Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolving management of small renal masses

Abstract

Small renal masses (SRMs) are a heterogeneous group of tumours with varying metastatic potential. The increasing use and improving quality of abdominal imaging have led to increasingly early diagnosis of incidental SRMs that are asymptomatic and organ confined. Despite improvements in imaging and the growing use of renal mass biopsy, diagnosis of malignancy before treatment remains challenging. Management of SRMs has shifted away from radical nephrectomy, with active surveillance and nephron-sparing surgery taking over as the primary modalities of treatment. The optimal treatment strategy for SRMs continues to evolve as factors affecting short-term and long-term outcomes in this patient cohort are elucidated through studies from prospective data registries. Evidence from rapidly evolving research in biomarkers, imaging modalities, and machine learning shows promise in improving understanding of the biology and management of this patient cohort.

Key points

  • Increasing use of abdominal imaging over the past decade has led to detection of incidental small renal masses, many of which are <2–3 cm in size.

  • Active surveillance and nephron-sparing approaches have taken over as primary modalities of treatment for small renal masses (≤4 cm).

  • Prospective patient data registries have been helpful in continuously analysing granular data beginning at diagnosis and ensuring a high degree of patient compliance as well.

  • Rapidly evolving research in biomarkers, imaging and machine learning shows promise in improving the pre-treatment diagnosis of malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roadmap for patients diagnosed with T1 renal masses.
Fig. 2: MUSIC–KIDNEY life expectancy table for patients with a 3-cm renal mass.
Fig. 3: Appropriateness of surveillance algorithm determined by the MUSIC Consensus Panel.
Fig. 4: Images of renal tumours.
Fig. 5: Renal mass CT imaging with the Bosniak classification system.
Fig. 6: Tumour complexity guide designed to educate MUSIC–KIDNEY providers on the RENAL nephrometry score and to encourage documentation of tumour complexity.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  2. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  3. Chen, D. Y. & Uzzo, R. G. Evaluation and management of the renal mass. Med. Clin. North. Am. 95, 179–189 (2011).

    Article  PubMed  Google Scholar 

  4. Parsons, J. K., Schoenberg, M. S. & Carter, H. B. Incidental renal tumors: casting doubt on the efficacy of early intervention. Urology 57, 1013–1015 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Withington, J., Neves, J. B. & Barod, R. Surgical and minimally invasive therapies for the management of the small renal mass. Curr. Urol. Rep. 18, 61 (2017).

    Article  PubMed  Google Scholar 

  6. Robson, C. J., Churchill, B. M. & Anderson, W. The results of radical nephrectomy for renal cell carcinoma. J. Urol. 101, 297–301 (1969).

    Article  CAS  PubMed  Google Scholar 

  7. Krabbe, L. M., Bagrodia, A., Margulis, V. & Wood, C. G. Surgical management of renal cell carcinoma. Semin. Interv. Radiol. 31, 27–32 (2014).

    Article  Google Scholar 

  8. Gill, I. S., Aron, M., Gervais, D. A. & Jewett, M. A. Clinical practice. Small renal mass. N. Engl. J. Med. 362, 624–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Campbell, S. C. et al. Renal mass and localized renal cancer: evaluation, management, and follow-up: AUA guideline: part I. J. Urol. 206, 199–208 (2021).

    Article  PubMed  Google Scholar 

  10. Campbell, S. C. et al. Renal mass and localized renal cancer: evaluation, management, and follow-up: AUA guideline: part II. J. Urol. 206, 209–218 (2021).

    Article  PubMed  Google Scholar 

  11. Tan, H. J., Filson, C. P. & Litwin, M. S. Contemporary, age-based trends in the incidence and management of patients with early-stage kidney cancer. Urol. Oncol. 33, 21.e19–21.e26 (2015).

    Article  PubMed  Google Scholar 

  12. Venkatesan, A. M., Wood, B. J. & Gervais, D. A. Percutaneous ablation in the kidney. Radiology 261, 375–391 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim, J. H. et al. Association of prevalence of benign pathologic findings after partial nephrectomy with preoperative imaging patterns in the United States from 2007 to 2014. JAMA Surg. 154, 225–231 (2019).

    Article  PubMed  Google Scholar 

  14. Lane, B. R. et al. A preoperative prognostic nomogram for solid enhancing renal tumors 7 cm or less amenable to partial nephrectomy. J. Urol. 178, 429–434 (2007).

    Article  PubMed  Google Scholar 

  15. Srigley, J. R. et al. The International Society of Urological Pathology (ISUP) Vancouver classification of renal neoplasia. Am. J. Surg. Pathol. 37, 1469–1489 (2013).

    Article  PubMed  Google Scholar 

  16. Finelli, A. et al. Management of small renal masses: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 35, 668–680 (2017).

    Article  PubMed  Google Scholar 

  17. Frank, I. et al. Solid renal tumors: an analysis of pathological features related to tumor size. J. Urol. 170, 2217–2220 (2003).

