Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The complex interplay of modifiable risk factors affecting prostate cancer disparities in African American men

Abstract

Prostate cancer is the second most commonly diagnosed non-skin malignancy and the second leading cause of cancer death among men in the USA. However, the mortality rate of African American men aged 40–60 years is almost 2.5-fold greater than that of European American men. Despite screening and diagnostic and therapeutic advances, disparities in prostate cancer incidence and outcomes remain prevalent. The reasons that lead to this disparity in outcomes are complex and multifactorial. Established non-modifiable risk factors such as age and genetic predisposition contribute to this disparity; however, evidence suggests that modifiable risk factors (including social determinants of health, diet, steroid hormones, environment and lack of diversity in enrolment in clinical trials) are prominent contributing factors to the racial disparities observed. Disparities involved in the diagnosis, treatment and survival of African American men with prostate cancer have also been correlated with low socioeconomic status, education and lack of access to health care. The effects and complex interactions of prostate cancer modifiable risk factors are important considerations for mitigating the incidence and outcomes of this disease in African American men.

Key points

  • Current data emphasize the need for the United States Preventive Services Task Force (USPSTF) to re-evaluate their guidelines by recommending prostate cancer screening in high-risk populations to attenuate the upward trends of prostate cancer fatalities and reduce disparities.

  • 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhiP)–DNA adducts can facilitate mutagenesis that may result in tumorigenesis. Data suggest that African American men might have diets that include higher amounts of red meat and sources of PhiP than European American men, contributing to the prostate cancer disparities observed.

  • Vitamin D deficiency has been shown to be associated with aggressive prostate cancer and mortality, especially in African American men. Elucidating vitamin D signalling pathways that underlie prostate carcinogenesis might aid mitigation of prostate cancer disparities between African American and European American men.

  • Glucocorticoid receptors have emerged as a major driver of prostate cancer progression and resistance to treatments. Clinicians must consider the possibility of differential responses to prostate cancer treatments, including glucocorticoid treatments in African American men.

  • Increasing the number of studies investigating immunity and inflammatory regulation in prostate tumours and adjacent tumour microenvironment is imperative for high-risk under-represented populations.

  • Sensitive and strategic initiatives to advance inclusive research are needed to increase clinical trial participation by minority individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global prostate cancer incidence and mortality by world areas.
Fig. 2: US prostate cancer incidence and mortality rates by race.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  2. Woods-Burnham, L. et al. Psychosocial stress, glucocorticoid signaling, and prostate cancer health disparities in African American men. Cancer Health Disparities 4, https://companyofscientists.com/index.php/chd/article/view/169/188 (2023).

  3. Powell, I. J., Vigneau, F. D., Bock, C. H., Ruterbusch, J. & Heilbrun, L. K. Reducing prostate cancer racial disparity: evidence for aggressive early prostate cancer PSA testing of African American men. Cancer Epidemiol. Biomark. Prev. 23, 1505–1511 (2014).

    Article  Google Scholar 

  4. Giri, V. N. et al. Race, genetic West African ancestry, and prostate cancer prediction by prostate-specific antigen in prospectively screened high-risk men. Cancer Prev. Res. 2, 244–250 (2009).

    Article  CAS  Google Scholar 

  5. Chornokur, G., Dalton, K., Borysova, M. E. & Kumar, N. B. Disparities at presentation, diagnosis, treatment, and survival in African American men, affected by prostate cancer. Prostate 71, 985–997 (2011).

    Article  PubMed  Google Scholar 

  6. Loree, J. M. et al. Disparity of race reporting and representation in clinical trials leading to cancer drug approvals from 2008 to 2018. JAMA Oncol. 5, e191870 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  8. McGinley, K. F., Tay, K. J. & Moul, J. W. Prostate cancer in men of African origin. Nat. Rev. Urol. 13, 99–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. National Cancer Institute. SEER*Explorer: An interactive website for SEER cancer statistics. NCI https://seer.cancer.gov/statfacts/html/prost.html (2023).

  10. Powell, I. J. Epidemiology and pathophysiology of prostate cancer in African-American men. J. Urol. 177, 444–449 (2007).

    Article  PubMed  Google Scholar 

  11. Milonas, D., Venclovas, Z. & Jievaltas, M. Age and aggressiveness of prostate cancer: analysis of clinical and pathological characteristics after radical prostatectomy for men with localized prostate cancer. Cent. Eur. J. Urol. 72, 240–246 (2019).

    Google Scholar 

  12. Jahn, J. L., Giovannucci, E. L. & Stampfer, M. J. The high prevalence of undiagnosed prostate cancer at autopsy: implications for epidemiology and treatment of prostate cancer in the prostate-specific antigen era. Int. J. Cancer 137, 2795–2802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He, T. & Mullins, C. D. Age-related racial disparities in prostate cancer patients: a systematic review. Ethn. Health 22, 184–195 (2017).

    Article  PubMed  Google Scholar 

  14. Guo, J. et al. Establishing a urine-based biomarker assay for prostate cancer risk stratification. Front. Cell Dev. Biol. 8, 597961 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fenton, J. J. et al. Prostate-specific antigen-based screening for prostate cancer: evidence report and systematic review for the US Preventive Services Task Force. JAMA 319, 1914–1931 (2018).

    Article  PubMed  Google Scholar 

  16. Barry, M. J. & Simmons, L. H. Prevention of prostate cancer morbidity and mortality: primary prevention and early detection. Med. Clin. North. Am. 101, 787–806 (2017).

    Article  PubMed  Google Scholar 

  17. Jansen, F. H. et al. Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. Eur. Urol. 57, 921–927 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Thompson, I. M. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Barry, M. J. Clinical practice. Prostate-specific-antigen testing for early diagnosis of prostate cancer. N. Engl. J. Med. 344, 1373–1377 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Moyer, V. A. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 157, 120–134 (2012).

    Article  PubMed  Google Scholar 

  21. Bibbins-Domingo, K., Grossman, D. C. & Curry, S. J. The US Preventive Services Task Force 2017 draft recommendation statement on screening for prostate cancer: an invitation to review and comment. JAMA 317, 1949–1950 (2017).

    Article  PubMed  Google Scholar 

  22. US Preventive Services Task Force.Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA 319, 1901–1913 (2018).

    Article  Google Scholar 

  23. American Cancer Society. American Cancer Society Recommendations for Prostate Cancer Early Detection. https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/acs-recommendations.html (2021).

  24. Smith, R. A. et al. Cancer screening in the United States, 2018: a review of current american cancer society guidelines and current issues in cancer screening. CA Cancer J. Clin. 68, 297–316 (2018).

    Article  PubMed  Google Scholar 

  25. Prostate Cancer Foundation. The Prostate-Specific Antigen (PSA) Test. https://www.pcf.org/about-prostate-cancer/what-is-prostate-cancer/the-psa-test/ (2021).

  26. Preston, D. M. et al. Prostate-specific antigen levels in young white and black men 20 to 45 years old. Urology 56, 812–816 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Saini, S. PSA and beyond: alternative prostate cancer biomarkers. Cell. Oncol. 39, 97–106 (2016).

    Article  CAS  Google Scholar 

  28. Foundation, P. C. The Prostate-Specific Antigen (PSA) Test. https://www.pcf.org/about-prostate-cancer/what-is-prostate-cancer/the-psa-test/ (2022).

  29. Shenoy, D., Packianathan, S., Chen, A. M. & Vijayakumar, S. Do African-American men need separate prostate cancer screening guidelines? BMC Urol. 16, 19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tsodikov, A. et al. Is prostate cancer different in Black men? Answers from 3 natural history models. Cancer 123, 2312–2319 (2017).

    Article  PubMed  Google Scholar 

  31. Shah, N., Ioffe, V. & Chang, J. C. Increasing aggressive prostate cancer. Can. J. Urol. 29, 11384–11390 (2022).

    PubMed  PubMed Central  Google Scholar 

  32. Becker, D. J. et al. The association of veterans’ PSA screening rates with changes in USPSTF recommendations. J. Natl Cancer Inst. 113, 626–631 (2021).

    Article  PubMed  Google Scholar 

  33. Danan, E. R., White, K. M., Wilt, T. J. & Partin, M. R. Reactions to recommendations and evidence about prostate cancer screening among White and Black male veterans. Am. J. Men’s Health 15, 15579883211022110 (2021).

    Article  Google Scholar 

  34. Wu, I. & Modlin, C. S. Disparities in prostate cancer in African American men: what primary care physicians can do. Cleve. Clin. J. Med. 79, 313–320 (2012).

    Article  PubMed  Google Scholar 

  35. Dess, R. T. et al. Association of Black race with prostate cancer-specific and other-cause mortality. JAMA Oncol. 5, 975–983 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schumacher, F. R. et al. Race and genetic alterations in prostate cancer. JCO Precis. Oncol. 5, PO.21.00324 (2021).

    PubMed  PubMed Central  Google Scholar 

  37. Chowdhury-Paulino, I. M. et al. Racial disparities in prostate cancer among black men: epidemiology and outcomes. Prostate Cancer Prostatic Dis. 25, 397–402 (2022).

    Article  PubMed  Google Scholar 

  38. Office of Disease Prevention and Health Promotion. Healthy People 2030. Social Determinants of Health. https://health.gov/healthypeople/priority-areas/social-determinants-health (2020).

  39. Weprin, S. A. et al. Association of low socioeconomic status with adverse prostate cancer pathology among African American who underwent radical prostatectomy. Clin. Genitourin. Cancer 17, e1054–e1059 (2019).

    Article  PubMed  Google Scholar 

  40. Orom, H., Biddle, C., Underwood, W. III, Homish, G. G. & Olsson, C. A. Racial or ethnic and socioeconomic disparities in prostate cancer survivors’ prostate-specific quality of life. Urology 112, 132–137 (2018).

    Article  PubMed  Google Scholar 

  41. Lillie-Blanton, M. & Hoffman, C. The role of health insurance coverage in reducing racial/ethnic disparities in health care. Health Aff. 24, 398–408 (2005).

    Article  Google Scholar 

  42. Clouston, S. A. P. & Link, B. G. A retrospective on fundamental cause theory: state of the literature, and goals for the future. Annu. Rev. Sociol. 47, 131–156 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kirby, J. B., Taliaferro, G. & Zuvekas, S. H. Explaining racial and ethnic disparities in health care. Med. Care 44, I64–I72 (2006).

    Article  PubMed  Google Scholar 

  44. Mahal, A. R., Mahal, B. A., Nguyen, P. L. & Yu, J. B. Prostate cancer outcomes for men aged younger than 65 years with Medicaid versus private insurance. Cancer 124, 752–759 (2018).

    Article  PubMed  Google Scholar 

  45. Watson, M. et al. Racial differences in prostate cancer treatment: the role of socioeconomic status. Ethn. Dis. 27, 201–208 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. El Khoury, C. J. & Clouston, S. A. P. Racial/ethnic disparities in prostate cancer 5-year survival: the role of health-care access and disease severity. Cancers 15, 4284 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Braveman, P. A., Cubbin, C., Egerter, S., Williams, D. R. & Pamuk, E. Socioeconomic disparities in health in the United States: what the patterns tell us. Am. J. Public. Health 100, S186–S196 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Farmer, M. M. & Ferraro, K. F. Are racial disparities in health conditional on socioeconomic status. Soc. Sci. Med. 60, 191–204 (2005).

    Article  PubMed  Google Scholar 

  49. Paller, C. J., Wang, L. & Brawley, O. W. Racial inequality in prostate cancer outcomes — socioeconomics, not biology. JAMA Oncol. 5, 983–984 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vince, R. A. Jr et al. Evaluation of social determinants of health and prostate cancer outcomes among Black and White patients: a systematic review and meta-analysis. JAMA Netw. Open. 6, e2250416 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  51. Lu, C. D. et al. Racial disparities in prostate specific antigen screening and referral to urology in a large, integrated health care system: a retrospective cohort study. J. Urol. 206, 270–278 (2021).

    Article  PubMed  Google Scholar 

  52. Barocas, D. A. et al. Association between race and follow-up diagnostic care after a positive prostate cancer screening test in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer 119, 2223–2229 (2013).

    Article  PubMed  Google Scholar 

  53. Hayn, M. H. et al. Racial/ethnic differences in receipt of pelvic lymph node dissection among men with localized/regional prostate cancer. Cancer 117, 4651–4658 (2011).

    Article  PubMed  Google Scholar 

  54. Underwood, W. III et al. Racial treatment trends in localized/regional prostate carcinoma: 1992–1999. Cancer 103, 538–545 (2005).

    Article  PubMed  Google Scholar 

  55. Gilligan, T., Wang, P. S., Levin, R., Kantoff, P. W. & Avorn, J. Racial differences in screening for prostate cancer in the elderly. Arch. Intern. Med. 164, 1858–1864 (2004).

    Article  PubMed  Google Scholar 

  56. Institute of Medicine et al. (eds Smedley, B. D., Stith, A. Y. & Nelson, A. R.) Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care (National Academies Press, 2002).

  57. Press, D. J. et al. Contributions of social factors to disparities in prostate cancer risk profiles among Black men and non-hispanic White men with prostate cancer in California. Cancer Epidemiol. Biomark. Prev. 31, 404–412 (2022).

    Article  Google Scholar 

  58. Iyer, H. S. et al. Influence of neighborhood social and natural environment on prostate tumor histology in a cohort of male health professionals. Am. J. Epidemiol. 192, 1485–1498 (2023).

    Article  PubMed  Google Scholar 

  59. DeRouen, M. C. et al. Disparities in prostate cancer survival according to neighborhood archetypes, a population-based study. Urology 163, 138–147 (2022).

    Article  PubMed  Google Scholar 

  60. Matsushita, M., Fujita, K. & Nonomura, N. Influence of diet and nutrition on prostate cancer. Int. J. Mol. Sci. 21, 1447 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin, P.-H., Aronson, W. & Freedland, S. J. Nutrition, dietary interventions and prostate cancer: the latest evidence. BMC Med. 13, 3 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rohrmann, S. et al. Meat and dairy consumption and subsequent risk of prostate cancer in a US cohort study. Cancer Causes Control 18, 41–50 (2007).

    Article  PubMed  Google Scholar 

  63. Major, J. M. et al. Patterns of meat intake and risk of prostate cancer among African-Americans in a large prospective study. Cancer Causes Control 22, 1691–1698 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cross, A. J. et al. A prospective study of meat and meat mutagens and prostate cancer risk. Cancer Res. 65, 11779–11784 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, W. & Zhang, K. Quantifying the contributions of environmental factors to prostate cancer and detecting risk-related diet metrics and racial disparities. Cancer Inf. 22, 11769351231168006 (2023).

    Google Scholar 

  66. Mirahmadi, M. et al. Potential inhibitory effect of lycopene on prostate cancer. Biomed. Pharmacother. 129, 110459 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Saini, R. K., Rengasamy, K. R. R., Mahomoodally, F. M. & Keum, Y. S. Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: an update on epidemiological and mechanistic perspectives. Pharmacol. Res. 155, 104730 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Giovannucci, E., Rimm, E. B., Liu, Y., Stampfer, M. J. & Willett, W. C. A prospective study of tomato products, lycopene, and prostate cancer risk. J. Natl Cancer Inst. 94, 391–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Kirsh, V. A. et al. Supplemental and dietary vitamin E, beta-carotene, and vitamin C intakes and prostate cancer risk. J. Natl Cancer Inst. 98, 245–254 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Schuurman, A. G., Goldbohm, R. A., Brants, H. A. & van den Brandt, P. A. A prospective cohort study on intake of retinol, vitamins C and E, and carotenoids and prostate cancer risk (Netherlands). Cancer Causes Control 13, 573–582 (2002).

    Article  PubMed  Google Scholar 

  71. Kristal, A. R. & Cohen, J. H. Invited commentary: tomatoes, lycopene, and prostate cancer. How strong is the evidence? Am. J. Epidemiol. 151, 124–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Lu, Y. et al. Insufficient lycopene intake is associated with high risk of prostate cancer: a cross-sectional study from the National Health and Nutrition Examination Survey (2003–2010). Front. Public Health 9, 792572 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Batai, K. M. et al. Race and BMI modify associations of calcium and vitamin D intake with prostate cancer. BMC Cancer 17, 64 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Poirier, M. C. Chemical-induced DNA damage and human cancer risk. Nat. Rev. Cancer 4, 630–637 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Turesky, R. J. & Le Marchand, L. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem. Res. Toxicol. 24, 1169–1214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bylsma, L. C. & Alexander, D. D. A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer. Nutr. J. 14, 125 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Christensen, B. C. et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 5, e1000602 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sinha, R. et al. Meat and meat-related compounds and risk of prostate cancer in a large prospective cohort study in the United States. Am. J. Epidemiol. 170, 1165–1177 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Koutros, S. et al. Meat and meat mutagens and risk of prostate cancer in the Agricultural Health Study. Cancer Epidemiol. Biomark. Prev. 17, 80–87 (2008).

    Article  CAS  Google Scholar 

  80. Punnen, S., Hardin, J., Cheng, I., Klein, E. A. & Witte, J. S. Impact of meat consumption, preparation, and mutagens on aggressive prostate cancer. PLoS ONE 6, e27711 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Esumi, H., Ohgaki, H., Kohzen, E., Takayama, S. & Sugimura, T. Induction of lymphoma in CDF1 mice by the food mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Jpn J. Cancer Res. 80, 1176–1178 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ghoshal, A., Preisegger, K. H., Takayama, S., Thorgeirsson, S. S. & Snyderwine, E. G. Induction of mammary tumors in female Sprague–Dawley rats by the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and effect of dietary fat. Carcinogenesis 15, 2429–2433 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Hasegawa, R. et al. Dose-dependence of 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP) carcinogenicity in rats. Carcinogenesis 14, 2553–2557 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Boccon-Gibod, L. et al. Flutamide versus orchidectomy in the treatment of metastatic prostate carcinoma. Eur. Urol. 32, 391–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Stuart, G. R., Holcroft, J., de Boer, J. G. & Glickman, B. W. Prostate mutations in rats induced by the suspected human carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res. 60, 266–268 (2000).

    CAS  PubMed  Google Scholar 

  86. Bellamri, M., Xiao, S., Murugan, P., Weight, C. J. & Turesky, R. J. Metabolic activation of the cooked meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in human prostate. Toxicol. Sci. 163, 543–556 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Di Paolo, O. A., Teitel, C. H., Nowell, S., Coles, B. F. & Kadlubar, F. F. Expression of cytochromes P450 and glutathione S-transferases in human prostate, and the potential for activation of heterocyclic amine carcinogens via acetyl-coA-, PAPS- and ATP-dependent pathways. Int. J. Cancer 117, 8–13 (2005).

    Article  PubMed  Google Scholar 

  88. Bai, X. Y. et al. Blockade of hedgehog signaling synergistically increases sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer cell lines. PLoS ONE 11, e0149370 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Keating, G. A. & Bogen, K. T. Estimates of heterocyclic amine intake in the US population. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 802, 127–133 (2004).

    Article  CAS  Google Scholar 

  90. Rodriguez, C. et al. Meat consumption among Black and White men and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol. Biomark. Prev. 15, 211–216 (2006).

    Article  Google Scholar 

  91. Awada, A. et al. The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: results of a phase I study with pharmacokinetics. Eur. J. Cancer 44, 84–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Bray, G. A. & Popkin, B. M. Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes? health be damned! Pour on the sugar. Diabetes Care 37, 950–956 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Freedland, S. J. & Platz, E. A. Obesity and prostate cancer: making sense out of apparently conflicting data. Epidemiol. Rev. 29, 88–97 (2007).

    Article  PubMed  Google Scholar 

  94. Barrington, W. E. et al. Difference in association of obesity with prostate cancer risk between US African American and non-hispanic white men in the selenium and vitamin E cancer prevention trial (SELECT). JAMA Oncol. 1, 342–349 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ogden, C. L., Carroll, M. D., Fryar, C. D. & Legal, K. M. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief No. 219 https://www.cdc.gov/nchs/data/databriefs/db219.pdf (2015).

  96. Murphy, A. B. et al. Vitamin D deficiency predicts prostate biopsy outcomes. Clin. Cancer Res. 20, 2289–2299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nelson SM, B. K., Ahaghotu, C., Agurs-Collins, T. & Kittles, R. A. Association between serum 25-hydroxy-vitamin D and aggressive prostate cancer in African American Men. Nutrients 9, 12 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Schwartz, G. G. Vitamin D and the epidemiology of prostate cancer. Semin. Dialysis 18, 276–289 (2005).

    Article  Google Scholar 

  99. Murphy, A. B. et al. Predictors of serum vitamin D levels in African American and European American men in Chicago. Am. J. Mens. Health 6, 420–426 (2012).

    Article  PubMed  Google Scholar 

  100. Travis, R. C. et al. A collaborative analysis of individual participant data from 19 prospective studies assesses circulating vitamin D and prostate cancer risk. Cancer Res. 79, 274–285 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Bassuk, S. S., Chandler, P. D., Buring, J. E. & Manson, J. E. The vitamin D and OmegA-3 TriaL (VITAL): do results differ by sex or race/ethnicity. Am. J. Lifestyle Med. 15, 372–391 (2021).

    Article  PubMed  Google Scholar 

  102. Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L. & Carmeliet, G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 96, 365–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Boyle, B. J., Zhao, X.-Y., Cohen, P. & Feldman, D. insulin-like growth factor binding protein-3 mediates 1α,25-dihydroxyvitamin D3 growth inhibition in the lncap prostate cancer cell line through P21/WAF1. J. Urol. 165, 1319–1324 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Mantell, D., Owens, P., Bundred, N., Mawer, E. & Canfield, A. 1α, 25-dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo. Circ. Res. 87, 214–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Bao, B.-Y., Yeh, S.-D. & Lee, Y.-F. 1α,25-dihydroxyvitamin D 3 inhibits prostate cancer cell invasion via modulation of selective proteases. Carcinogenesis 27, 32–42 (2005).

    Article  PubMed  Google Scholar 

  106. Krishnan, A. V. & Feldman, D. Molecular pathways mediating the anti-inflammatory effects of calcitriol: implications for prostate cancer chemoprevention and treatment. Endocr. Relat. Cancer 17, R19–R38 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Blutt, S. E., McDonnell, T. J., Polek, T. C. & Weigel, N. L. Calcitriol-induced apoptosis in LNCaP cells is blocked by overexpression of Bcl-2. Endocrinology 141, 10–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. McCray, T. et al. Vitamin D sufficiency enhances differentiation of patient-derived prostate epithelial organoids. iScience 24, 101974 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gaston, K. E., Kim, D., Singh, S., Ford, O. H. III & Mohler, J. L. Racial differences in androgen receptor protein expression in men with clinically localized prostate cancer. J. Urol. 170, 990–993 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Miller, G. J. et al. The human prostatic carcinoma cell line LNCaP expresses biologically active, specific receptors for 1 alpha,25-dihydroxyvitamin D3. Cancer Res. 52, 515–520 (1992).

    CAS  PubMed  Google Scholar 

  111. Zhao, X. Y. & Feldman, D. The role of vitamin D in prostate cancer. Steroids 66, 293–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Garcia, J. et al. Regulation of prostate androgens by megalin and 25-hydroxyvitamin D status: mechanism for high prostate androgens in African American men. Cancer Res. Commun. 3, 371–382 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Siddappa, M. et al. African american prostate cancer displays quantitatively distinct vitamin D receptor cistrome–transcriptome relationships regulated by BAZ1A. Cancer Res. Commun. 3, 621–639 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hardiman, G. et al. Systems analysis of the prostate transcriptome in African-American men compared with European-American men. Pharmacogenomics 17, 1129–1143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Carlberg, C. & Haq, A. The concept of the personal vitamin D response index. J. Steroid Biochem. Mol. Biol. 175, 12–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Frazier, B., Hsiao, C. W., Deuster, P. & Poth, M. African Americans and Caucasian Americans: differences in glucocorticoid-induced insulin resistance. Horm. Metab. Res. 42, 887–891 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Cohen, S. et al. Socioeconomic status, race, and diurnal cortisol decline in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Psychosom. Med. 68, 41–50 (2006).

    Article  PubMed  Google Scholar 

  118. Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zannas, A. S. & West, A. E. Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience 264, 157–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Arora, V. K. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Isikbay, M. et al. Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer. Hormones cancer 5, 72–89 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Woods-Burnham, L. et al. Glucocorticoids induce stress oncoproteins associated with therapy-resistance in African American and European American prostate cancer cells. Sci. Rep. 8, 15063 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  123. Perletti, G. et al. The association between prostatitis and prostate cancer. Systematic review and meta-analysis. Arch. Ital. Urol. Androl. 89, 259–265 (2017).

    Article  PubMed  Google Scholar 

  124. Nesi, G., Nobili, S., Cai, T., Caini, S. & Santi, R. Chronic inflammation in urothelial bladder cancer. Virchows Arch. 467, 623–633 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Batai, K., Murphy, A. B., Nonn, L. & Kittles, R. A. Vitamin D and immune response: implications for prostate cancer in African Americans. Front. Immunol. 7, 53 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Powell, I. J. & Bollig-Fischer, A. Minireview: the molecular and genomic basis for prostate cancer health disparities. Mol. Endocrinol. 27, 879–891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kinseth, M. A. et al. Expression differences between African American and Caucasian prostate cancer tissue reveals that stroma is the site of aggressive changes. Int. J. Cancer 134, 81–91 (2014).

    Article  PubMed  Google Scholar 

  128. Yamoah, K. et al. Prostate tumors of native men from West Africa show biologically distinct pathways — a comparative genomic study. Prostate 81, 1402–1410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. A. Oliver Sartor, A. J. A. et al. Overall survival (OS) of African-American (AA) and Caucasian (CAU) men who received sipuleucel-T for metastatic castration-resistant prostate cancer (mCRPC): final PROCEED analysis. J. Clin. Oncol. 37, 5035 (2019).

    Article  Google Scholar 

  130. Johnson, J. R. & Kittles, R. A. Genetic ancestry and racial differences in prostate tumours. Nat. Rev. Urol. 19, 133–134 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Gillard, M. et al. Elevation of stromal-derived mediators of inflammation promote prostate cancer progression in African-American men. Cancer Res. 78, 6134–6145 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Montiel Ishino, F. A. et al. Sociodemographic and geographic disparities of prostate cancer treatment delay in Tennessee: a population-based study. Am. J. Mens Health 15, 15579883211057990 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Johnson JR, W.-B. L., Hooker, S. E. Jr, Batai, K. & Kittles, R. A. Genetic contributions to prostate cancer disparities in men of West African descent. Front Oncol. 11, 770500 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sartor, O. et al. Survival of African-American and Caucasian men after sipuleucel-T immunotherapy: outcomes from the PROCEED registry. Prostate Cancer Prostatic Dis. 23, 517–526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Halabi, S. et al. Overall survival of Black and White men with metastatic castration-resistant prostate cancer treated with docetaxel. J. Clin. Oncol. 37, 403–410 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. George, D. J. et al. A prospective trial of abiraterone acetate plus prednisone in Black and White men with metastatic castrate-resistant prostate cancer. Cancer 127, 2954–2965 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Woods-Burnham, L., Johson, J. R., Hooker, S. E., Bedell, F. W., Dorff, T. B. & Kittles, R. A. The role of diverse populations in U.S. clinical trials. Med 2, 21–24 (2021).

    Article  PubMed  Google Scholar 

  138. Murthy, V. H., Krumholz, H. M. & Gross, C. P. Participation in cancer clinical trials: race-, sex-, and age-based disparities. JAMA 291, 2720–2726 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Lewis, D. D. & Cropp, C. D. The impact of African ancestry on prostate cancer disparities in the era of precision medicine. Genes 11, 1471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hooker, S. E. et al. Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines. Cancer Epidemiol. Biomark. Prev. 28, 1003 (2019).

    Article  CAS  Google Scholar 

  141. DeSantis, C. E. et al. Cancer statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J. Clin. 66, 290–308 (2016).

    Article  PubMed  Google Scholar 

  142. Rathore, S. S. & Krumholz, H. M. Race, ethnic group, and clinical research. Bmj 327, 763–764 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Woods-Burnham, L. Not all champions are allies in health disparities research. Cell 183, 580–582 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Morehouse School of Medicine and the Division of Health Equities at City Hope for support. J.R.J. acknowledges the support received from NIH/NCI: U54CA118638 and NIH/NIMHD 2U54MD007602-36. L.W.-B. is grateful for the support received from 1T32CA186895, the Prostate Cancer Foundation Young Investigator award (20YOUN04), the Department of Defense Prostate Cancer Research Program Early Investigator award (W81XWH2110038), and the NIH KL2TR002381.

Author information

Authors and Affiliations

Authors

Contributions

J.R.J., N.M., L.W.-B., M.W., D.L. and B.R. researched data for the article. J.R.J., N.M., L.W.-B., M.W., D.L. and B.R. wrote the article. J.R.J., N.M., L.W.-B., M.W., D.L. and B.R. substantially contributed to the discussion of content. J.R.J., N.M., L.W.-B., D.L., S.E.H., D.G., B.R. and R.A.K. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jabril R. Johnson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Quoc-Dien Trinh, Mack Roach and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, J.R., Mavingire, N., Woods-Burnham, L. et al. The complex interplay of modifiable risk factors affecting prostate cancer disparities in African American men. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-023-00849-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-023-00849-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing