Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extracellular vesicles in urological malignancies: an update

A Publisher Correction to this article was published on 18 December 2019

This article has been updated

Abstract

Extracellular vesicles (EVs) have an essential functional role in local tumour progression, metastatic spread and the emergence of drug resistance in bladder, kidney and prostate cancer. Thus, EVs could be diagnostic, prognostic and predictive biomarkers for these malignancies. Virtually all biomolecules (including DNA, mRNA, microRNA, long non-coding RNA, proteins and lipids) packaged into EVs have been tested as biomarkers in blood and urine samples. The results are very heterogeneous, but promising biomarker candidates have been identified. Differing methods of EV isolation, characterization and analysis of their content have been used owing to a lack of international consensus; hence, comparing study results is challenging. Furthermore, validation of potential biomarkers in independent cohorts or prospective trials has rarely been performed. Future efforts to establish EV-derived biomarkers need to adequately address these points. In addition, emerging technologies such as mass spectroscopy and chip-based approaches can identify surface markers specific for cancer-associated EVs and will enable specific separation from blood and urine EVs, which probably will improve their performance as biomarkers. Moreover, EVs could be harnessed as therapeutic drug delivery vehicles for precise and effective anticancer therapy.

Key points

  • Extracellular vesicles (EVs) isolated from different body fluids reflect the molecular profile of their parental cells and are, therefore, a new class of biomarkers in liquid biopsies from patients with urological cancer.

  • Biomarker studies are mainly focused on mRNAs and microRNAs as the most promising diagnostic tools using EVs in bladder, kidney and prostate cancer; data on prognostic and predictive EV markers are still limited.

  • Comparability and reproducibility of published data is complicated because different isolation techniques have been used; in order to introduce EVs into clinical management, standardized techniques for routine isolation and characterization need to be defined.

  • Identification of tumour-specific EV markers (such as prostate-specific membrane antigen in prostate cancer) will increase their diagnostic accuracy.

  • EVs regulate communication between tumour cells and the microenvironment supporting tumour development and prepare premetastatic niches via systemic circulation to distant sites; EVs stimulate angiogenesis, support immune evasion and affect therapy response in bladder, kidney and prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation and characterization of EVs.
Fig. 2: Extracellular vesicle-mediated interaction between donor and recipient cells.
Fig. 3
Fig. 4: Systemic effects of EVs.

Similar content being viewed by others

Change history

References

  1. Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Akers, J. C., Gonda, D., Kim, R., Carter, B. S. & Chen, C. C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol. 113, 1–11 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Hessvik, N. P. & Llorente, A. Current knowledge on exosome biogenesis and release. Cell Mol. Life Sci. 75, 193–208 (2018).

    CAS  PubMed  Google Scholar 

  4. Duijvesz, D., Luider, T., Bangma, C. H. & Jenster, G. Exosomes as biomarker treasure chests for prostate cancer. Eur. Urol. 59, 823–831 (2011).

    CAS  PubMed  Google Scholar 

  5. van der Pol, E., Boing, A. N., Gool, E. L. & Nieuwland, R. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J. Thromb. Haemost. 14, 48–56 (2016).

    PubMed  Google Scholar 

  6. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Atkin-Smith, G. K. et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat. Commun. 6, 7439 (2015).

    PubMed  Google Scholar 

  8. Hauser, P., Wang, S. & Didenko, V. V. Apoptotic bodies: selective detection in extracellular vesicles. Methods Mol. Biol. 1554, 193–200 (2017).

    CAS  PubMed  Google Scholar 

  9. Stridsberg, M., Fabiani, R., Lukinius, A. & Ronquist, G. Prostasomes are neuroendocrine-like vesicles in human semen. Prostate 29, 287–295 (1996).

    CAS  PubMed  Google Scholar 

  10. Carlsson, L. et al. Characteristics of human prostasomes isolated from three different sources. Prostate 54, 322–330 (2003).

    CAS  PubMed  Google Scholar 

  11. Aalberts, M., Stout, T. A. & Stoorvogel, W. Prostasomes: extracellular vesicles from the prostate. Reproduction 147, R1–R14 (2014).

    CAS  PubMed  Google Scholar 

  12. Zijlstra, C. & Stoorvogel, W. Prostasomes as a source of diagnostic biomarkers for prostate cancer. J. Clin. Invest. 126, 1144–1151 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Gould, S. J. & Raposo, G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2, 20389 (2013).

    Google Scholar 

  14. Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).

    Google Scholar 

  15. Abels, E. R. & Breakefield, X. O. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell. Mol. Neurobiol. 36, 301–312 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. O'Driscoll, L. Expanding on exosomes and ectosomes in cancer. N Engl. J. Med. 372, 2359–2362 (2015).

    CAS  PubMed  Google Scholar 

  17. Junker, K., Heinzelmann, J., Beckham, C., Ochiya, T. & Jenster, G. Extracellular vesicles and their role in urologic malignancies. Eur. Urol. 70, 323–331 (2016).

    PubMed  Google Scholar 

  18. Nawaz, M. et al. The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nat. Rev. Urol. 11, 688–701 (2014).

    PubMed  Google Scholar 

  19. Tkach, M. & Thery, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    CAS  PubMed  Google Scholar 

  20. Kosaka, N., Yoshioka, Y., Fujita, Y. & Ochiya, T. Versatile roles of extracellular vesicles in cancer. J. Clin. Invest. 126, 1163–1172 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Madeo, M. et al. Cancer exosomes induce tumor innervation. Nat. Commun. 9, 4284 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Ringuette Goulet, C. et al. Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFbeta signaling. Mol. Cancer Res. 16, 1196–1204 (2018).

    CAS  PubMed  Google Scholar 

  23. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Roccaro, A. M. et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J. Clin. Invest. 123, 1542–1555 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ono, M. et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal. 7, ra63 (2014).

    PubMed  Google Scholar 

  27. Zhao, H. et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 5, e10250 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Lobb, R. J. et al. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. Int. J. Cancer 141, 614–620 (2017).

    CAS  PubMed  Google Scholar 

  29. Qu, L. et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29, 653–668 (2016).

    CAS  PubMed  Google Scholar 

  30. Tang, Y. T. et al. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int. J. Mol. Med. 40, 834–844 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ding, M. et al. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal. Bioanal. Chem. 410, 3805–3814 (2018).

    CAS  PubMed  Google Scholar 

  32. Chiriaco, M. S. et al. Lab-on-chip for exosomes and microvesicles detection and characterization. Sensors 18, E3175 (2018).

    PubMed  Google Scholar 

  33. Sharma, S., LeClaire, M. & Gimzewski, J. K. Ascent of atomic force microscopy as a nanoanalytical tool for exosomes and other extracellular vesicles. Nanotechnology 29, 132001 (2018).

    CAS  PubMed  Google Scholar 

  34. Grasso, L. et al. Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal. Bioanal. Chem. 407, 5425–5432 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Padda, R. S. et al. Nanoscale flow cytometry to distinguish subpopulations of prostate extracellular vesicles in patient plasma. Prostate 79, 592–603 (2019).

    CAS  PubMed  Google Scholar 

  36. Morales-Kastresana, A. et al. Labeling extracellular vesicles for nanoscale flow cytometry. Sci. Rep. 7, 1878 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Jimenez, L. et al. Quantitative proteomic analysis of small and large extracellular vesicles (EVs) reveals enrichment of adhesion proteins in small EVs. J. Proteome Res. 18, 947–959 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kreimer, S. et al. Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J. Proteome Res. 14, 2367–2384 (2015).

    CAS  PubMed  Google Scholar 

  39. McGranahan, N. & Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27, 15–26 (2015).

    CAS  PubMed  Google Scholar 

  40. Corcoran, R. B. & Chabner, B. A. Application of cell-free DNA analysis to cancer treatment. N. Engl. J. Med. 379, 1754–1765 (2018).

    CAS  PubMed  Google Scholar 

  41. Gorin, M. A. et al. Circulating tumour cells as biomarkers of prostate, bladder, and kidney cancer. Nat. Rev. Urol. 14, 90–97 (2017).

    CAS  PubMed  Google Scholar 

  42. Hille, C. & Pantel, K. Prostate cancer: circulating tumour cells in prostate cancer. Nat. Rev. Urol. 15, 265–266 (2018).

    CAS  PubMed  Google Scholar 

  43. Werner, S., Keller, L. & Pantel, K. Epithelial keratins: biology and implications as diagnostic markers for liquid biopsies. Mol. Aspects Med. https://doi.org/10.1016/j.mam.2019.09.001 (2019).

  44. Mader, S. & Pantel, K. Liquid biopsy: current status and future perspectives. Oncol. Res. Treat. 40, 404–408 (2017).

    CAS  PubMed  Google Scholar 

  45. Volik, S., Alcaide, M., Morin, R. D. & Collins, C. Cell-free DNA (cfDNA): clinical significance and utility in cancer shaped by emerging technologies. Mol. Cancer Res. 14, 898–908 (2016).

    CAS  PubMed  Google Scholar 

  46. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lotan, Y. & Roehrborn, C. G. Sensitivity and specificity of commonly available bladder tumor markers versus cytology: results of a comprehensive literature review and meta-analyses. Urology 61, 109–118 (2003).

    PubMed  Google Scholar 

  48. Schmitz-Drager, B. J. et al. Molecular markers for bladder cancer screening, early diagnosis, and surveillance: the WHO/ICUD consensus. Urol. Int. 94, 1–24 (2015).

    PubMed  Google Scholar 

  49. Mowatt, G. et al. Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol. Assess. 14, 1–331 (2010).

    CAS  PubMed  Google Scholar 

  50. Armstrong, D. A., Green, B. B., Seigne, J. D., Schned, A. R. & Marsit, C. J. MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer. Mol. Cancer 14, 194 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Baumgart, S. et al. Invasion-associated miRNAs S as possible diagnostic biomarkers of muscle invasive bladder cancer in tumor tissues and urinary exosomes. J. Urol. 199, E1038 (2018).

    Google Scholar 

  52. Andreu, Z. et al. Extracellular vesicles as a source for non-invasive biomarkers in bladder cancer progression. Eur. J. Pharm. Sci. 98, 70–79 (2017).

    CAS  PubMed  Google Scholar 

  53. De Long, J. et al. A non-invasive miRNA based assay to detect bladder cancer in cell-free urine. Am. J. Transl. Res. 7, 2500–250 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Royo, F. et al. Comparative miRNA analysis of urine extracellular vesicles isolated through five different methods. Cancers 8, E112 (2016).

    PubMed  Google Scholar 

  55. Berrondo, C. et al. Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLOS ONE 11, e0147236 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J. & Kleinschmidt, A. K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA 73, 3852–3856 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, X. et al. PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial-mesenchymal transition. Clin. Cancer Res. 24, 6319–6330 (2018).

    CAS  PubMed  Google Scholar 

  58. Katsuda, T., Kosaka, N. & Ochiya, T. The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 14, 412–425 (2014).

    CAS  PubMed  Google Scholar 

  59. Murakami, T. et al. Bladder cancer detection by urinary extracellular vesicle mRNA analysis. Oncotarget 9, 32810–32821 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Afsharpad, M. et al. Cancer-testis antigens as new candidate diagnostic biomarkers for transitional cell carcinoma of bladder. Pathol. Oncol. Res. 25, (191–199 (2019).

    Google Scholar 

  61. Esfandiary, A. & Ghafouri-Fard, S. New York esophageal squamous cell carcinoma-1 and cancer immunotherapy. Immunotherapy 7, 411–439 (2015).

    CAS  PubMed  Google Scholar 

  62. Yazarlou, F. et al. Urine exosome gene expression of cancer-testis antigens for prediction of bladder carcinoma. Cancer Manag. Res. 10, 5373–5381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, J. et al. Altered proteome of extracellular vesicles derived from bladder cancer patients urine. Mol. Cell 41, 179–187 (2018).

    CAS  Google Scholar 

  64. Silvers, C. R., Miyamoto, H., Messing, E. M., Netto, G. J. & Lee, Y. F. Characterization of urinary extracellular vesicle proteins in muscle-invasive bladder cancer. Oncotarget 8, 91199–91208 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Lin, S. Y. et al. Proteome profiling of urinary exosomes identifies alpha 1-antitrypsin and H2B1K as diagnostic and prognostic biomarkers for urothelial carcinoma. Sci. Rep. 6, 34446 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Silvers, C. R. et al. Identification of extracellular vesicle-borne periostin as a feature of muscle-invasive bladder cancer. Oncotarget 7, 23335–23345 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Zhang, S. et al. Evaluation of serum exosomal lncRNA-based biomarker panel for diagnosis and recurrence prediction of bladder cancer. J. Cell. Mol. Med. 23, 1396–1405 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Xue, M. et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol. Cancer 16, 143 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Marconi, L. et al. Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur. Urol. 69, 660–673 (2016).

    PubMed  Google Scholar 

  70. Zhang, W. et al. MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur. Urol. Focus 4, 412–419 (2018).

    PubMed  Google Scholar 

  71. Zimpfer, A. et al. Prognostic and diagnostic implications of epithelial cell adhesion/activating molecule (EpCAM) expression in renal tumours: a retrospective clinicopathological study of 948 cases using tissue microarrays. BJU Int. 114, 296–302 (2014).

    CAS  PubMed  Google Scholar 

  72. Wang, X. et al. Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma. J. Cell. Biochem. https://doi.org/10.1002/jcb.27347 (2018).

  73. Liu, H. et al. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell renal cell carcinoma. BMC Syst. Biol. 4, 51 (2010).

    PubMed  PubMed Central  Google Scholar 

  74. Fujii, N. et al. Extracellular miR-224 as a prognostic marker for clear cell renal cell carcinoma. Oncotarget 8, 109877–109888 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Du, M. J. et al. Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer. Oncotarget 8, 63703–63714 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Butz, H. et al. Exosomal microRNAs are diagnostic biomarkers and can mediate cell–cell communication in renal cell carcinoma. Eur. Urol. Focus 2, 210–218 (2016).

    PubMed  Google Scholar 

  77. Crentsil, V. C., Liu, H. & Sellitti, D. F. Comparison of exosomal microRNAs secreted by 786-O clear cell renal carcinoma cells and HK-2 proximal tubule-derived cells in culture identifies microRNA-205 as a potential biomarker of clear cell renal carcinoma. Oncol. Lett. 16, 1285–1290 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. De Palma, G. et al. The three-gene signature in urinary extracellular vesicles from patients with clear cell renal cell carcinoma. J. Cancer 7, 1960–1967 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. Raimondo, F. et al. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol. Biosyst. 9, 1220–1233 (2013).

    CAS  PubMed  Google Scholar 

  80. Del Boccio, P. et al. A hyphenated microLC-Q-TOF-MS platform for exosomal lipidomics investigations: application to RCC urinary exosomes. Electrophoresis 33, 689–696 (2012).

    PubMed  Google Scholar 

  81. Boyd, L. K., Mao, X. & Lu, Y. J. The complexity of prostate cancer: genomic alterations and heterogeneity. Nat. Rev. Urol. 9, 652–664 (2012).

    PubMed  Google Scholar 

  82. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fraser, M. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541, 359–364 (2017).

    CAS  PubMed  Google Scholar 

  84. Fitzpatrick, J. M., Banu, E. & Oudard, S. Prostate-specific antigen kinetics in localized and advanced prostate cancer. BJU Int. 103, 578–587 (2009).

    PubMed  Google Scholar 

  85. Mottet, N. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 71, 618–629 (2017).

    PubMed  Google Scholar 

  86. Cornford, P. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur. Urol. 71, 630–642 (2017).

    PubMed  Google Scholar 

  87. Heijnsdijk, E. A. M. et al. Summary statement on screening for prostate cancer in Europe. Int. J. Cancer 142, 741–746 (2018).

    CAS  PubMed  Google Scholar 

  88. Catalona, W. J. Prostate cancer screening. Med. Clin. North. Am. 102, 199–214 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. de Bono, J. S. et al. Randomized phase II study evaluating Akt blockade with ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss. Clin. Cancer Res. 25, 928–936 (2019).

    PubMed  Google Scholar 

  92. Luo, J. et al. Role of androgen receptor variants in prostate cancer: report from the 2017 Mission Androgen Receptor Variants Meeting. Eur. Urol. 73, 715–723 (2018).

    PubMed  Google Scholar 

  93. Fletcher, C. AR-v7 liquid biopsy for treatment stratification in prostate cancer: how close are we? Curr. Opin. Urol. 27, 500–509 (2017).

    PubMed  Google Scholar 

  94. Pan, J., Ding, M., Xu, K., Yang, C. & Mao, L. J. Exosomes in diagnosis and therapy of prostate cancer. Oncotarget 8, 97693–97700 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Valentino, A. et al. Exosomal microRNAs in liquid biopsies: future biomarkers for prostate cancer. Clin. Transl. Oncol. 19, 651–657 (2017).

    CAS  PubMed  Google Scholar 

  96. Donovan, M. J. et al. A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis. 18, 370–375 (2015).

    CAS  PubMed  Google Scholar 

  97. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  PubMed  Google Scholar 

  98. Mehra, R. et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod. Pathol. 20, 538–544 (2007).

    CAS  PubMed  Google Scholar 

  99. Berg, K. D. et al. The predictive value of ERG protein expression for development of castration-resistant prostate cancer in hormone-naive advanced prostate cancer treated with primary androgen deprivation therapy. Prostate 75, 1499–1509 (2015).

    CAS  PubMed  Google Scholar 

  100. de Kok, J. B. et al. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res. 62, 2695–2698 (2002).

    PubMed  Google Scholar 

  101. Hessels, D. et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 44, 8–15; discussion 15–16 (2003).

    CAS  PubMed  Google Scholar 

  102. Haese, A. et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur. Urol. 54, 1081–1088 (2008).

    PubMed  Google Scholar 

  103. McKiernan, J. et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2, 882–889 (2016).

    PubMed  Google Scholar 

  104. McKiernan, J. et al. A prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2-10ng/ml at initial biopsy. Eur. Urol. 74, 731–738 (2018).

    CAS  PubMed  Google Scholar 

  105. Leyten, G. H. et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur. Urol. 65, 534–542 (2014).

    CAS  PubMed  Google Scholar 

  106. Tomlins, S. A. et al. Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur. Urol. 70, 45–53 (2016).

    CAS  PubMed  Google Scholar 

  107. Antonarakis, E. S. et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. OJAMA Oncol. 1, 582–591 (2015).

    Google Scholar 

  108. Del, Re,M. et al. The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur. Urol. 71, 680–687 (2017).

    Google Scholar 

  109. Woo, H. K. et al. Urine-based liquid biopsy: non-invasive and sensitive AR-V7 detection in urinary EVs from patients with prostate cancer. Lab. Chip 19, 87–97 (2018).

    PubMed  Google Scholar 

  110. Cucchiara, V. et al. Genomic markers in prostate cancer decision making. Eur. Urol. 73, 572–582 (2018).

    PubMed  Google Scholar 

  111. Zeuschner, P., Linxweiler, J. & Junker, K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert. Rev. Mol. Diagn. https://doi.org/10.1080/14737159.2019.1665998 (2019).

  112. Huang, X. et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol. 67, 33–41 (2015).

    CAS  PubMed  Google Scholar 

  113. Bhagirath, D. et al. MicroRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 78, 1833–1844 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Endzelins, E. et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 17, 730 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Foj, L. et al. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate 77, 573–583 (2017).

    CAS  PubMed  Google Scholar 

  116. Li, Z. et al. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther. 9, 139–148 (2016).

    CAS  PubMed  Google Scholar 

  117. Bryant, R. J. et al. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer 106, 768–774 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Khan, S. et al. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLOS ONE 7, e46737 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bijnsdorp, I. V. et al. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J. Extracell. Vesicles 2, 22097 (2013).

    Google Scholar 

  120. Wang, Y. H. et al. Tumor-derived exosomal long noncoding RNAs as promising diagnostic biomarkers for prostate cancer. Cell Physiol. Biochem. 46, 532–545 (2018).

    CAS  PubMed  Google Scholar 

  121. Clos-Garcia, M. et al. Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression. J. Extracell. Vesicles 7, 1470442 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Skotland, T. et al. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur. J. Cancer 70, 122–132 (2017).

    CAS  PubMed  Google Scholar 

  123. Shah, R., Patel, T. & Freedman, J. E. Circulating extracellular vesicles in human disease. N Engl. J. Med. 379, 958–966 (2018).

    CAS  PubMed  Google Scholar 

  124. Namee, N. M. & O'Driscoll, L. Extracellular vesicles and anti-cancer drug resistance. Biochim. Biophys. Acta Rev. Cancer 1870, 123–136 (2018).

    CAS  PubMed  Google Scholar 

  125. Webber, J., Yeung, V. & Clayton, A. Extracellular vesicles as modulators of the cancer microenvironment. Semin. Cell Dev. Biol. 40, 27–34 (2015).

    CAS  PubMed  Google Scholar 

  126. Xu, H. et al. Exosome-transmitted PSMA3 and PSMA3-AS1 promote proteasome inhibitor resistance in multiple myeloma. Clin. Cancer Res. 25, 1923–1935 (2019).

    CAS  PubMed  Google Scholar 

  127. Binenbaum, Y. et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 78, 5287–5299 (2018).

    CAS  PubMed  Google Scholar 

  128. Yang, L., Wu, X. H., Wang, D., Luo, C. L. & Chen, L. X. Bladder cancer cell-derived exosomes inhibit tumor cell apoptosis and induce cell proliferation in vitro. Mol. Med. Rep. 8, 1272–1278 (2013).

    CAS  PubMed  Google Scholar 

  129. Beckham, C. J. et al. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J. Urol. 192, 583–592 (2014).

    CAS  PubMed  Google Scholar 

  130. King, H. W., Michael, M. Z. & Gleadle, J. M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12, 421 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kucharzewska, P. et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc. Natl Acad. Sci. USA 110, 7312–7317 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Xue, M., Li, X., Li, Z. & Chen, W. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1alpha-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol. 35, 6901–6912 (2014).

    CAS  PubMed  Google Scholar 

  133. Franzen, C. A. et al. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis 4, e163 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ostenfeld, M. S. et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res. 74, 5758–5771 (2014).

    CAS  PubMed  Google Scholar 

  135. Goulet, C. R. et al. Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGF beta signaling. Mol. Cancer Res. 16, 1196–1204 (2018).

    Google Scholar 

  136. Zhang, L. et al. The 786-0 renal cancer cell-derived exosomes promote angiogenesis by downregulating the expression of hepatocyte cell adhesion molecule. Mol. Med. Rep. 8, 272–276 (2013).

    CAS  PubMed  Google Scholar 

  137. Jiang, X. L., Zhang, Y., Tan, B., Luo, C. L. & Wu, X. H. Renal tumor-derived exosomes inhibit hepaCAM expression of renal carcinoma cells in a p-AKT-dependent manner. Neoplasma 61, 416–423 (2014).

    CAS  PubMed  Google Scholar 

  138. Horie, K. et al. Exosomes expressing carbonic anhydrase 9 promote angiogenesis. Biochem. Biophys. Res. Commun. 492, 356–361 (2017).

    CAS  PubMed  Google Scholar 

  139. Logozzi, M. et al. Prostate cancer cells and exosomes in acidic condition show increased carbonic anhydrase IX expression and activity. J. Enzyme Inhib. Med. Chem. 34, 272–278 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Grange, C. et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71, 5346–5356 (2011).

    CAS  PubMed  Google Scholar 

  141. Jingushi, K. et al. Extracellular vesicles isolated from human renal cell carcinoma tissues disrupt vascular endothelial cell morphology via azurocidin. Int. J. Cancer 142, 607–617 (2018).

    CAS  PubMed  Google Scholar 

  142. Lindoso, R. S., Collino, F. & Camussi, G. Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells. Oncotarget 6, 7959–7969 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. Du, T. et al. Microvesicles derived from human Wharton's jelly mesenchymal stem cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor. PLOS ONE 9, e96836 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Xia, Y. et al. Negatively regulation of tumor-infiltrating NK cell in clear cell renal cell carcinoma patients through the exosomal pathway. Oncotarget 8, 37783–37795 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Diao, J. et al. Exosomal Hsp70 mediates immunosuppressive activity of the myeloid-derived suppressor cells via phosphorylation of Stat3. Med. Oncol. 32, 453 (2015).

    PubMed  Google Scholar 

  146. Webber, J., Steadman, R., Mason, M. D., Tabi, Z. & Clayton, A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 70, 9621–9630 (2010).

    CAS  PubMed  Google Scholar 

  147. Chowdhury, R. et al. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget 6, 715–731 (2015).

    PubMed  Google Scholar 

  148. Lu, H. et al. Exosomal alphavbeta6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol. 70, 20–35 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lazaro-Ibanez, E. et al. Metastatic state of parent cells influences the uptake and functionality of prostate cancer cell-derived extracellular vesicles. J. Extracell. Vesicles 6, 1354645 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. Singh, A. et al. Exosome-mediated transfer of alphavbeta3 integrin from tumorigenic to nontumorigenic cells promotes a migratory phenotype. Mol. Cancer Res. 14, 1136–1146 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Sanchez, C. A. et al. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget 7, 3993–4008 (2016).

    PubMed  Google Scholar 

  152. Bilusic, M., Madan, R. A. & Gulley, J. L. Immunotherapy of prostate cancer: facts and hopes. Clin. Cancer Res. 23, 6764–6770 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Gao, J. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 23, 551–555 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Salimu, J. et al. Dominant immunosuppression of dendritic cell function by prostate-cancer-derived exosomes. J. Extracell. Vesicles 6, 1368823 (2017).

    PubMed  PubMed Central  Google Scholar 

  156. Clayton, A., Al-Taei, S., Webber, J., Mason, M. D. & Tabi, Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J. Immunol. 187, 676–683 (2011).

    CAS  PubMed  Google Scholar 

  157. Clayton, A., Mitchell, J. P., Court, J., Mason, M. D. & Tabi, Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 67, 7458–7466 (2007).

    CAS  PubMed  Google Scholar 

  158. Clayton, A. et al. Human tumor-derived exosomes down-modulate NKG2D expression. J. Immunol. 180, 7249–7258 (2008).

    CAS  PubMed  Google Scholar 

  159. Lundholm, M. et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLOS ONE 9, e108925 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Hashimoto, K. et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc. Natl Acad. Sci. USA 115, 2204–2209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ye, Y. et al. Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget 8, 94834–94849 (2017).

    PubMed  PubMed Central  Google Scholar 

  162. Karlsson, T., Lundholm, M., Widmark, A. & Persson, E. Tumor cell-derived exosomes from the prostate cancer cell line TRAMP-C1 impair osteoclast formation and differentiation. PLOS ONE 11, e0166284 (2016).

    PubMed  PubMed Central  Google Scholar 

  163. Li, J. et al. Exosome-derived microRNAs contribute to prostate cancer chemoresistance. Int. J. Oncol. 49, 838–846 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Ramteke, A. et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol. Carcinog. 54, 554–565 (2015).

    CAS  PubMed  Google Scholar 

  165. Kumar, D., Gupta, D., Shankar, S. & Srivastava, R. K. Biomolecular characterization of exosomes released from cancer stem cells: possible implications for biomarker and treatment of cancer. Oncotarget 6, 3280–3291 (2015).

    PubMed  Google Scholar 

  166. Hosseini-Beheshti, E. et al. Exosomes confer pro-survival signals to alter the phenotype of prostate cells in their surrounding environment. Oncotarget 7, 14639–14658 (2016).

    PubMed  PubMed Central  Google Scholar 

  167. Kharmate, G., Hosseini-Beheshti, E., Caradec, J., Chin, M. Y. & Tomlinson Guns, E. S. Epidermal growth factor receptor in prostate cancer derived exosomes. PLOS ONE 11, e0154967 (2016).

    PubMed  PubMed Central  Google Scholar 

  168. Corcoran, C. et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLOS ONE 7, e50999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Kharaziha, P. et al. Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. Oncotarget 6, 21740–21754 (2015).

    PubMed  PubMed Central  Google Scholar 

  170. Kawakami, K. et al. Integrin beta4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. Int. J. Oncol. 47, 384–390 (2015).

    CAS  PubMed  Google Scholar 

  171. Kato, T. et al. Serum exosomal P-glycoprotein is a potential marker to diagnose docetaxel resistance and select a taxoid for patients with prostate cancer. Urol. Oncol. 33, 385.e15–e20 (2015).

    CAS  Google Scholar 

  172. Vagner, T. et al. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J. Extracell. Vesicles 7, 1505403 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Becker, A. et al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30, 836–848 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Schwarzenbach, H., da Silva, A. M., Calin, G. & Pantel, K. Data normalization strategies for microRNA quantification. Clin. Chem. 61, 1333–1342 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Anand, S., Samuel, M., Kumar, S. & Mathivanan, S. Ticket to a bubble ride: cargo sorting into exosomes and extracellular vesicles. Biochim. Biophys. Acta Proteins Proteom. 1867, 140203 (2019).

    CAS  PubMed  Google Scholar 

  176. Villarroya-Beltri, C., Baixauli, F., Gutierrez-Vazquez, C., Sanchez-Madrid, F. & Mittelbrunn, M. Sorting it out: regulation of exosome loading. Semin. Cancer Biol. 28, 3–13 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Hisey, C. L., Dorayappan, K. D. P., Cohn, D. E., Selvendiran, K. & Hansford, D. J. Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes. Lab. Chip 18, 3144–3153 (2018).

    CAS  PubMed  Google Scholar 

  178. Kanwar, S. S., Dunlay, C. J., Simeone, D. M. & Nagrath, S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab. Chip 14, 1891–1900 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Brett, S. I. et al. Immunoaffinity based methods are superior to kits for purification of prostate derived extracellular vesicles from plasma samples. Prostate 77, 1335–1343 (2017).

    CAS  PubMed  Google Scholar 

  180. Biggs, C. N. et al. Prostate extracellular vesicles in patient plasma as a liquid biopsy platform for prostate cancer using nanoscale flow cytometry. Oncotarget 7, 8839–8849 (2016).

    PubMed  PubMed Central  Google Scholar 

  181. Mizutani, K. et al. Isolation of prostate cancer-related exosomes. Anticancer Res. 34, 3419–3423 (2014).

    CAS  PubMed  Google Scholar 

  182. Welton, J. L. et al. Proteomics analysis of bladder cancer exosomes. Mol. Cell Proteom. 9, 1324–1338 (2010).

    CAS  Google Scholar 

  183. Jin, D. et al. ExoAPP: exosome-oriented, aptamer nanoprobe-enabled surface proteins profiling and detection. Anal. Chem. 90, 14402–14411 (2018).

    CAS  PubMed  Google Scholar 

  184. Castillo, J. et al. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann. Oncol. 29, 223–229 (2018).

    CAS  PubMed  Google Scholar 

  185. Das, C. K. et al. Exosome as a novel shuttle for delivery of therapeutics across biological barriers. Mol. Pharm. 16, 24–40 (2018).

    PubMed  Google Scholar 

  186. Hood, J. L. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine 11, 1745–1756 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Ferguson, S. W. & Nguyen, J. Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J. Control. Release 228, 179–190 (2016).

    CAS  PubMed  Google Scholar 

  188. Dijkstra, S. et al. Prostate cancer biomarker profiles in urinary sediments and exosomes. J. Urol. 191, 1132–1138 (2014).

    CAS  PubMed  Google Scholar 

  189. Nilsson, J. et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br. J. Cancer 100, 1603–1607 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Royo, F. et al. Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer. Oncotarget 7, 6835–6846 (2016).

    PubMed  PubMed Central  Google Scholar 

  191. Xu, Y. et al. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate 77, 1167–1175 (2017).

    CAS  PubMed  Google Scholar 

  192. Koppers-Lalic, D. et al. Noninvasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget 7, 22566–22578 (2016).

    PubMed  PubMed Central  Google Scholar 

  193. Wani, S., Kaul, D., Mavuduru, R. S., Kakkar, N. & Bhatia, A. Urinary-exosomal miR-2909: a novel pathognomonic trait of prostate cancer severity. J. Biotechnol. 259, 135–139 (2017).

    CAS  PubMed  Google Scholar 

  194. Rodriguez, M. et al. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol. Cancer 16, 156 (2017).

    PubMed  PubMed Central  Google Scholar 

  195. Hessvik, N. P., Sandvig, K. & Llorente, A. Exosomal miRNAs as biomarkers for prostate cancer. Front. Genet. 4, 36 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Moltzahn, F. et al. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res. 71, 550–560 (2011).

    CAS  PubMed  Google Scholar 

  197. Lodes, M. J. et al. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLOS ONE 4, e6229 (2009).

    PubMed  PubMed Central  Google Scholar 

  198. Duijvesz, D. et al. Immuno-based detection of extracellular vesicles in urine as diagnostic marker for prostate cancer. Int. J. Cancer 137, 2869–2878 (2015).

    CAS  PubMed  Google Scholar 

  199. Overbye, A. et al. Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget 6, 30357–30376 (2015).

    PubMed  PubMed Central  Google Scholar 

  200. Duijvesz, D. et al. Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer. PLOS ONE 8, e82589 (2013).

    PubMed  PubMed Central  Google Scholar 

  201. Li, S. et al. Exosomal ephrinA2 derived from serum as a potential biomarker for prostate cancer. J. Cancer 9, 2659–2665 (2018).

    PubMed  PubMed Central  Google Scholar 

  202. Logozzi, M. et al. Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Lett. 403, 318–329 (2017).

    CAS  PubMed  Google Scholar 

  203. Kawakami, K. et al. Gamma-glutamyltransferase activity in exosomes as a potential marker for prostate cancer. BMC Cancer 17, 316 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to the discussion of content, and wrote and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kerstin Junker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks H. Leong, T. Ochiya and A. Zijlstra for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linxweiler, J., Junker, K. Extracellular vesicles in urological malignancies: an update. Nat Rev Urol 17, 11–27 (2020). https://doi.org/10.1038/s41585-019-0261-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0261-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer