatures of metabolic diseases on spermatogenesis and testicular metabolism. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00866-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00866-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research