    Article  PubMed  Google Scholar 

  18. Herrera-Caceres, J. O., Finelli, A. & Jewett, M. A. S. Renal tumor biopsy: indicators, technique, safety, accuracy results, and impact on treatment decision management. World J. Urol. 37, 437–443 (2019).

    Article  PubMed  Google Scholar 

  19. Richard, P. O. et al. Is routine renal tumor biopsy associated with lower rates of benign histology following nephrectomy for small renal masses? J. Urol. 200, 731–736 (2018).

    Article  PubMed  Google Scholar 

  20. Yoo, S. et al. Declining incidence of benign lesions among small renal masses treated with surgery: effect of diagnostic tests for characterization. Urol. Oncol. 36, 362.e9–362.e15 (2018).

    Article  PubMed  Google Scholar 

  21. Peabody, H. et al. Development of a novel scoring system quantifies opportunities to reduce surgery for benign renal neoplasms: a retrospective quality improvement analysis within the MUSIC-KIDNEY collaborative. J. Urol. 204, 1160–1165 (2020).

    Article  PubMed  Google Scholar 

  22. Jewett, M. A. et al. Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur. Urol. 60, 39–44 (2011).

    Article  PubMed  Google Scholar 

  23. Organ, M. et al. Growth kinetics of small renal masses: a prospective analysis from the Renal Cell Carcinoma Consortium of Canada. Can. Urol. Assoc. J. 8, 24–27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pierorazio, P. M. et al. Five-year analysis of a multi-institutional prospective clinical trial of delayed intervention and surveillance for small renal masses: the DISSRM registry. Eur. Urol. 68, 408–415 (2015).

    Article  PubMed  Google Scholar 

  25. Danzig, M. R. et al. Active surveillance for small renal masses: a review of the aims and preliminary results of the DISSRM registry. Curr. Urol. Rep. 17, 4 (2016).

    Article  PubMed  Google Scholar 

  26. Noyes, S. L. et al. Quality of care for renal masses: the Michigan Urological Surgery Improvement Collaborative-Kidney mass: Identifying & Defining Necessary Evaluation & therapy (MUSIC-KIDNEY). Urol. Pract. 7, 507–514 (2020).

    Article  PubMed  Google Scholar 

  27. Almassi, N., Gill, B. C., Rini, B. & Fareed, K. Management of the small renal mass. Transl. Androl. Urol. 6, 923–930 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kutikov, A. & Smaldone, M. C. The small renal mass and its management in urologic practice. Urol. Clin. North. Am. 44, xvii (2017).

    Article  PubMed  Google Scholar 

  29. Ristau, B. T., Correa, A. F., Uzzo, R. G. & Smaldone, M. C. Active surveillance for the small renal mass: growth kinetics and oncologic outcomes. Urol. Clin. North. Am. 44, 213–222 (2017).

    Article  PubMed  Google Scholar 

  30. Tomaszewski, J. J. & Kutikov, A. Small renal mass management in the elderly and the calibration of risk. Urol. Oncol. 33, 197–200 (2015).

    Article  PubMed  Google Scholar 

  31. Menon, A. R. et al. Active surveillance for risk stratification of all small renal masses lacking predefined clinical criteria for intervention. J. Urol. 206, 229–239 (2021).

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  32. Silagy, A. W. et al. Harnessing the genomic landscape of the small renal mass to guide clinical management. Eur. Urol. Focus. 5, 949–957 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Khaleel, S. et al. Adverse pathologic features impact survival outcomes for small renal masses following nephrectomy. Urol. Oncol. 41, 391 e5–e11 (2023).

    Article  PubMed  Google Scholar 

  34. Ljungberg, B. et al. European Association of Urology guidelines on renal cell carcinoma: the 2022 update. Eur. Urol. 82, 399–410 (2022).

    Article  PubMed  Google Scholar 

  35. Motzer, R. J. et al. Kidney cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 20, 71–90 (2022).

    Article  Google Scholar 

  36. Expert Panel on Urological Imaging. et al. ACR appropriateness criteria® staging of renal cell carcinoma: 2022 update. J. Am. Coll. Radiol. 20, S246–S264 (2023).

    Article  Google Scholar 

  37. Jiang, P. et al. A Review of the recommendations and strength of evidence for clinical practice guidelines on the management of small renal masses. J. Endourol. 37, 903–913 (2023).

    Article  PubMed  Google Scholar 

  38. Beyer, K., Barod, R., Fox, L., Van Hemelrijck, M. & Kinsella, N. The current evidence for factors that influence treatment decision making in localized kidney cancer: a mixed methods systematic review. J. Urol. 206, 827–839 (2021).

    Article  PubMed  Google Scholar 

  39. Chandrasekar, T. et al. Collaborative review: factors influencing treatment decisions for patients with a localized solid renal mass. Eur. Urol. 80, 575–588 (2021).

    Article  PubMed  Google Scholar 

  40. Giles, R. et al. Patient-reported experience of diagnosis, management, and burden of renal cell carcinomas: results from a global patient survey in 43 countries. Eur. Urol. Open. Sci. 37, 3–6 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Breau, R. H., Crispen, P. L., Jenkins, S. M., Blute, M. L. & Leibovich, B. C. Treatment of patients with small renal masses: a survey of the American Urological Association. J. Urol. 185, 407–413 (2011).

    Article  PubMed  Google Scholar 

  42. Patel, A. K. et al. Initial observation of a large proportion of patients presenting with clinical stage T1 renal masses: results from the MUSIC-KIDNEY statewide collaborative. Eur. Urol. Open. Sci. 23, 13–19 (2021).

    Article  PubMed  Google Scholar 

  43. Mendhiratta, N. et al. Contemporary care patterns in the management of small renal masses. Am. J. Manag. Care 29, e143–e148 (2023).

    Article  PubMed  Google Scholar 

  44. Ginsburg, K. B. et al. A Statewide quality improvement collaborative’s adherence to the 2017 American Urological Association Guidelines Regarding Initial Evaluation of Patients With Clinical T1 Renal Masses. Urology 158, 117–124 (2021).

    Article  PubMed  Google Scholar 

  45. Semerjian, A. et al. Guideline compliance regarding chest imaging of suspicious cT1 renal masses in MUSIC-KIDNEY. Urol. Pract. 10, 328–333 (2023).

    Article  PubMed  Google Scholar 

  46. Patel, A. K. et al. Building a roadmap for surveillance of renal masses using a modified Delphi method to help achieve consensus. Urology 180, 768–175 (2023).

    Article  Google Scholar 

  47. Sanchez, A., Feldman, A. S. & Hakimi, A. A. Current management of small renal masses, including patient selection, renal tumor biopsy, active surveillance, and thermal ablation. J. Clin. Oncol. 36, 3591–3600 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kay, F. U. & Pedrosa, I. Imaging of solid renal masses. Radiol. Clin. North. Am. 55, 243–258 (2017).

    Article  PubMed  Google Scholar 

  49. Davenport, M. S. et al. Diagnosis of renal angiomyolipoma with Hounsfield unit thresholds: effect of size of region of interest and nephrographic phase imaging. Radiology 260, 158–165 (2011).

    Article  PubMed  Google Scholar 

  50. Krishna, S., Leckie, A., Kielar, A., Hartman, R. & Khandelwal, A. Imaging of renal cancer. Semin. Ultrasound CT MR 41, 152–169 (2020).

    Article  PubMed  Google Scholar 

  51. Warshauer, D. M. et al. Detection of renal masses: sensitivities and specificities of excretory urography/linear tomography, US, and CT. Radiology 169, 363–365 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Jamis-Dow, C. A. et al. Small (< or = 3-cm) renal masses: detection with CT versus US and pathologic correlation. Radiology 198, 785–788 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Silverman, S. G. et al. Bosniak classification of cystic renal masses, version 2019: an update proposal and needs assessment. Radiology 292, 475–488 (2019).

    Article  PubMed  Google Scholar 

  54. Warren, K. S. & McFarlane, J. The Bosniak classification of renal cystic masses. BJU Int. 95, 939–942 (2005).

    Article  PubMed  Google Scholar 

  55. Tse, J. R., Shen, L., Shen, J., Yoon, L. & Kamaya, A. Prevalence of malignancy and histopathological association of Bosniak classification, version 2019 class III and IV cystic renal masses. J. Urol. 205, 1031–1038 (2021).

    Article  PubMed  Google Scholar 

  56. Weinreb, J. C. et al. Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 3, 142–150 (2021).

    Article  PubMed  Google Scholar 

  57. Patel, H. D. et al. Diagnostic accuracy and risks of biopsy in the diagnosis of a renal mass suspicious for localized renal cell carcinoma: systematic review of the literature. J. Urol. 195, 1340–1347 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Marconi, L. et al. Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur. Urol. 69, 660–673 (2016).

    Article  PubMed  Google Scholar 

  59. Jeon, H. G. et al. Percutaneous kidney biopsy for a small renal mass: a critical appraisal of results. J. Urol. 195, 568–573 (2016).

    Article  PubMed  Google Scholar 

  60. Alrumayyan, M., Raveendran, L., Lawson, K. A. & Finelli, A. Cystic renal masses: old and new paradigms. Urol. Clin. North. Am. 50, 227–238 (2023).

    Article  PubMed  Google Scholar 

  61. Butaney, M. et al. Initial management of indeterminate renal lesions in a statewide collaborative: a MUSIC-KIDNEY analysis. J. Urol. 210, 79–87 (2023).

    Article  PubMed  Google Scholar 

  62. Ginzburg, S. et al. Coexisting hybrid malignancy in a solitary sporadic solid benign renal mass: implications for treating patients following renal biopsy. J. Urol. 191, 296–300 (2014).

    Article  PubMed  Google Scholar 

  63. Ball, M. W. et al. Grade heterogeneity in small renal masses: potential implications for renal mass biopsy. J. Urol. 193, 36–40 (2015).

    Article  PubMed  Google Scholar 

  64. Renshaw, A. A., Powell, A., Caso, J. & Gould, E. W. Needle track seeding in renal mass biopsies. Cancer Cytopathol. 127, 358–361 (2019).

    Article  PubMed  Google Scholar 

  65. Shannon, B. A., Cohen, R. J., de Bruto, H. & Davies, R. J. The value of preoperative needle core biopsy for diagnosing benign lesions among small, incidentally detected renal masses. J. Urol. 180, 1257–1261 (2008).

    Article  PubMed  Google Scholar 

  66. Sinks, A. et al. Renal mass biopsy mandate is associated with change in treatment decisions. J. Urol. 210, 72–78 (2023).

    Article  PubMed  Google Scholar 

  67. Patel, A. K. et al. Utilization of renal mass biopsy for T1 renal lesions across Michigan: results from MUSIC-KIDNEY, a statewide quality improvement collaborative. Eur. Urol. Open. Sci. 30, 37–43 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Prebay, Z. J. et al. Perspectives on the role of biopsy for management of t1 renal masses: survey results from two regional quality improvement collaboratives. Urology 165, 206–211 (2022).

    Article  PubMed  Google Scholar 

  69. Kutikov, A. & Uzzo, R. G. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 182, 844–853 (2009).

    Article  PubMed  Google Scholar 

  70. Joshi, S. S. & Uzzo, R. G. Renal tumor anatomic complexity: clinical implications for urologists. Urol. Clin. North. Am. 44, 179–187 (2017).

    Article  PubMed  Google Scholar 

  71. Veccia, A. et al. Predictive value of nephrometry scores in nephron-sparing surgery: a systematic review and meta-analysis. Eur. Urol. Focus. 6, 490–504 (2020).

    Article  PubMed  Google Scholar 

  72. Ficarra, V. et al. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur. Urol. 56, 786–793 (2009).

    Article  PubMed  Google Scholar 

  73. Hakky, T. S. et al. Zonal NePhRO scoring system: a superior renal tumor complexity classification model. Clin. Genitourin. Cancer 12, e13–e18 (2014).

    Article  PubMed  Google Scholar 

  74. Tannus, M., Goldman, S. M. & Andreoni, C. Practical and intuitive surgical approach renal ranking to predict outcomes in the management of renal tumors: a novel score tool. J. Endourol. 28, 487–492 (2014).

    Article  PubMed  Google Scholar 

  75. Kim, S. P. et al. National treatment trends among older patients with T1-localized renal cell carcinoma. Urol. Oncol. 35, 113 e15–e21 (2017).

    Article  PubMed  Google Scholar 

  76. Celtik, K. E. et al. Active surveillance for incidental renal mass in the octogenarian. World J. Urol. 35, 1089–1094 (2017).

    Article  PubMed  Google Scholar 

  77. Levey, A. S. et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 67, 2089–2100 (2005).

    Article  PubMed  Google Scholar 

  78. Lane, B. R., Campbell, S. C., Demirjian, S. & Fergany, A. F. Surgically induced chronic kidney disease may be associated with a lower risk of progression and mortality than medical chronic kidney disease. J. Urol. 189, 1649–1655 (2013).

    Article  PubMed  Google Scholar 

  79. Lane, B. R. et al. Survival and functional stability in chronic kidney disease due to surgical removal of nephrons: importance of the new baseline glomerular filtration rate. Eur. Urol. 68, 996–1003 (2015).

    Article  PubMed  Google Scholar 

  80. Li, L. et al. Risk of chronic kidney disease after cancer nephrectomy. Nat. Rev. Nephrol. 10, 135–145 (2014).

    Article  PubMed  Google Scholar 

  81. Tan, H. J. et al. Long-term survival following partial vs radical nephrectomy among older patients with early-stage kidney cancer. JAMA 307, 1629–1635 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Sun, M. et al. Management of localized kidney cancer: calculating cancer-specific mortality and competing risks of death for surgery and nonsurgical management. Eur. Urol. 65, 235–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Tobert, C. M., Riedinger, C. B. & Lane, B. R. Do we know (or just believe) that partial nephrectomy leads to better survival than radical nephrectomy for renal cancer? World J. Urol. 32, 573–579 (2014).

    Article  PubMed  Google Scholar 

  84. Van Poppel, H. et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur. Urol. 59, 543–552 (2011).

    Article  PubMed  Google Scholar 

  85. Maher, E. R. Hereditary renal cell carcinoma syndromes: diagnosis, surveillance and management. World J. Urol. 36, 1891–1898 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Leung, C., Pan, S. & Shuch, B. Management of renal cell carcinoma in young patients and patients with hereditary syndromes. Curr. Opin. Urol. 26, 396–404 (2016).

    Article  PubMed  Google Scholar 

  87. Metcalf, M. R. et al. Outcomes of active surveillance for young patients with small renal masses: prospective data from the DISSRM registry. J. Urol. 205, 1286–1293 (2021).

    Article  PubMed  Google Scholar 

  88. Kutikov, A. Surveillance of small renal masses in young patients: a viable option in the appropriate candidate. Eur. Urol. Focus 2, 567–568 (2016).

    Article  PubMed  Google Scholar 

  89. Doolittle, J. et al. Evolving trends for selected treatments of T1a renal cell carcinoma. Urology 132, 136–142 (2019).

    Article  PubMed  Google Scholar 

  90. Mohapatra, A. et al. Trends in the management of small renal masses: a survey of members of the Endourological Society. J. Kidney Cancer VHL 4, 10–19 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Alameddine, M. et al. Trends in utilization of robotic and open partial nephrectomy for management of cT1 renal masses. Eur. Urol. Focus. 5, 482–487 (2019).

    Article  PubMed  Google Scholar 

  92. Cerrato, C. et al. Partial or radical nephrectomy for complex renal mass: a comparative analysis of oncological outcomes and complications from the ROSULA (Robotic Surgery for Large Renal Mass) Collaborative Group. World J. Urol. 41, 747–755 (2023).

    Article  PubMed  Google Scholar 

  93. Volpe, A. The role of active surveillance of small renal masses. Int. J. Surg. 36, 518–524 (2016).

    Article  PubMed  Google Scholar 

  94. Uzosike, A. C. et al. Growth kinetics of small renal masses on active surveillance: variability and results from the DISSRM registry. J. Urol. 199, 641–648 (2018).

    Article  PubMed  Google Scholar 

  95. Srivastava, A. et al. The incidence, predictors, and survival of disappearing small renal masses on active surveillance. Urol. Oncol. 38, 42.e1–e6 (2020).

    Article  PubMed  Google Scholar 

  96. Kapur, P. et al. Predicting oncologic outcomes in small renal tumors. Eur. Urol. Oncol. 5, 687–694 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Campi, R. et al. Triggers for delayed intervention in patients with small renal masses undergoing active surveillance: a systematic review. Minerva Urol. Nefrol. 72, 389–407 (2020).

    Article  PubMed  Google Scholar 

  98. Gupta, M. et al. Use of delayed intervention for small renal masses initially managed with active surveillance. Urol. Oncol. 37, 18–25 (2019).

    Article  PubMed  Google Scholar 

  99. Alam, R. et al. Comparative effectiveness of management options for patients with small renal masses: a prospective cohort study. BJU Int. 123, 42–50 (2019).

    Article  PubMed  Google Scholar 

  100. Cheung, D. C. et al. A matched analysis of active surveillance versus nephrectomy for T1a small renal masses. Eur. Urol. Oncol. 6, 535–539 (2023).

    Article  PubMed  Google Scholar 

  101. Alam, R. et al. Evaluation of growth rates for small renal masses in elderly patients undergoing active surveillance. Eur. Urol. Open. Sci. 50, 78–84 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Aron, M. & Gill, I. S. Minimally invasive nephron-sparing surgery (MINSS) for renal tumours. Part II: probe ablative therapy. Eur. Urol. 51, 348–357 (2007).

    Article  PubMed  Google Scholar 

  103. Aminsharifi, A., de la Rosette, J. & Polascik, T. J. Focal therapy of prostate and kidney cancer. Curr. Opin. Urol. 28, 491–492 (2018).

    Article  PubMed  Google Scholar 

  104. Matsumoto, E. D. et al. The radiographic evolution of radio frequency ablated renal tumors. J. Urol. 172, 45–48 (2004).

    Article  PubMed  Google Scholar 

  105. Matin, S. F. Determining failure after renal ablative therapy for renal cell carcinoma: false-negative and false-positive imaging findings. Urology 75, 1254–1257 (2010).

    Article  PubMed  Google Scholar 

  106. Pierorazio, P. M. et al. Management of renal masses and localized renal cancer: systematic review and meta-analysis. J. Urol. 196, 989–999 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Blute, M. L. Jr et al. Image-guided percutaneous renal cryoablation: preoperative risk factors for recurrence and complications. BJU Int. 111, E181–E185 (2013).

    Article  PubMed  Google Scholar 

  108. Psutka, S. P. et al. Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur. Urol. 63, 486–492 (2013).

    Article  PubMed  Google Scholar 

  109. Finley, D. S. et al. Percutaneous and laparoscopic cryoablation of small renal masses. J. Urol. 180, 492–498 (2008).

    Article  PubMed  Google Scholar 

  110. Okhunov, Z. et al. Predictors of complications after percutaneous image-guided renal cryoablation for T1a renal cortical neoplasms. J. Endourol. 31, 7–13 (2017).

    Article  PubMed  Google Scholar 

  111. Baker, M., Anderson, J. K., Jaffer, O., Trimmer, C. & Cadeddu, J. A. Pain after percutaneous radiofrequency ablation of renal tumors. J. Endourol. 21, 606–609 (2007).

    Article  PubMed  Google Scholar 

  112. Zhou, W., Herwald, S. E., McCarthy, C., Uppot, R. N. & Arellano, R. S. Radiofrequency ablation, cryoablation, and microwave ablation for t1a renal cell carcinoma: a comparative evaluation of therapeutic and renal function outcomes. J. Vasc. Interv. Radiol. 30, 1035–1042 (2019).

    Article  PubMed  Google Scholar 

  113. Johnson, B. A., Sorokin, I. & Cadeddu, J. A. Ten-year outcomes of renal tumor radio frequency ablation. J. Urol. 201, 251–258 (2019).

    Article  PubMed  Google Scholar 

  114. Pickersgill, N. A. et al. Ten-year experience with percutaneous cryoablation of renal tumors: tumor size predicts disease progression. J. Endourol. 34, 1211–1217 (2020).

    Article  PubMed  Google Scholar 

  115. Thompson, R. H. et al. Comparison of partial nephrectomy and percutaneous ablation for cT1 renal masses. Eur. Urol. 67, 252–259 (2015).

    Article  PubMed  Google Scholar 

  116. Uhlig, J., Kokabi, N., Xing, M. & Kim, H. S. Ablation versus resection for stage 1A renal cell carcinoma: national variation in clinical management and selected outcomes. Radiology 288, 889–897 (2018).

    Article  PubMed  Google Scholar 

  117. Lubner, M. G., Brace, C. L., Hinshaw, J. L. & Lee, F. T. Jr Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 21, S192–S203 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yu, J. et al. Percutaneous microwave ablation versus laparoscopic partial nephrectomy for cT1a renal cell carcinoma: a propensity-matched cohort study of 1955 patients. Radiology 294, 698–706 (2020).

    Article  PubMed  Google Scholar 

  119. Maciolek, K. A. et al. Tumor location does not impact oncologic outcomes for percutaneous microwave ablation of clinical T1a renal cell carcinoma. Eur. Radiol. 29, 6319–6329 (2019).

    Article  PubMed  Google Scholar 

  120. Wilcox Vanden Berg, R. N. et al. Microwave ablation of cT1a renal cell carcinoma: oncologic and functional outcomes at a single center. Clin. Imaging 76, 199–204 (2021).

    Article  PubMed  Google Scholar 

  121. Wells, S. A. et al. Percutaneous microwave ablation of T1a and T1b renal cell carcinoma: short-term efficacy and complications with emphasis on tumor complexity and single session treatment. Abdom. Radiol. 41, 1203–1211 (2016).

    Article  Google Scholar 

  122. Jackson, W. C. et al. Stereotactic body radiation therapy for localized prostate cancer: a systematic review and meta-analysis of over 6,000 patients treated on prospective studies. Int. J. Radiat. Oncol. Biol. Phys. 104, 778–789 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Rich, B. J., Noy, M. A. & Dal Pra, A. Stereotactic body radiotherapy for localized kidney cancer. Curr. Urol. Rep. 23, 371–381 (2022).

    Article  PubMed  Google Scholar 

  124. Haque, W. et al. Utilization of radiotherapy and stereotactic body radiation therapy for renal cell cancer in the USA. Future Oncol. 14, 819–827 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Siva, S. et al. Stereotactic ablative body radiotherapy for inoperable primary kidney cancer: a prospective clinical trial. BJU Int. 120, 623–630 (2017).

    Article  PubMed  Google Scholar 

  126. Siva, S. et al. Pooled analysis of stereotactic ablative radiotherapy for primary renal cell carcinoma: a report from the International Radiosurgery Oncology Consortium for Kidney (IROCK). Cancer 124, 934–942 (2018).

    Article  PubMed  Google Scholar 

  127. Lee, R. A., Strauss, D. & Kutikov, A. Role of minimally invasive partial nephrectomy in the management of renal mass. Transl. Androl. Urol. 9, 3140–3148 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Johnson, K. et al. Partial nephrectomy should be classified as an inpatient procedure: results from a statewide quality improvement collaborative. Urol. Oncol. 39, 239 e9–e16 (2021).

    Article  PubMed  Google Scholar 

  129. Volpe, A. et al. Renal ischemia and function after partial nephrectomy: a collaborative review of the literature. Eur. Urol. 68, 61–74 (2015).

    Article  PubMed  Google Scholar 

  130. Parekh, D. J. et al. Tolerance of the human kidney to isolated controlled ischemia. J. Am. Soc. Nephrol. 24, 506–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Simmons, M. N., Lieser, G. C., Fergany, A. F., Kaouk, J. & Campbell, S. C. Association between warm ischemia time and renal parenchymal atrophy after partial nephrectomy. J. Urol. 189, 1638–1642 (2013).

    Article  PubMed  Google Scholar 

  132. Cacciamani, G. E. et al. Impact of renal hilar control on outcomes of robotic partial nephrectomy: systematic review and cumulative meta-analysis. Eur. Urol. Focus. 5, 619–635 (2019).

    Article  PubMed  Google Scholar 

  133. Greco, F. et al. Ischemia techniques in nephron-sparing surgery: a systematic review and meta-analysis of surgical, oncological, and functional outcomes. Eur. Urol. 75, 477–491 (2019).

    Article  PubMed  Google Scholar 

  134. Ginzburg, S. et al. Residual parenchymal volume, not warm ischemia time, predicts ultimate renal functional outcomes in patients undergoing partial nephrectomy. Urology 86, 300–305 (2015).

    Article  PubMed  Google Scholar 

  135. Minervini, A. et al. Standardized reporting of resection technique during nephron-sparing surgery: the surface-intermediate-base margin score. Eur. Urol. 66, 803–805 (2014).

    Article  PubMed  Google Scholar 

  136. Minervini, A. et al. Impact of resection technique on perioperative outcomes and surgical margins after partial nephrectomy for localized renal masses: a prospective multicenter study. J. Urol. 203, 496–504 (2020).

    Article  PubMed  Google Scholar 

  137. Minervini, A. et al. Simple enucleation is equivalent to traditional partial nephrectomy for renal cell carcinoma: results of a nonrandomized, retrospective, comparative study. J. Urol. 185, 1604–1610 (2011).

    Article  PubMed  Google Scholar 

  138. Longo, N. et al. Simple enucleation versus standard partial nephrectomy for clinical T1 renal masses: perioperative outcomes based on a matched-pair comparison of 396 patients (RECORd project). Eur. J. Surg. Oncol. 40, 762–768 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Schiavina, R. et al. A prospective, multicenter evaluation of predictive factors for positive surgical margins after nephron-sparing surgery for renal cell carcinoma: the RECORd1 Italian Project. Clin. Genitourin. Cancer 13, 165–170 (2015).

    Article  PubMed  Google Scholar 

  140. Gupta, G. N., Boris, R. S., Campbell, S. C. & Zhang, Z. Tumor enucleation for sporadic localized kidney cancer: pro and con. J. Urol. 194, 623–625 (2015).

    Article  PubMed  Google Scholar 

  141. Butaney, M. et al. Positive surgical margins in partial nephrectomy: a collaborative effort to maintain surgical quality. BJU Int. 179, 2158–2163 (2023).

    Google Scholar 

  142. Arora, S. et al. Retroperitoneal vs transperitoneal robot-assisted partial nephrectomy: comparison in a multi-institutional setting. Urology 120, 131–137 (2018).

    Article  PubMed  Google Scholar 

  143. Bahler, C. D. & Sundaram, C. P. Effect of renal reconstruction on renal function after partial nephrectomy. J. Endourol. 30, S37–S41 (2016).

    Article  PubMed  Google Scholar 

  144. Carbonara, U. et al. Single-port robotic partial nephrectomy: impact on perioperative outcomes and hospital stay. Ther. Adv. Urol. 15, 17562872231172834 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Campbell, R. A. et al. Partial versus radical nephrectomy: complexity of decision-making and utility of AUA guidelines. Clin. Genitourin. Cancer 20, 501–509 (2022).

    Article  PubMed  Google Scholar 

  146. Schmid, M. et al. Predictors of 30-day acute kidney injury following radical and partial nephrectomy for renal cell carcinoma. Urol. Oncol. 32, 1259–1266 (2014).

    Article  PubMed  Google Scholar 

  147. Patel, H. D. et al. Renal functional outcomes after surgery, ablation, and active surveillance of localized renal tumors: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 12, 1057–1069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Scosyrev, E., Messing, E. M., Sylvester, R., Campbell, S. & Van Poppel, H. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur. Urol. 65, 372–377 (2014).

    Article  PubMed  Google Scholar 

  149. An, J. Y. et al. Partial vs radical nephrectomy for T1–T2 renal masses in the elderly: comparison of complications, renal function, and oncologic outcomes. Urology 100, 151–157 (2017).

    Article  PubMed  Google Scholar 

  150. Bergerot, C. D. et al. Fear of cancer recurrence in patients with localized renal cell carcinoma. JCO Oncol. Pract. 16, e1264–e1271 (2020).

    Article  PubMed  Google Scholar 

  151. Campi, R. et al. Novel liquid biomarkers and innovative imaging for kidney cancer diagnosis: what can be implemented in our practice today? A systematic review of the literature. Eur. Urol. Oncol. 4, 22–41 (2021).

    Article  PubMed  Google Scholar 

  152. McGillivray, P. D. et al. Distinguishing benign renal tumors with an oncocytic gene expression (ONEX) classifier. Eur. Urol. 79, 107–111 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Brooks, S. A. et al. ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur. Urol. 66, 77–84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rini, B. et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol. 16, 676–685 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Morgan, T. M. et al. A multigene signature based on cell cycle proliferation improves prediction of mortality within 5 Yr of radical nephrectomy for renal cell carcinoma. Eur. Urol. 73, 763–769 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Manley, B. J. et al. Characterizing recurrent and lethal small renal masses in clear cell renal cell carcinoma using recurrent somatic mutations. Urol. Oncol. 37, 12–17 (2019).

    Article  PubMed  Google Scholar 

  157. Manley, B. J. et al. Integration of recurrent somatic mutations with clinical outcomes: a pooled analysis of 1049 patients with clear cell renal cell carcinoma. Eur. Urol. Focus. 3, 421–427 (2017).

    Article  PubMed  Google Scholar 

  158. Moynihan, M. J. et al. MicroRNA profile in stage I clear cell renal cell carcinoma predicts progression to metastatic disease. Urol. Oncol. 38, 799 e11–e22 (2020).

    Article  PubMed  Google Scholar 

  159. Quaia, E. et al. Comparison of contrast-enhanced sonography with unenhanced sonography and contrast-enhanced CT in the diagnosis of malignancy in complex cystic renal masses. AJR Am. J. Roentgenol. 191, 1239–1249 (2008).

    Article  PubMed  Google Scholar 

  160. Wei, S. P. et al. Contrast-enhanced ultrasound for differentiating benign from malignant solid small renal masses: comparison with contrast-enhanced CT. Abdom. Radiol. 42, 2135–2145 (2017).

    Article  Google Scholar 

  161. Su, Z. T. et al. Cost-effectiveness analysis of 99mTc-sestamibi SPECT/CT to guide management of small renal masses. Eur. Urol. Focus 7, 827–834 (2021).

    Article  PubMed  Google Scholar 

  162. Tataru, O. S. et al. Molecular imaging diagnosis of renal cancer using 99mTc-sestamibi SPECT/CT and girentuximab PET-CT — current evidence and future development of novel techniques. Diagnostics 13, 593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Roussel, E. et al. Novel imaging methods for renal mass characterization: a collaborative review. Eur. Urol. 81, 476–488 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Pastorekova, S. & Gillies, R. J. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev. 38, 65–77 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, Z., Wu, B., Shao, Y., Chen, Y. & Wang, D. A systematic review verified by bioinformatic analysis based on TCGA reveals week prognosis power of CAIX in renal cancer. PLoS One 17, e0278556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. van Oostenbrugge, T. & Mulders, P. Targeted PET/CT imaging for clear cell renal cell carcinoma with radiolabeled antibodies: recent developments using girentuximab. Curr. Opin. Urol. 31, 249–254 (2021).

    Article  PubMed  Google Scholar 

  167. Hekman, M. C. H. et al. Positron emission tomography/computed tomography with 89Zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. Eur. Urol. 74, 257–260 (2018).

    Article  PubMed  Google Scholar 

  168. Verhoeff, S. R. et al. [89Zr]Zr-DFO-girentuximab and [18F]FDG PET/CT to predict watchful waiting duration in patients with metastatic clear-cell renal cell carcinoma. Clin. Cancer Res. 29, 592–601 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Verhoeff, S. R. et al. Lesion detection by [89Zr]Zr-DFO-girentuximab and [18F]FDG-PET/CT in patients with newly diagnosed metastatic renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 46, 1931–1939 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nassiri, N. et al. A radiomic-based machine learning algorithm to reliably differentiate benign renal masses from renal cell carcinoma. Eur. Urol. Focus. 8, 988–994 (2022).

    Article  PubMed  Google Scholar 

  171. Han, S., Hwang, S. I. & Lee, H. J. The classification of renal cancer in 3-phase CT images using a deep learning method. J. Digit. Imaging 32, 638–643 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Lin, F., Cui, E. M., Lei, Y. & Luo, L. P. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma. Abdom. Radiol. 44, 2528–2534 (2019).

    Article  Google Scholar 

  173. Said, D. et al. Characterization of solid renal neoplasms using MRI-based quantitative radiomics features. Abdom. Radiol. 45, 2840–2850 (2020).

    Article  Google Scholar 

  174. Abdallah, N. et al. AI-generated R.E.N.A.L.+ score surpasses human-generated score in predicting renal oncologic outcomes. Urology 180, 160–167 (2023).

    Article  PubMed  Google Scholar 

  175. Heller, N. et al. Computer-generated R.E.N.A.L. nephrometry scores yield comparable predictive results to those of human-expert scores in predicting oncologic and perioperative outcomes. J. Urol. 207, 1105–1115 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.W., M.B. and S.W. researched data for the article. Y.W. and B.R.L. contributed substantially to discussion of the content. Y.W. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Brian R. Lane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Phil Pierorazio and Giovanni Lughezzani for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Butaney, M., Wilder, S. et al. The evolving management of small renal masses. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-023-00848-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-023-00848-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer