Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular profile of bladder cancer progression to clinically aggressive subtypes

Abstract

Bladder cancer is a histologically and clinically heterogenous disease. Most bladder cancers are urothelial carcinomas, which frequently develop distinct histological subtypes. Several urothelial carcinoma histological subtypes, such as micropapillary, plasmacytoid, small-cell carcinoma and sarcomatoid, show highly aggressive behaviour and pose unique challenges in diagnosis and treatment. Comprehensive genomic characterizations of the urothelial carcinoma subtypes have revealed that they probably arise from a precursor subset of conventional urothelial carcinomas that belong to different molecular subtypes — micropapillary and plasmacytoid subtypes develop along the luminal pathway, whereas small-cell and sarcomatoid subtypes evolve along the basal pathway. The subtypes exhibit distinct genomic alterations, but in most cases their biological properties seem to be primarily determined by specific gene expression profiles, including epithelial–mesenchymal transition, urothelial-to-neural lineage plasticity, and immune infiltration with distinct upregulation of immune regulatory genes. These breakthrough studies have transformed our view of bladder cancer histological subtype biology, generated new hypotheses for therapy and chemoresistance, and facilitated the discovery of new therapeutic targets.

Key points

  • Bladder cancer histological subtypes might progress from a common precursor — conventional urothelial carcinoma — and distinct transcriptional circuits control their biological properties.

  • The micropapillary subtype seems to evolve from the luminal pathway and is characterized by ERBB2 genomic alterations and activation of miR-296-targeted and RUVBL1-targeted genes.

  • Plasmacytoid cancer also seems to evolve from luminal urothelial carcinoma and is characterized by truncating somatic mutations in E-cadherin (CDH1).

  • The small-cell carcinoma subtype develops via the basal pathway and is characterized by urothelial-to-neural lineage plasticity and can be subdivided into molecular subtypes that resemble those found in lung cancers.

  • The sarcomatoid subtype also seems to evolve from basal urothelial carcinoma with downregulation of homotypic adherence genes and activation of epithelial–mesenchymal transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bladder cancer evolution from mucosal field effects through luminal papillary and basal non-papillary pathways.
Fig. 2: Molecular classification of bladder cancer into luminal and basal subtypes.
Fig. 3: Expression pattern of basal and luminal markers in conventional urothelial carcinoma and sarcomatoid, small-cell, micropapillary and plasmacytoid bladder cancer subtypes.
Fig. 4: Dysregulation of the epithelial–mesenchymal transition network in conventional urothelial carcinoma and sarcomatoid, small-cell, micropapillary, and plasmacytoid bladder cancer subtypes.
Fig. 5: Expression pattern of immune cell infiltrate in conventional urothelial carcinoma and sarcomatoid, small-cell, micropapillary and plasmacytoid bladder cancer subtypes.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  3. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article  PubMed  Google Scholar 

  4. Board, W. C. O. T. E. Urinary and Male Genital Tumours. 5th edn, (International Agency for Research on Cancer, 2022).

  5. Kamat, A. M. et al. Bladder cancer. Lancet 388, 2796–2810 (2016).

    Article  PubMed  Google Scholar 

  6. Hedegaard, J. et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30, 27–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Lindgren, D. et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 70, 3463–3472 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Sjodahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    Article  PubMed  Google Scholar 

  9. Sjodahl, G. et al. Toward a molecular pathologic classification of urothelial carcinoma. Am. J. Pathol. 183, 681–691 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Compérat, E. et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments. Lancet 400, 1712–1721 (2022).

    Article  PubMed  Google Scholar 

  11. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo, C. C. et al. Assessment of luminal and basal phenotypes in bladder cancer. Sci. Rep. 10, 9743 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556 e525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl Acad. Sci. USA 111, 3110–3115 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Kamoun, A. et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 77, 420–433 (2020).

    Article  PubMed  Google Scholar 

  16. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  ADS  Google Scholar 

  17. Guo, C. C. & Czerniak, B. Bladder cancer in the genomic era. Arch. Pathol. Lab. Med. 143, 695–704 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Czerniak, B., Dinney, C. & McConkey, D. Origins of bladder cancer. Annu. Rev. Pathol. 11, 149–174 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Spiess, P. E. & Czerniak, B. Dual-track pathway of bladder carcinogenesis: practical implications. Arch. Pathol. Lab. Med. 130, 844–852 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Amin, M. B. Histological variants of urothelial carcinoma: diagnostic, therapeutic and prognostic implications. Mod. Pathol. 22, S96–S118 (2009).

    Article  PubMed  Google Scholar 

  21. Al-Ahmadie, H. A. et al. Frequent somatic CDH1 loss-of-function mutations in plasmacytoid variant bladder cancer. Nat. Genet. 48, 356–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoffman-Censits, J. et al. Urothelial cancers with small cell variant histology have confirmed high tumor mutational burden, frequent TP53 and RB mutations, and a unique gene expression profile. Eur. Urol. Oncol. 4, 297–300 (2021).

    Article  PubMed  Google Scholar 

  23. Matulay, J. T., Narayan, V. M. & Kamat, A. M. Clinical and genomic considerations for variant histology in bladder cancer. Curr. Oncol. Rep. 21, 23 (2019).

    Article  PubMed  Google Scholar 

  24. Monn, M. F. et al. Contemporary bladder cancer: variant histology may be a significant driver of disease. Urol. Oncol. 33, 18.e15–18.e20 (2015).

    Article  PubMed  Google Scholar 

  25. Takahara, T., Murase, Y. & Tsuzuki, T. Urothelial carcinoma: variant histology, molecular subtyping, and immunophenotyping significant for treatment outcomes. Pathology 53, 56–66 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Willis, D. L., Porten, S. P. & Kamat, A. M. Should histologic variants alter definitive treatment of bladder cancer? Curr. Opin. Urol. 23, 435–443 (2013).

    Article  PubMed  Google Scholar 

  27. Grignon DJ, A.-A. H. et al. Tumors of the Urinary Tract. 4th edn, 77–133 (IARC Press, 2016).

  28. Guo, C. C. & Czerniak, B. Molecular taxonomy and immune checkpoint therapy in bladder cancer. Surg. Pathol. Clin. 15, 681–694 (2022).

    Article  PubMed  Google Scholar 

  29. Guo, C. C. et al. Dysregulation of EMT drives the progression to clinically aggressive sarcomatoid bladder cancer. Cell Rep. 27, 1781–1793.e1784 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, G. et al. Small cell carcinoma of the urinary bladder: a clinicopathologic and immunohistochemical analysis of 81 cases. Hum. Pathol. 79, 57–65 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moss, T. J. et al. Comprehensive genomic characterization of upper tract urothelial carcinoma. Eur. Urol. 72, 641–649 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Guo, C. C. et al. Gene expression profile of the clinically aggressive micropapillary variant of bladder cancer. Eur. Urol. 70, 611–620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McConkey, D. J. et al. A prognostic gene expression signature in the molecular classification of chemotherapy-naive urothelial cancer is predictive of clinical outcomes from neoadjuvant chemotherapy: a phase 2 trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with bevacizumab in urothelial cancer. Eur. Urol. 69, 855–862 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Dadhania, V. et al. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine 12, 105–117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weinstein, J. N. et al. The Cancer Genome Atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 68 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Cianfrocca, M. & Gradishar, W. New molecular classifications of breast cancer. CA Cancer J. Clin. 59, 303–313 (2009).

    Article  PubMed  Google Scholar 

  44. Dyrskjøt, L. et al. Identifying distinct classes of bladder carcinoma using microarrays. Nat. Genet. 33, 90–96 (2003).

    Article  PubMed  Google Scholar 

  45. Blaveri, E. et al. Bladder cancer outcome and subtype classification by gene expression. Clin. Cancer Res. 11, 4044–4055 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Majewski, T. et al. Whole-organ genomic characterization of mucosal field effects initiating bladder carcinogenesis. Cell Rep. 26, 2241–2256.e2244 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, G. et al. Urothelial-to-neural plasticity drives progression to small cell bladder cancer. iScience 23, 101201 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Sanfrancesco, J. et al. Sarcomatoid urothelial carcinoma of the bladder: analysis of 28 cases with emphasis on clinicopathologic features and markers of epithelial-to-mesenchymal transition. Arch. Pathol. Lab. Med. 140, 543–551 (2016).

    Article  PubMed  Google Scholar 

  49. Wright, J. L. et al. Differences in survival among patients with sarcomatoid carcinoma, carcinosarcoma and urothelial carcinoma of the bladder. J. Urol. 178, 2302–2306 (2007). discussion 2307.

    Article  PubMed  Google Scholar 

  50. Wang, J., Wang, F. W., Lagrange, C. A., Hemstreet Iii, G. P. & Kessinger, A. Clinical features of sarcomatoid carcinoma (carcinosarcoma) of the urinary bladder: analysis of 221 cases. Sarcoma 2010, 454792 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fontugne, J. et al. Progression-associated molecular changes in basal/squamous and sarcomatoid bladder carcinogenesis. J. Pathol. 259, 455–467 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

  53. Ochoa, A. E. et al. Specific micro-RNA expression patterns distinguish the basal and luminal subtypes of muscle-invasive bladder cancer. Oncotarget 7, 80164–80174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Tran, M. N. et al. The p63 protein isoform ΔNp63α inhibits epithelial-mesenchymal transition in human bladder cancer cells: role of MIR-205. J. Biol. Chem. 288, 3275–3288 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bi, M. et al. Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proc. Natl Acad. Sci. USA 113, 2170–2175 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Jones, S. et al. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat. Commun. 5, 5006 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Mak, M. P. et al. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin. Cancer Res. 22, 609–620 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Genitsch, V. et al. Morphologic and genomic characterization of urothelial to sarcomatoid transition in muscle-invasive bladder cancer. Urol. Oncol. 37, 826–836 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, G. et al. Small cell carcinoma of the urinary bladder: a clinicopathological and immunohistochemical analysis of 81 cases. Hum. Pathol. 79, 57–65 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sjodahl, G., Eriksson, P., Liedberg, F. & Hoglund, M. Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J. Pathol. 242, 113–125 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Batista da Costa, J. et al. Molecular characterization of neuroendocrine-like bladder cancer. Clin. Cancer Res. 25, 3908–3920 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Chang, M. T. et al. Small-cell carcinomas of the bladder and lung are characterized by a convergent but distinct pathogenesis. Clin. Cancer Res. 24, 1965–1973 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Siddall, N. A., McLaughlin, E. A., Marriner, N. L. & Hime, G. R. The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. Proc. Natl Acad. Sci. USA 103, 8402–8407 (2006).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Celià-Terrassa, T. et al. Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR axis. Nat. Cell Biol. 19, 711–723 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cordes, K. R. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705–710 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Rajman, M. & Schratt, G. MicroRNAs in neural development: from master regulators to fine-tuners. Development 144, 2310–2322 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Borromeo, M. D. et al. ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep. 16, 1259–1272 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rudin, C. M. et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat. Rev. Cancer 19, 289–297 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Feng, M. et al. Identification of lineage specific transcriptional factor defined molecular subtypes in small cell bladder cancer. Eur. Urol. S0302-2838, 02830 (2023).

    Google Scholar 

  74. Priemer, D. S. et al. Small-cell carcinomas of the urinary bladder and prostate: TERT promoter mutation status differentiates sites of malignancy and provides evidence of common clonality between small-cell carcinoma of the urinary bladder and urothelial carcinoma. Eur. Urol. Focus. 4, 880–888 (2018).

    Article  PubMed  Google Scholar 

  75. Cheng, L. et al. Molecular genetic evidence for a common clonal origin of urinary bladder small cell carcinoma and coexisting urothelial carcinoma. Am. J. Pathol. 166, 1533–1539 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma, S. R. et al. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Mol. Cancer 16, 99 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. ClinicalTrials.gov. Atezolizumab Plus Etoposide and Platinum in Small Cell Bladder Cancer clinical trials.gov NCT05312671. https://clinicaltrials.gov/study/NCT05312671 (2023).

  78. Wang, L. et al. A genetically defined disease model reveals that urothelial cells can initiate divergent bladder cancer phenotypes. Proc. Natl Acad. Sci. USA 117, 201915770 (2019).

    Google Scholar 

  79. Muranaka, T. et al. Clinical characteristics and treatment outcomes of patients with small cell carcinoma of the urinary bladder. Curr. Urol. 16, 136–141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rickman, D. S., Beltran, H., Demichelis, F. & Rubin, M. A. Biology and evolution of poorly differentiated neuroendocrine tumors. Nat. Med. 23, 1–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Ireland, A. S. et al. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell 38, 60–78.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hoffman-Censits, J. et al. Small cell bladder cancer response to second-line and beyond checkpoint inhibitor therapy: retrospective experience. Clin. Genitourin. Cancer 19, 176–181 (2021).

    Article  PubMed  Google Scholar 

  83. Kim, J. et al. The Cancer Genome Atlas expression subtypes stratify response to checkpoint inhibition in advanced urothelial cancer and identify a subset of patients with high survival probability. Eur. Urol. 75, 961–964 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. clinicaltrials.gov. National Cancer Institute. Evaluating the Addition of the Immunotherapy Drug Atezolizumab to Standard Chemotherapy Treatment for Advanced or Metastatic Neuroendocrine Carcinomas That Originate Outside the Lung (NCT05058651). https://clinicaltrials.gov/study/NCT05058651 (2024).

  85. Hoffman-Censits, J. H. et al. Expression of Nectin-4 in bladder urothelial carcinoma, in morphologic variants, and nonurothelial histotypes. Appl. Immunohistochem. Mol. Morphol. 29, 619–625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mollaoglu, G. et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell 31, 270–285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chalishazar, M. D. et al. MYC-driven small-cell lung cancer is metabolically distinct and vulnerable to arginine depletion. Clin. Cancer Res. 25, 5107–5121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moch H, H. P., Ulbright TM, Retuer VE. WHO Classification of Tumours of the Urinary System and Male Genital Organs. 4th edn, 77–133 (IARC Press, 2016).

  89. Lee, K. H. et al. MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. Biochim. Biophys. Acta Mol. Cell Res. 1843, 2055–2066 (2014).

    Article  CAS  Google Scholar 

  90. Savi, F. et al. miR-296/scribble axis is deregulated in human breast cancer and miR-296 restoration reduces tumour growth in vivo. Clin. Sci. 127, 233–242 (2014).

    Article  CAS  ADS  Google Scholar 

  91. Wei, J. J. et al. Regulation of HMGA1 expression by MicroRNA-296 affects prostate cancer growth and invasion. Clin. Cancer Res. 17, 1297–1305 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Vaira, V. et al. MiR-296 regulation of a cell polarity-cell plasticity module controls tumor progression. Oncogene 31, 27–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Gentili, C. et al. Chromosome missegregation associated with RUVBL1 deficiency. PLoS ONE 10, e0133576 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Taniuchi, K. et al. RUVBL1 directly binds actin filaments and induces formation of cell protrusions to promote pancreatic cancer cell invasion. Int. J. Oncol. 45, 1945–1954 (2014).

    Article  Google Scholar 

  95. Ross, J. S. et al. A high frequency of activating extracellular domain ERBB2 (HER2) mutation in micropapillary urothelial carcinoma. Clin. Cancer Res. 20, 68–75 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  96. Isharwal, S. et al. Intratumoral heterogeneity of ERBB2 amplification and HER2 expression in micropapillary urothelial carcinoma. Hum. Pathol. 77, 63–69 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zinnall, U. et al. Micropapillary urothelial carcinoma: evaluation of HER2 status and immunohistochemical characterization of the molecular subtype. Hum. Pathol. 80, 55–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Schneider, S. A. et al. Outcome of patients with micropapillary urothelial carcinoma following radical cystectomy: ERBB2 (HER2) amplification identifies patients with poor outcome. Mod. Pathol. 27, 758–764 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. de Martino, M. et al. Impact of ERBB2 mutations on in vitro sensitivity of bladder cancer to lapatinib. Cancer Biol. Ther. 15, 1239–1247 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Oudard, S. et al. Multicentre randomised phase II trial of gemcitabine+platinum, with or without trastuzumab, in advanced or metastatic urothelial carcinoma overexpressing Her2. Eur. J. Cancer 51, 45–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Kinde, I. et al. TERT promoter mutations occur early in urothelial neoplasia and are biomarkers of early disease and disease recurrence in urine. Cancer Res. 73, 7162–7167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Allory, Y. et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur. Urol. 65, 360–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Nguyen, D. et al. High prevalence of TERT promoter mutations in micropapillary urothelial carcinoma. Virchows Arch. 469, 427–434 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chung, J. H., Lee, C. U., Lee, D. H. & Song, W. Expression and prognostic implication of PD-L1 in patients with urothelial carcinoma with variant histology (squamous differentiation or micropapillary) undergoing radical cystectomy. Biomedicines 10, 910 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, Z. et al. B7-H4 correlates with clinical outcome and immunotherapeutic benefit in muscle-invasive bladder cancer. Eur. J. Cancer 171, 133–142 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Fox, M. D. et al. Plasmacytoid urothelial carcinoma of the urinary bladder: a clinicopathologic and immunohistochemical analysis of 49 cases. Am. J. Clin. Pathol. 147, 500–506 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Diamantopoulos, L. N. et al. Plasmacytoid urothelial carcinoma: response to chemotherapy and oncologic outcomes. Bladder Cancer 6, 71–81 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Warrick, J. I. et al. FOXA1 and CK14 as markers of luminal and basal subtypes in histologic variants of bladder cancer and their associated conventional urothelial carcinoma. Virchows Arch. 471, 337–345 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Teo, M. Y. et al. Natural history, response to systemic therapy, and genomic landscape of plasmacytoid urothelial carcinoma. Br. J. Cancer 124, 1214–1221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Trillsch, F. et al. E-cadherin fragments as potential mediators for peritoneal metastasis in advanced epithelial ovarian cancer. Br. J. Cancer 114, 213–220 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  CAS  ADS  Google Scholar 

  112. Palsgrove, D. N. et al. Targeted sequencing of plasmacytoid urothelial carcinoma reveals frequent TERT promoter mutations. Hum. Pathol. 85, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. USCAP 2022 Abstracts. Genitourinary pathology (including renal tumors) (522-659). Mod. Pathol. 35, 657–806 (2022).

    Article  Google Scholar 

  114. Taga, M. et al. A potential role for 6-sulfo sialyl Lewis X in metastasis of bladder urothelial carcinoma. Urol. Oncol. 33, 496.e491–499 (2015).

    Article  Google Scholar 

  115. Weller, A., Isenmann, S. & Vestweber, D. Cloning of the mouse endothelial selectins. Expression of both E- and P-selectin is inducible by tumor necrosis factor alpha. J. Biol. Chem. 267, 15176–15183 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Majewski et al. Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy. Lab. Invest 88, 694–721 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Robertson et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 174, 1033 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.C.G., S.L., J.G.L., H.C., M.Z., W.C., P.W. and B.C. researched data for the article. C.C.G. and B.C. contributed substantially to discussion of the content. C.C.G. and B.C. wrote the article. C.C.G., D.J.M. and B.C. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Bogdan Czerniak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Liang Cheng and Veronika Weyerer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C.C., Lee, S., Lee, J.G. et al. Molecular profile of bladder cancer progression to clinically aggressive subtypes. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-023-00847-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-023-00847-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing