Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Response sub-additivity and variability quenching in visual cortex

Abstract

Sub-additivity and variability are ubiquitous response motifs in the primary visual cortex (V1). Response sub-additivity enables the construction of useful interpretations of the visual environment, whereas response variability indicates the factors that limit the precision with which the brain can do this. There is increasing evidence that experimental manipulations that elicit response sub-additivity often also quench response variability. Here, we provide an overview of these phenomena and suggest that they may have common origins. We discuss empirical findings and recent model-based insights into the functional operations, computational objectives and circuit mechanisms underlying V1 activity. These different modelling approaches all predict that response sub-additivity and variability quenching often co-occur. The phenomenology of these two response motifs, as well as many of the insights obtained about them in V1, generalize to other cortical areas. Thus, the connection between response sub-additivity and variability quenching may be a canonical motif across the cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Response sub-additivity and variability quenching co-occur under various experimental manipulations.
Fig. 2: Response sub-additivity and variability quenching under a stochastic normalization model.
Fig. 3: A normative account for the relationship between response sub-additivity and variability quenching in V1.
Fig. 4: Response sub-additivity and variability quenching in the stochastic stabilized supralinear network model.

Similar content being viewed by others

References

  1. Born, R. T. & Tootell, R. B. Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex. Proc. Natl Acad. Sci. USA 88, 7071–7075 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sceniak, M. P., Hawken, M. J. & Shapley, R. Visual spatial characterization of macaque v1 neurons. J. Neurophysiol. 85, 1873–1887 (2001).

    CAS  PubMed  Google Scholar 

  3. Cavanaugh, J. R., Bair, W. & Movshon, J. A. Nature and interaction of signals from the receptive field center and surround in macaque v1 neurons. J. Neurophysiol. 88, 2530–2546 (2002).

    PubMed  Google Scholar 

  4. Coen-Cagli, R., Kohn, A. & Schwartz, O. Flexible gating of contextual influences in natural vision. Nat. Neurosci. 18, 1648 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Albrecht, D. G. & Hamilton, D. B. Striate cortex of monkey and cat: contrast response function. J. Neurophysiol. 48, 217–237 (1982).

    CAS  PubMed  Google Scholar 

  6. Morrone, M. C., Burr, D. C. & Maffei, L. Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc. R. Soc. Lond. B Biol. Sci. 216, 335–354 (1982).

    CAS  PubMed  Google Scholar 

  7. Bonds, A. B. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis. Neurosci. 2, 41–55 (1989).

    CAS  PubMed  Google Scholar 

  8. DeAngelis, G. C., Robson, J. G., Ohzawa, I. & Freeman, R. D. Organization of suppression in receptive fields of neurons in cat visual cortex. J. Neurophysiol. 68, 144–163 (1992).

    CAS  PubMed  Google Scholar 

  9. Carandini, M., Heeger, D. J. & Movshon, J. A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tolhurst, D. & Heeger, D. Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex. Vis. Neurosci. 14, 293–309 (1997).

    CAS  PubMed  Google Scholar 

  11. Cavanaugh, J. R., Bair, W. & Movshon, J. A. Selectivity and spatial distribution of signals from the receptive field surround in macaque v1 neurons. J. Neurophysiol. 88, 2547–2556 (2002).

    PubMed  Google Scholar 

  12. Azouz, R. & Gray, C. M. Cellular mechanisms contributing to response variability of cortical neurons in vivo. J. Neurosci. 19, 2209–2223 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sadagopan, S. & Ferster, D. Feedforward origins of response variability underlying contrast invariant orientation tuning in cat visual cortex. Neuron 74, 911–923 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Andoni, S., Tan, A. & Priebe, N. J. in The New Visual Neurosciences 367–380 (MIT Press, 2013).

  15. Tomko, G. J. & Crapper, D. R. Neuronal variability: non-stationary responses to identical visual stimuli. Brain Res. 79, 405–418 (1974).

    CAS  PubMed  Google Scholar 

  16. Heggelund, P. & Albus, K. Response variability and orientation discrimination of single cells in striate cortex of cat. Exp. Brain Res. 32, 197–211 (1978).

    CAS  PubMed  Google Scholar 

  17. Vogels, R., Spileers, W. & Orban, G. A. The response variability of striate cortical neurons in the behaving monkey. Exp. Brain Res. 77, 432–436 (1989).

    CAS  PubMed  Google Scholar 

  18. Shadlen, M. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Talluri, B. C. et al. Activity in primate visual cortex is minimally driven by spontaneous movements. Nat. Neurosci. 26, 1953–1959 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tolhurst, D. J., Movshon, J. A. & Thompson, I. D. The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast. Exp. Brain Res. 41, 414–419 (1981).

    CAS  PubMed  Google Scholar 

  21. Orbán, G., Berkes, P., Fiser, J. & Lengyel, M. Neural variability and sampling-based probabilistic representations in the visual cortex. Neuron 92, 530–543 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Churchland, M. M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Arandia-Romero, I., Tanabe, S., Drugowitsch, J., Kohn, A. & Moreno-Bote, R. Multiplicative and additive modulation of neuronal tuning with population activity affects encoded information. Neuron 89, 1305–1316 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosenbaum, R., Smith, M., Kohn, A., Rubin, J. & Doiron, B. The spatial structure of correlated neuronal variability. Nat. Neurosci. 20, 107–114 (2017).

    CAS  PubMed  Google Scholar 

  25. Davis, Z. W., Muller, L., Martinez-Trujillo, J., Sejnowski, T. & Reynolds, J. H. Spontaneous travelling cortical waves gate perception in behaving primates. Nature 587, 432–436 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003).

    CAS  PubMed  Google Scholar 

  27. Berkes, P., Orbán, G., Lengyel, M. & Fiser, J. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331, 83–87 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Goris, R. L. T., Movshon, J. A. & Simoncelli, E. P. Partitioning neuronal variability. Nat. Neurosci. 17, 858–865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ecker, A. S. et al. State dependence of noise correlations in macaque primary visual cortex. Neuron 82, 235–248 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rabinowitz, N. C., Goris, R. L., Cohen, M. & Simoncelli, E. P. Attention stabilizes the shared gain of V4 populations. eLife 4, e08998 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Goris, R. L., Ziemba, C. M., Movshon, J. A. & Simoncelli, E. P. Slow gain fluctuations limit benefits of temporal integration in visual cortex. J. Vis. 18, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Coen-Cagli, R. & Solomon, S. S. Relating divisive normalization to neuronal response variability. J. Neurosci. 39, 7344–7356 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hénaff, O. J., Boundy-Singer, Z. M., Meding, K., Ziemba, C. M. & Goris, R. L. T. Representation of visual uncertainty through neural gain variability. Nat. Commun. 11, 2513 (2020).

    PubMed  PubMed Central  Google Scholar 

  34. DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pitkow, X. & Angelaki, D. E. Inference in the brain: statistics flowing in redundant population codes. Neuron 94, 943–953 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Moreno-Bote, R. et al. Information-limiting correlations. Nat. Neurosci. 17, 1410 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E. & Pouget, A. Not noisy, just wrong: the role of suboptimal inference in behavioral variability. Neuron 74, 30–39 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Snyder, A. C., Morais, M. J., Kohn, A. & Smith, M. A. Correlations in v1 are reduced by stimulation outside the receptive field. J. Neurosci. 34, 11222–11227 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Festa, D., Aschner, A., Davila, A., Kohn, A. & Coen-Cagli, R. Neuronal variability reflects probabilistic inference tuned to natural image statistics. Nat. Commun. 12, 3635 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Henry, C. A. & Kohn, A. Feature representation under crowding in macaque v1 and v4 neuronal populations. Curr. Biol. 32, 5126–5137 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nassi, J. J., Avery, M. C., Cetin, A. H., Roe, A. W. & Reynolds, J. H. Optogenetic activation of normalization in alert macaque visual cortex. Neuron 86, 1504–1517 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Isaacson, J. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z. J. & Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 490, 226–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Atallah, B. V., Bruns, W., Carandini, M. & Scanziani, M. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73, 159–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanzeni, A. et al. Inhibition stabilization is a widespread property of cortical networks. eLife 9, e54875 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Keller, A. J. et al. A disinhibitory circuit for contextual modulation in primary visual cortex. Neuron 108, 1181–1193 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Millman, D. J. et al. VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli. eLife 9, e55130 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Veit, J., Handy, G., Mossing, D. P., Doiron, B. & Adesnik, H. Cortical VIP neurons locally control the gain but globally control the coherence of gamma band rhythms. Neuron 111, 405–417 (2023).

    CAS  PubMed  Google Scholar 

  49. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    CAS  Google Scholar 

  50. Stringer, C., Michaelos, M., Tsyboulski, D., Lindo, S. E. & Pachitariu, M. High-precision coding in visual cortex. Cell 184, 2767–2778 (2021).

    CAS  PubMed  Google Scholar 

  51. Weiss, O., Bounds, H. A., Adesnik, H. & Coen-Cagli, R. Modeling the diverse effects of divisive normalization on noise correlations. PloS Comput. Biol. 19, e1011667 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106-54 (1962).

    PubMed  Google Scholar 

  53. Barlow, H. B., Blakemore, C. & Pettigrew, J. D. The neural mechanism of binocular depth discrimination. J. Physiol. 193, 327–342 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Priebe, N. J. & Ferster, D. A. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57, 482–497 (2008).

    CAS  PubMed  Google Scholar 

  55. Priebe, N. J. & Ferster, D. Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat. Neurosci. 9, 552–561 (2006).

    CAS  PubMed  Google Scholar 

  56. Freeman, T. C., Durand, S., Kiper, D. C. & Carandini, M. Suppression without inhibition in visual cortex. Neuron 35, 759–771 (2002).

    CAS  PubMed  Google Scholar 

  57. Angelucci, A. et al. Circuits and mechanisms for surround modulation in visual cortex. Annu. Rev. Neurosci. 40, 425–451 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nurminen, L. & Angelucci, A. Multiple components of surround modulation in primary visual cortex: multiple neural circuits with multiple functions? Vis. Res. 104, 47–56 (2014).

    PubMed  Google Scholar 

  59. Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J. & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492–496 (1995).

    CAS  PubMed  Google Scholar 

  60. Walker, G. A., Ohzawa, I. & Freeman, R. D. Asymmetric suppression outside the classical receptive field of the visual cortex. J. Neurosci. 19, 10536–10553 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Albrecht, D. G., Geisler, W. S., Frazor, R. A. & Crane, A. M. Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J. Neurophysiol. 88, 888–913 (2002).

    PubMed  Google Scholar 

  62. Geisler, W. S. & Albrecht, D. G. Cortical neurons: isolation of contrast gain control. Vis. Res. 32, 1409–1410 (1992).

    CAS  PubMed  Google Scholar 

  63. Bair, W., Cavanaugh, J. R. & Movshon, J. A. Time course and time-distance relationships for surround suppression in macaque v1 neurons. J. Neurosci. 23, 7690–7701 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Webb, B. S., Dhruv, N. T., Solomon, S. G., Tailby, C. & Lennie, P. Early and late mechanisms of surround suppression in striate cortex of macaque. J. Neurosci. 25, 11666–11675 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Henry, C. A., Joshi, S., Xing, D., Shapley, R. M. & Hawken, M. J. Functional characterization of the extraclassical receptive field in macaque v1: contrast, orientation, and temporal dynamics. J. Neurosci. 33, 6230–6242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Walker, G. A., Ohzawa, I. & Freeman, R. D. Binocular cross-orientation suppression in the cat’s striate cortex. J. Neurophysiol. 79, 227–239 (1998).

    CAS  PubMed  Google Scholar 

  67. Sengpiel, F. & Vorobyov, V. Intracortical origins of interocular suppression in the visual cortex. J. Neurosci. 25, 6394–6400 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, S. C.-Y. et al. Similar neural and perceptual masking effects of low-power optogenetic stimulation in primate v1. eLife 11, e68393 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Werner, G. & Mountcastle, V. B. The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events. J. Neurophysiol. 26, 958–977 (1963).

    CAS  PubMed  Google Scholar 

  70. Parker, A. J. & Newsome, W. T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    CAS  PubMed  Google Scholar 

  71. Vogels, R. & Orban, G. A. How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey. J. Neurosci. 10, 3543–3558 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Goris, R. L., Ziemba, C. M., Stine, G. M., Simoncelli, E. P. & Movshon, J. A. Dissociation of choice formation and choice-correlated activity in macaque visual cortex. J. Neurosci. 37, 5195–5203 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jasper, A. I., Tanabe, S. & Kohn, A. Predicting perceptual decisions using visual cortical population responses and choice history. J. Neurosci. 39, 6714–6727 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dayan, P. & Abbott, L. F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, 2005).

  76. Tolhurst, D. J., Movshon, J. A. & Dean, A. F. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 23, 775–785 (1983).

    CAS  PubMed  Google Scholar 

  77. Charles, A. S., Park, M., Weller, J. P., Horwitz, G. D. & Pillow, J. W. Dethroning the Fano factor: a flexible, model-based approach to partitioning neural variability. Neural Comput. 30, 1012–1045 (2018).

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  78. Nurminen, L., Bijanzadeh, M. & Angelucci, A. Size tuning of neural response variability in laminar circuits of macaque primary visual cortex. Preprint at bioRxiv https://doi.org/10.1101/2023.01.17.524397 (2023).

  79. Troyer, T. W., Krukowski, A. E., Priebe, N. J. & Miller, K. D. Contrast-invariant orientation tuning in cat visual cortex: feedforward tuning and correlation-based intracortical connectivity. J. Neurosci. 18, 5908–5927 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. McLaughlin, D., Shapley, R., Shelley, M. & Wielaard, D. J. A neuronal network model of macaque primary visual cortex (v1): orientation selectivity and dynamics in the input layer 4cα. Proc. Natl Acad. Sci. USA 97, 8087–8092 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rubin, D. B., Van Hooser, S. D. & Miller, K. D. The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 85, 402–417 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Heeger, D. J. & Zemlianova, K. O. A recurrent circuit implements normalization, simulating the dynamics of v1 activity. Proc. Natl Acad. Sci. USA 117, 22494–22505 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    CAS  PubMed  Google Scholar 

  84. Bell, A. J. & Sejnowski, T. J. The ‘independent components’ of natural scenes are edge filters. Vis. Res. 37, 3327–3338 (1997).

    CAS  PubMed  Google Scholar 

  85. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    CAS  PubMed  Google Scholar 

  86. Schwartz, O. & Simoncelli, E. P. Natural signal statistics and sensory gain control. Nat. Neurosci. 4, 819–825 (2001).

    CAS  PubMed  Google Scholar 

  87. Wiskott, L. & Sejnowski, T. J. Slow feature analysis: unsupervised learning of invariances. Neural Comput. 14, 715–770 (2002).

    PubMed  Google Scholar 

  88. Coen-Cagli, R., Dayan, P. & Schwartz, O. Statistical models of linear and nonlinear contextual interactions in early visual processing. In Advances in Neural Information Processing Systems 22 (eds Bengio, Y. et al.) https://proceedings.neurips.cc/paper_files/paper/2009/file/be3159ad04564bfb90db9e32851ebf9c-Paper.pdf (Curran Associates, 2009).

  89. Movshon, J. A., Thompson, I. D. & Tolhurst, D. J. Receptive field organization of complex cells in the cat’s striate cortex. J. Physiol. 283, 79–99 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Heeger, D. J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    CAS  PubMed  Google Scholar 

  91. Rust, N. C., Schwartz, O., Movshon, J. A. & Simoncelli, E. P. Spatiotemporal elements of macaque V1 receptive fields. Neuron 46, 945–956 (2005).

    CAS  PubMed  Google Scholar 

  92. Vintch, B., Movshon, J. A. & Simoncelli, E. P. A convolutional subunit model for neuronal responses in macaque v1. J. Neurosci. 35, 14829–14841 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Goris, R. L., Simoncelli, E. P. & Movshon, J. A. Origin and function of tuning diversity in macaque visual cortex. Neuron 88, 819–831 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Freeman, J. & Simoncelli, E. P. Metamers of the ventral stream. Nat. Neurosci. 14, 1195–1201 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rust, N. C., Mante, V., Simoncelli, E. P. & Movshon, J. A. How MT cells analyze the motion of visual patterns. Nat. Neurosci. 9, 1421–1431 (2006).

    CAS  PubMed  Google Scholar 

  96. Goris, R. L., Putzeys, T., Wagemans, J. & Wichmann, F. A. A neural population model for visual pattern detection. Psychol. Rev. 120, 472 (2013).

    PubMed  Google Scholar 

  97. Hénaff, O. J., Goris, R. L. & Simoncelli, E. P. Perceptual straightening of natural videos. Nat. Neurosci. 22, 984–991 (2019).

    PubMed  Google Scholar 

  98. Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012).

    CAS  Google Scholar 

  99. Cadena, S. A. et al. Deep convolutional models improve predictions of macaque v1 responses to natural images. PloS Comput. Biol. 15, e1006897 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Albrecht, D. G. & Geisler, W. S. Motion selectivity and the contrast-response function of simple cells in the visual cortex. Vis. Neurosci. 7, 531–546 (1991).

    CAS  PubMed  Google Scholar 

  101. Geisler, W. S. Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol. 59, 167–192 (2008).

    PubMed  Google Scholar 

  102. Yamins, D. L. K. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).

    CAS  PubMed  Google Scholar 

  103. Barlow, H. Possible principles underlying the transformations of sensory messages. Sens. Commun. 1, 217–234 (1961).

    Google Scholar 

  104. Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Psychol. 24, 1193–1216 (2001).

    CAS  Google Scholar 

  105. van Hateren, J. H. & Ruderman, D. L. Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 265, 2315–2320 (1998).

    Google Scholar 

  106. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27 379–423 (1948).

    MathSciNet  Google Scholar 

  107. Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).

    CAS  PubMed  Google Scholar 

  108. Knill, D. C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719 (2004).

    CAS  PubMed  Google Scholar 

  109. Boundy-Singer, Z. M., Ziemba, C. M. & Goris, R. L. T. Confidence reflects a noisy decision reliability estimate. Nat. Hum. Behav. 7, 142–154 (2023).

    PubMed  Google Scholar 

  110. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).

    CAS  PubMed  Google Scholar 

  111. Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    CAS  PubMed  Google Scholar 

  112. Buesing, L., Bill, J., Nessler, B. & Maass, W. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. PloS Comput. Biol. 7, e1002211 (2011).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lochmann, T. & Deneve, S. Neural processing as causal inference. Curr. Opin. Neurobiol. 21, 774–781 (2011).

    CAS  PubMed  Google Scholar 

  114. Pouget, A., Beck, J. M., Ma, W. J. & Latham, P. E. Probabilistic brains: knowns and unknowns. Nat. Neurosci. 16, 1170–1178 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Meyniel, F., Sigman, M. & Mainen, Z. F. Confidence as Bayesian probability: from neural origins to behavior. Neuron 88, 78–92 (2015).

    CAS  PubMed  Google Scholar 

  116. Pouget, A., Drugowitsch, J. & Kepecs, A. Confidence and certainty: distinct probabilistic quantities for different goals. Nat. Neurosci. 19, 366–374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lange, R. D. & Haefner, R. M. Task-induced neural covariability as a signature of approximate Bayesian learning and inference. PloS Comput. Biol. 18, e21009557 (2022).

    Google Scholar 

  118. Fiser, J., Berkes, P., Orbán, G. & Lengyel, M. Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn. Sci. 14, 119–130 (2010).

    PubMed  PubMed Central  Google Scholar 

  119. Hoyer, P. & Hyvarinen, A. Interpreting neural response variability as Monte Carlo sampling of the posterior. Advances in Neural Information Processing Systems 15 (2002).

  120. Mareschal, I. & Shapley, R. M. Effects of contrast and size on orientation discrimination. Vis. Res. 44, 57–67 (2004).

    PubMed  Google Scholar 

  121. Echeveste, R., Aitchison, L., Hennequin, G. & Lengyel, M. Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference. Nat. Neurosci. 23, 1138–1149 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Coen-Cagli, R., Dayan, P. & Schwartz, O. Cortical surround interactions and perceptual salience via natural scene statistics. PloS Comput. Biol. 8, e1002405 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Barbera, D., Priebe, N. J. & Glickfeld, L. L. Feedforward mechanisms of cross-orientation interactions in mouse v1. Neuron 110, 297–311 (2022).

    CAS  PubMed  Google Scholar 

  124. Lauritzen, T. Z., Krukowski, A. E. & Miller, K. D. Local correlation-based circuitry can account for responses to multi-grating stimuli in a model of cat V1. J. Neurophysiol. 86, 1803–1815 (2001).

    CAS  PubMed  Google Scholar 

  125. Kayser, A. S., Priebe, N. J. & Miller, K. D. Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning. J. Neurophysiol. 85, 2130–2149 (2001).

    CAS  PubMed  Google Scholar 

  126. Carandini, M., Heeger, D. J. & Senn, W. A synaptic explanation of suppression in visual cortex. J. Neurosci. 22, 10053–10065 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kara, P., Reinagel, P. & Reid, R. C. Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27, 635–646 (2000).

    CAS  PubMed  Google Scholar 

  128. Henry, C. A., Jazayeri, M., Shapley, R. M. & Hawken, M. J. Distinct spatiotemporal mechanisms underlie extra-classical receptive field modulation in macaque V1 microcircuits. eLife 9, e54264 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Litwin-Kumar, A. & Doiron, B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 15, 1498–1505 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ahmadian, Y., Rubin, D. B. & Miller, K. D. Analysis of the stabilized supralinear network. Neural Comput. 25, 1994–2037 (2013).

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  131. Hennequin, G., Ahmadian, Y., Rubin, D. B., Lengyel, M. & Miller, K. D. The dynamical regime of sensory cortex: stable dynamics around a single stimulus-tuned attractor account for patterns of noise variability. Neuron 98, 846–860 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ozeki, H., Finn, I. M., Schaffer, E. S., Miller, K. D. & Ferster, D. Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 62, 578–592 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).

    CAS  PubMed  Google Scholar 

  134. Bosking, W. H., Zhang, Y., Schofield, B. & Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Borg-Graham, L. J., Monier, C. & Frégnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).

    CAS  PubMed  Google Scholar 

  136. Gilbert, C. D. & Wiesel, T. N. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280, 120–125 (1979).

    CAS  PubMed  Google Scholar 

  137. Softky, W. R. & Koch, C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Mainen, Z. F. & Sejnowski, T. J. Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995).

    CAS  PubMed  Google Scholar 

  139. Schneidman, E., Freedman, B. & Segev, I. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput. 10, 1679–1703 (1998).

    CAS  PubMed  Google Scholar 

  140. O’Donnell, C. & van Rossum, M. C. Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise. Front. Comput. Neurosci. 8, 105 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Stevens, C. F. & Zador, A. M. Input synchrony and the irregular firing of cortical neurons. Nat. Neurosci. 1, 210–217 (1998).

    CAS  PubMed  Google Scholar 

  142. DeWeese, M. R. & Zador, A. M. Non-Gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. J. Neurosci. 26, 12206–12218 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tsodyks, M. V. & Sejnowski, T. Rapid state switching in balanced cortical network models. Network 6, 111–124 (1995).

    Google Scholar 

  144. Van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    PubMed  Google Scholar 

  145. Troyer, T. W. & Miller, K. D. Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput. 9, 971–983 (1997).

    CAS  PubMed  Google Scholar 

  146. Amit, D. & Brunel, N. Dynamics of a recurrent network of spiking neurons before and following learning. Netw. Comput. Neural Syst. 8, 373–404 (1997).

    Google Scholar 

  147. Ahmadian, Y. & Miller, K. D. What is the dynamical regime of cerebral cortex? Neuron 109, 3373–3391 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kadmon, J. & Sompolinsky, H. Transition to chaos in random neuronal networks. Phys. Rev. X 5, 041030 (2015).

    Google Scholar 

  149. Deco, G. & Hugues, E. Neural network mechanisms underlying stimulus driven variability reduction. PloS Comput. Biol. 8, e1002395 (2012).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  150. Smith, G. B., Hein, B., Whitney, D. E., Fitzpatrick, D. & Kaschube, M. Distributed network interactions and their emergence in developing neocortex. Nat. Neurosci. 21, 1600–1608 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Trägenap, S., Whitney, D. E., Fitzpatrick, D. & Kaschube, M. Visual experience drives the development of novel and reliable visual representations from endogenously structured networks. J. Vis. 23, 5225–5225 (2023).

    Google Scholar 

  152. Ponce-Alvarez, A., Thiele, A., Albright, T. D., Stoner, G. R. & Deco, G. Stimulus-dependent variability and noise correlations in cortical MT neurons. Proc. Natl Acad. Sci. USA 110, 13162–13167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Bressloff, P. C. Stochastic neural field model of stimulus-dependent variability in cortical neurons. PloS Comput. Biol. 15, e1006755 (2019).

    PubMed  PubMed Central  Google Scholar 

  154. Rajan, K., Abbott, L. & Sompolinsky, H. Stimulus-dependent suppression of chaos in recurrent neural networks. Phys. Rev. E 82, 011903 (2010).

    Google Scholar 

  155. Mossing, D. P., Veit, J., Palmigiano, A., Miller, K. D. & Adesnik, H. Antagonistic inhibitory subnetworks control cooperation and competition across cortical space. Preprint at bioRxiv https://doi.org/10.1101/2021.03.31.437953 (2021).

  156. Di Santo, S. et al. Unifying model for three forms of contextual modulation including feedback input from higher visual areas. Preprint at bioRxiv https://doi.org/10.1101/2022.05.27.493753 (2022).

  157. Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J. & McNaughton, B. L. Paradoxical effects of external modulation of inhibitory interneurons. J. Neurosci. 17, 4382–4388 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Ekelmans, P., Kraynyukova, N. & Tchumatchenko, T. Targeting operational regimes of interest in recurrent neural networks. PloS Comput. Biol. 19, e1011097 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Murphy, B. K. & Miller, K. D. Balanced amplification: a new mechanism of selective amplification of neural activity patterns. Neuron 61, 635–648 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Finn, I. M., Priebe, N. J. & Ferster, D. The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron 54, 137–152 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Holt, C. J., Miller, K. D. & Ahmadian, Y. The stabilized supralinear network accounts for the contrast dependence of visual cortical gamma oscillations. Preprint at bioRxiv https://doi.org/10.1101/2023.05.11.540442 (2023).

  162. Spoerer, C. J., Kietzmann, T. C., Mehrer, J., Charest, I. & Kriegeskorte, N. Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision. PloS Comput. Biol. 16, e1008215 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kar, K., Kubilius, J., Schmidt, K., Issa, E. B. & DiCarlo, J. J. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nat. Neurosci. 22, 974–983 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Nayebi, A. et al. Task-driven convolutional recurrent models of the visual system. Advances in Neural Information Processing Systems 31 (2018).

  165. Miller, M., Chung, S. & Miller, K. D. Divisive feature normalization improves image recognition performance in AlexNet. In International Conference on Learning Representations (Vienna, 2021).

  166. Maheswaranathan, N. et al. Interpreting the retinal neural code for natural scenes: from computations to neurons. Neuron 111, 2742–2755 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Burg, M. F. et al. Learning divisive normalization in primary visual cortex. PloS Comput. Biol. 17, e1009028 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Pan, X., DeForge, A. & Schwartz, O. Generalizing biological surround suppression based on center surround similarity via deep neural network models. PloS Comput. Biol. 19, e1011486 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Zoccolan, D., Cox, D. D. & DiCarlo, J. J. Multiple object response normalization in monkey inferotemporal cortex. J. Neurosci. 25, 8150–8164 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Olsen, S. R., Bhandawat, V. & Wilson, R. I. Divisive normalization in olfactory population codes. Neuron 66, 287–299 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Rabinowitz, N. C., Willmore, B. D., Schnupp, J. W. & King, A. J. Contrast gain control in auditory cortex. Neuron 70, 1178–1191 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ohshiro, T., Angelaki, D. E. & DeAngelis, G. C. A neural signature of divisive normalization at the level of multisensory integration in primate cortex. Neuron 95, 399–411 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Louie, K., Grattan, L. E. & Glimcher, P. W. Reward value-based gain control: divisive normalization in parietal cortex. J. Neurosci. 31, 10627–10639 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Churchland, A. K., Kiani, R. & Shadlen, M. N. Decision-making with multiple alternatives. Nat. Neurosci. 11, 693–702 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Chung, S. & Abbott, L. Neural population geometry: an approach for understanding biological and artificial neural networks. Curr. Opin. Neurobiol. 70, 137–144 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Kriegeskorte, N. & Wei, X.-X. Neural tuning and representational geometry. Nat. Rev. Neurosci. 22, 703–718 (2021).

    CAS  PubMed  Google Scholar 

  179. Kohn, A. & Smith, M. A. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci. 25, 3661–3673 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Cohen, M. R. & Maunsell, J. H. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Mitchell, J. F., Sundberg, K. A. & Reynolds, J. H. Spatial attention decorrelates intrinsic activity fluctuations in macaque area v4. Neuron 63, 879–888 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Ruff, D. A. & Cohen, M. R. Global cognitive factors modulate correlated response variability between v4 neurons. J. Neurosci. 34, 16408–16416 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Verhoef, B.-E. & Maunsell, J. H. Attention-related changes in correlated neuronal activity arise from normalization mechanisms. Nat. Neurosci. 20, 969–977 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Hennequin, G. & Lengyel, M. Characterizing variability in nonlinear recurrent neuronal networks. Preprint at https://doi.org/10.48550/arXiv.1610.03110 (2016).

  185. Geisler, W. S. & Albrecht, D. Bayesian analysis of identification performance in monkey visual cortex: nonlinear mechanisms and stimulus certainty. Vis. Res. 35, 2723–2730 (1995).

    CAS  PubMed  Google Scholar 

  186. Wainwright, M. J. & Simoncelli, E. P. in Adv. Neural Information Processing Systems (NIPS*99) Vol. 12 (eds Solla, S. A. et al.) 855–861 (MIT Press, 2000).

  187. Churchland, A. K. et al. Variance as a signature of neural computations during decision making. Neuron 69, 818–831 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Heeger, S. Martiniani and Y. Ahmadian for the helpful discussions. This work was supported by the US National Institutes of Health grants EY032999 (R.L.T.G.), EY030578 and DA056400 (R.C.-C.), EY025102, EY024071 and NS120562 (N.J.P), and U01NS108683 and U19NS107613 (K.D.M.), by CAREER award #2146369 (R.L.T.G.), by award DBI-1707398 (K.D.M.) from the National Science Foundation, by a Wellcome Trust Investigator Award in Science 212262/Z/18/Z (M.L.), and by Simons Foundation award 543017 and the Gatsby Charitable Foundation (K.D.M.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Robbe L. T. Goris.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Ralf Haefner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goris, R.L.T., Coen-Cagli, R., Miller, K.D. et al. Response sub-additivity and variability quenching in visual cortex. Nat. Rev. Neurosci. 25, 237–252 (2024). https://doi.org/10.1038/s41583-024-00795-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-024-00795-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing