Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands

Abstract

The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neural circuits for the control of brown adipose tissue activity during acute cold exposure in rats that are non-obese and obese.
Fig. 2: Crosstalk between white and brown adipocytes during cold exposure.
Fig. 3: Neural circuits for the control of cutaneous vasoconstriction and shivering during acute cold exposure in rats that are non-obese and obese.
Fig. 4: Overview of the changes during repeated or long-term cold exposure.
Fig. 5: CNS cell groups implicated in hypothermia associated with hibernation and daily torpor.

Similar content being viewed by others

References

  1. Cramer, M. N., Gagnon, D., Laitano, O. & Crandall, C. G. Human temperature regulation under heat stress in health, disease, and injury. Physiol. Rev. 102, 1907–1989 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song, N. J., Chang, S. H., Li, D. Y., Villanueva, C. J. & Park, K. W. Induction of thermogenic adipocytes: molecular targets and thermogenic small molecules. Exp. Mol. Med. 49, e353 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fedorenko, A., Lishko, P. V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400–413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004). This review summarizes important aspects of molecular mechanisms that regulate brown adipose tissue function.

    Article  CAS  PubMed  Google Scholar 

  5. Matthias, A. et al. Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty acid-induced thermogenesis. J. Biol. Chem. 275, 25073–25081 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Golozoubova, V. et al. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J. 15, 2048–2050 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Nicholls, D. G. & Locke, R. M. Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1–64 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Cao, W. et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24, 3057–3067 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mukaida, S., Evans, B. A., Bengtsson, T., Hutchinson, D. S. & Sato, M. Adrenoceptors promote glucose uptake into adipocytes and muscle by an insulin-independent signaling pathway involving mechanistic target of rapamycin complex 2. Pharmacol. Res. 116, 87–92 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Olsen, J. M. et al. Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation. J. Cell Biol. 207, 365–374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sell, H. et al. Peroxisome proliferator-activated receptor gamma agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Endocrinology 145, 3925–3934 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Sepa-Kishi, D. M., Jani, S., Da Eira, D. & Ceddia, R. B. Cold acclimation enhances UCP1 content, lipolysis, and triacylglycerol resynthesis, but not mitochondrial uncoupling and fat oxidation, in rat white adipocytes. Am. J. Physiol. Cell Physiol. 316, C365–C376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yao, T. et al. Ire1alpha in Pomc neurons is required for thermogenesis and glycemia. Diabetes 66, 663–673 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Madden, C. J. & Morrison, S. F. A high-fat diet impairs cooling-evoked brown adipose tissue activation via a vagal afferent mechanism. Am. J. Physiol. Endocrinol. Metab. 311, E287–292, (2016). This study shows that rats maintained on a high-fat diet showed a supression of brown adipose tissue thermogenesis that was mediated by vagal afferents during cooling.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Conceicao, E. P. S., Reynolds, C., Morrison, S. F. & Madden, C. J. Activation of transient receptor potential vanilloid 1 channels in the nucleus of the solitary tract and activation of dynorphin input to the median preoptic nucleus contribute to impaired BAT thermogenesis in diet induced obesity. eNeuro https://doi.org/10.1523/ENEURO.0048-21.2021 (2021). This study shows that rats maintained on a high-fat diet showed increased lipid levels in the nucleus tractus solitarius and that transient receptor potential vanilloid 1 and κ-opioid receptor activation mediated the suppression of brown adipose tissue activity during cooling.

  16. Mota, C. M. D. & Madden, C. J. High fat diet suppresses energy expenditure via neurons in the brainstem. Neuroscience 520, 84–94 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Olsen, J. M. et al. beta(3)-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: mediation through the mTOR pathway. Mol. Metab. 6, 611–619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hankir, M. K. et al. Dissociation between brown adipose tissue [18F-FDG] uptake and thermogenesis in uncoupling protein 1-deficient mice. J. Nucl. Med. 58, 1100–1103 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Inokuma, K. et al. Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes 54, 1385–1391 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Ma, S. W. & Foster, D. O. Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo. Can. J. Physiol. Pharmacol. 64, 609–614 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Schweizer, S., Oeckl, J., Klingenspor, M. & Fromme, T. Substrate fluxes in brown adipocytes upon adrenergic stimulation and uncoupling protein 1 ablation. Life Sci. Alliance 1, e201800136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Orava, J. et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 14, 272–279 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Wu, Q. et al. Fatty acid transport protein 1 is required for nonshivering thermogenesis in brown adipose tissue. Diabetes 55, 3229–3237 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Henkin, A. H. et al. Real-time noninvasive imaging of fatty acid uptake in vivo. ACS Chem. Biol. 7, 1884–1891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shabalina, I. G. et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 5, 1196–1203 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, W., Li, J., Gallowitsch-Puerta, M., Tracey, K. J. & Pisetsky, D. S. The effects of CpG DNA on HMGB1 release by murine macrophage cell lines. J. Leukoc. Biol. 78, 930–936 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Dieckmann, S. et al. Fatty acid metabolite profiling reveals oxylipins as markers of brown but not brite adipose tissue. Front. Endocrinol. 11, 73 (2020).

    Article  Google Scholar 

  28. Jiang, H., Ding, X., Cao, Y., Wang, H. & Zeng, W. Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue. Cell Metab. 26, 686–692.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Granneman, J. G., Burnazi, M., Zhu, Z. & Schwamb, L. A. White adipose tissue contributes to UCP1-independent thermogenesis. Am. J. Physiol. Endocrinol. Metab. 285, E1230–E1236 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, X. et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1115–R1125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bertholet, A. M. et al. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab. 25, 811–822 e814 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Madden, C. J. & Morrison, S. F. Central nervous system circuits that control body temperature. Neurosci. Lett. 696, 225–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Morrison, S. F. & Nakamura, K. Central mechanisms for thermoregulation. Annu. Rev. Physiol. 81, 285–308 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Benarroch, E. E. Thermoregulation: recent concepts and remaining questions. Neurology 69, 1293–1297 (2007).

    Article  PubMed  Google Scholar 

  36. Janig, W. Peripheral thermoreceptors in innocuous temperature detection. Handb. Clin. Neurol. 156, 47–56 (2018).

    Article  PubMed  Google Scholar 

  37. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002). This study shows that the TRPM8 receptor from trigeminal sensory neurons is activated by cool and cold thermal stimuli.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. McKie, G. L., Medak, K. D., Shamshoum, H. & Wright, D. C. Topical application of the pharmacological cold mimetic menthol stimulates brown adipose tissue thermogenesis through a TRPM8, UCP1, and norepinephrine dependent mechanism in mice housed at thermoneutrality. FASEB J. 36, e22205 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Tajino, K. et al. Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R2128–R2135 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Almeida, M. C. et al. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J. Neurosci. 32, 2086–2099 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Colburn, R. W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Reimundez, A. et al. Deletion of the cold thermoreceptor TRPM8 increases heat loss and food intake leading to reduced body temperature and obesity in mice. J. Neurosci. 38, 3643–3656 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ran, C., Hoon, M. A. & Chen, X. The coding of cutaneous temperature in the spinal cord. Nat. Neurosci. 19, 1201–1209 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Craig, A. D., Krout, K. & Andrew, D. Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J. Neurophysiol. 86, 1459–1480 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Li, J. et al. Medullary dorsal horn neurons providing axons to both the parabrachial nucleus and thalamus. J. Comp. Neurol. 498, 539–551 (2006).

    Article  PubMed  Google Scholar 

  48. Cechetto, D. F., Standaert, D. G. & Saper, C. B. Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. J. Comp. Neurol. 240, 153–160 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. Hylden, J. L., Anton, F. & Nahin, R. L. Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience 28, 27–37 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Norrsell, U. & Craig, A. D. Behavioral thermosensitivity after lesions of thalamic target areas of a thermosensory spinothalamic pathway in the cat. J. Neurophysiol. 82, 611–625 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Yahiro, T., Kataoka, N., Nakamura, Y. & Nakamura, K. The lateral parabrachial nucleus, but not the thalamus, mediates thermosensory pathways for behavioural thermoregulation. Sci. Rep. 7, 5031 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Nakamura, K. & Morrison, S. F. A thermosensory pathway that controls body temperature. Nat. Neurosci. 11, 62–71 (2008). This study showed that cutaneous thermosensory signals activate brown adipose tissue thermogenesis via parabrachial neurons that send glutamatergic inputs to the preoptic area.

    Article  CAS  PubMed  Google Scholar 

  54. Craig, A. D. Central neural substrates involved in temperature discrimination, thermal pain, thermal comfort, and thermoregulatory behavior. Handb. Clin. Neurol. 156, 317–338 (2018).

    Article  Google Scholar 

  55. Kobayashi, A. & Osaka, T. Involvement of the parabrachial nucleus in thermogenesis induced by environmental cooling in the rat. Pflug. Arch. Eur. J. Physiol. 446, 760–765 (2003).

    Article  CAS  Google Scholar 

  56. Nakamura, K. & Morrison, S. F. Preoptic mechanism for cold-defensive responses to skin cooling. J. Physiol. 586, 2611–2620 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakamura, K. & Morrison, S. F. Central efferent pathways for cold-defensive and febrile shivering. J. Physiol. 589, 3641–3658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. da Conceicao, E. P. S., Morrison, S. F., Cano, G., Chiavetta, P. & Tupone, D. Median preoptic area neurons are required for the cooling and febrile activations of brown adipose tissue thermogenesis in rat. Sci. Rep. 10, 18072 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  59. Blessing, W. W. & Nalivaiko, E. Raphe magnus/pallidus neurons regulate tail but not mesenteric arterial blood flow in rats. Neuroscience 105, 923–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Ootsuka, Y., Blessing, W. W. & McAllen, R. M. Inhibition of rostral medullary raphe neurons prevents cold-induced activity in sympathetic nerves to rat tail and rabbit ear arteries. Neurosci. Lett. 357, 58–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Tanaka, M., McKinley, M. J. & McAllen, R. M. Preoptic-raphe connections for thermoregulatory vasomotor control. J. Neurosci. 31, 5078–5088 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ootsuka, Y. & Tanaka, M. Control of cutaneous blood flow by central nervous system. Temperature 2, 392–405 (2015).

    Article  Google Scholar 

  63. Rathner, J. A., Madden, C. J. & Morrison, S. F. Central pathway for spontaneous and prostaglandin E2-evoked cutaneous vasoconstriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R343–R354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Egan, G. F. et al. Cortical, thalamic, and hypothalamic responses to cooling and warming the skin in awake humans: a positron-emission tomography study. Proc. Natl Acad. Sci. USA 102, 5262–5267 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fechir, M. et al. Cortical control of thermoregulatory sympathetic activation. Eur. J. Neurosci. 31, 2101–2111 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. McAllen, R. M. et al. Human medullary responses to cooling and rewarming the skin: a functional MRI study. Proc. Natl Acad. Sci. USA 103, 809–813 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Daniels, R. L., Takashima, Y. & McKemy, D. D. Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J. Biol. Chem. 284, 1570–1582 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Diver, M. M., Cheng, Y. & Julius, D. Structural insights into TRPM8 inhibition and desensitization. Science 365, 1434–1440 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fujita, F., Uchida, K., Takaishi, M., Sokabe, T. & Tominaga, M. Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 33, 6154–6159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Teliban, A., Bartsch, F., Struck, M., Baron, R. & Janig, W. Responses of intact and injured sural nerve fibers to cooling and menthol. J. Neurophysiol. 111, 2071–2083 (2014).

    Article  PubMed  Google Scholar 

  71. Hensel, H. & Banet, M. Adaptive changes in cats after long-term exposure to various temperatures. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 52, 1008–1012 (1982).

    CAS  PubMed  Google Scholar 

  72. Blondin, D. P. et al. Four-week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to brown adipose tissue. J. Physiol. 595, 2099–2113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van der Lans, A. A. et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395–3403 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Blondin, D. P. et al. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J. Clin. Endocrinol. Metab. 99, E438–E446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morrison, S. F., Ramamurthy, S. & Young, J. B. Reduced rearing temperature augments responses in sympathetic outflow to brown adipose tissue. J. Neurosci. 20, 9264–9271 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robertson, C. E. & McClelland, G. B. Ancestral and developmental cold alter brown adipose tissue function and adult thermal acclimation in Peromyscus. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 191, 589–601 (2021).

    Article  CAS  Google Scholar 

  77. Sun, W. et al. Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring. Nat. Med. 24, 1372–1383 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Davies, V. S., Lindsund, E., Petrovic, N., Cannon, B. & Nedergaard, J. Repeated short excursions from thermoneutrality suffice to restructure brown adipose tissue. Biochimie 210, 40–49 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Heldmaier, G., Steinlechner, S., Rafael, J. & Latteier, B. Photoperiod and ambient temperature as environmental cues for seasonal thermogenic adaptation in the Djungarian hamster, Phodopus sungorus. Int. J. Biometeorol. 26, 339–345 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Geiser, F., Hiebert, S. & Kenagy, G. J. Torpor bout duration during the hibernation season of two sciurid rodents: interrelations with temperature and metabolism. Physiol. Zool. 63, 489–503 (1990).

    Article  Google Scholar 

  82. Janský, L., Haddad, G., Kahlerová, Z. & Nedoma, J. Effect of external factors on hibernation of golden hamsters. J. Comp. Physiol. B 154, 427–433 (1984).

    Article  Google Scholar 

  83. Bartness, T. J., Demas, G. E. & Song, C. K. Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Exp. Biol. Med. 227, 363–376 (2002).

    Article  CAS  Google Scholar 

  84. Vuarin, P., Dammhahn, M. & Henry, P.-Y. Individual flexibility in energy saving: body size and condition constrain torpor use. Funct. Ecol. 27, 793–799 (2013).

    Article  Google Scholar 

  85. Florant, G. L., Nuttle, L. C., Mullinex, D. E. & Rintoul, D. A. Plasma and white adipose tissue lipid composition in marmots. Am. J. Physiol. 258, R1123–R1131 (1990).

    CAS  PubMed  Google Scholar 

  86. Geiser, F., McAllan, B. M. & Kenagy, G. J. The degree of dietary fatty acid unsaturation affects torpor patterns and lipid composition of a hibernator. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 164, 299–305 (1994).

    Article  CAS  Google Scholar 

  87. Ruf, T. & Arnold, W. Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1044–R1052 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Giroud, S. et al. Membrane phospholipid fatty acid composition regulates cardiac SERCA activity in a hibernator, the Syrian hamster (Mesocricetus auratus). PLoS ONE 8, e63111 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Conceicao, E. P. S., Reynolds, C. A., Morrison, S. F. & Madden, C. J. Activation of transient receptor potential vanilloid 1 channels in the nucleus of the solitary tract and activation of dynorphin input to the median preoptic nucleus contribute to impaired BAT thermogenesis in diet-induced obesity. eNeuro https://doi.org/10.1523/ENEURO.0048-21.2021 (2021).

  90. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Xing, X., Yang, M. & Wang, D. H. The expression of leptin, hypothalamic neuropeptides and UCP1 before, during and after fattening in the Daurian ground squirrel (Spermophilus dauricus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 184, 105–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. & Sivitz, W. I. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 100, 270–278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Morrison, S. F. Activation of 5-HT1A receptors in raphe pallidus inhibits leptin-evoked increases in brown adipose tissue thermogenesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R832–R837 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Ballinger, M. A., Hess, C., Napolitano, M. W., Bjork, J. A. & Andrews, M. T. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R325–R336 (2016).

    Article  PubMed  Google Scholar 

  95. Satinoff, E. Aberrations of regulation in ground squirrels following hypothalamic lesions. Am. J. Physiol. 212, 1215–1220 (1967).

    Article  CAS  PubMed  Google Scholar 

  96. Satinoff, E. Disruption of hibernation caused by hypothalamic lesions. Science 155, 1031–1033 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Heller, H. C. & Colliver, G. W. CNS regulation of body temperature during hibernation. Am. J. Physiol. 227, 583–589 (1974).

    Article  CAS  PubMed  Google Scholar 

  98. Kilduff, T. S., Miller, J. D., Radeke, C. M., Sharp, F. R. & Heller, H. C. 14C-2-deoxyglucose uptake in the ground squirrel brain during entrance to and arousal from hibernation. J. Neurosci. 10, 2463–2475 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bratincsak, A. et al. Spatial and temporal activation of brain regions in hibernation: c-Fos expression during the hibernation bout in thirteen-lined ground squirrel. J. Comp. Neurol. 505, 443–458 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Conceicao, E. P. S., Madden, C. J. & Morrison, S. F. Neurons in the rat ventral lateral preoptic area are essential for the warm-evoked inhibition of brown adipose tissue and shivering thermogenesis. Acta Physiol. 225, e13213 (2019).

    Article  Google Scholar 

  101. Madden, C. J. & Morrison, S. F. Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R831–R843 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Amir, S., Shizgal, P. & Rompre, P. P. Glutamate injection into the suprachiasmatic nucleus stimulates brown fat thermogenesis in the rat. Brain Res. 498, 140–144 (1989).

    Article  CAS  PubMed  Google Scholar 

  103. Ruby, N. F., Dark, J., Heller, H. C. & Zucker, I. Ablation of suprachiasmatic nucleus alters timing of hibernation in ground squirrels. Proc. Natl Acad. Sci. USA 93, 9864–9868 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115–121 (2020). Together with Takahashi et al. (2020), this study was one of the first to describe a specific population of neurons that can induce a torpor-like state.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109–114 (2020). Together with Hrvatin et al. (2020), this study was one of the first to describe a specific population of neurons that can induce a torpor-like state.

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Zhang, Z. et al. Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice. Nat. Commun. 11, 6378 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Upton, B. A., D’Souza, S. P. & Lang, R. A. QPLOT neurons-converging on a thermoregulatory preoptic neuronal population. Front. Neurosci. 15, 665762 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tan, C. L. et al. Warm-sensitive neurons that control body temperature. Cell 167, 47–59 e15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yamaguchi, H. et al. Dorsomedial and preoptic hypothalamic circuits control torpor. Curr. Biol. 33, 5381–5389.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Ambler, M., Hitrec, T., Wilson, A., Cerri, M. & Pickering, A. Neurons in the dorsomedial hypothalamus promote, prolong, and deepen torpor in the mouse. J. Neurosci. 42, 4267–4277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jinka, T. R., Toien, O. & Drew, K. L. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors. J. Neurosci. 31, 10752–10758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tamura, Y., Shintani, M., Nakamura, A., Monden, M. & Shiomi, H. Phase-specific central regulatory systems of hibernation in Syrian hamsters. Brain Res. 1045, 88–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Tupone, D., Cano, G. & Morrison, S. F. Thermoregulatory inversion: a novel thermoregulatory paradigm. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R779–R786 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tupone, D., Madden, C. J. & Morrison, S. F. Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat. J. Neurosci. 33, 14512–14525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Scammell, T. E. et al. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 107, 653–663 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Stierman, B. National Health and Nutrition Examination Survey 2017–March 2020 prepandemic data files — development of files and prevalence estimates for selected health outcomes. National Health Statistics Reports https://doi.org/10.15620/cdc:106273 (2021).

  117. World Obesity Federation. World Obesity Atlas 2023 (2023).

  118. Verga, S., Buscemi, S. & Caimi, G. Resting energy expenditure and body composition in morbidly obese, obese and control subjects. Acta Diabetol. 31, 47–51 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. DeLany, J. P., Kelley, D. E., Hames, K. C., Jakicic, J. M. & Goodpaster, B. H. High energy expenditure masks low physical activity in obesity. Int. J. Obes. 37, 1006–1011 (2013).

    Article  CAS  Google Scholar 

  120. Faria, S. L., Faria, O. P., Menezes, C. S., de Gouvea, H. R. & de Almeida Cardeal, M. Metabolic profile of clinically severe obese patients. Obes. Surg. 22, 1257–1262 (2012).

    Article  PubMed  Google Scholar 

  121. Maric, I. et al. Sex and species differences in the development of diet-induced obesity and metabolic disturbances in rodents. Front. Nutr. 9, 828522 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Assaad, H. et al. Analysis of energy expenditure in diet-induced obese rats. Front. Biosci. 19, 967–985 (2014).

    Article  Google Scholar 

  123. Bastardot, F., Marques-Vidal, P. & Vollenweider, P. Association of body temperature with obesity. The CoLaus study. Int. J. Obes. 43, 1026–1033 (2019).

    Article  Google Scholar 

  124. Waalen, J. & Buxbaum, J. N. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J. Gerontol. A Biol. Sci. Med. Sci. 66, 487–492 (2011).

    Article  PubMed  Google Scholar 

  125. Anderson, G. S. & Martin, A. D. Calculated thermal conductivities and heat flux in man. Undersea Hyperb. Med. 21, 431–441 (1994).

    CAS  PubMed  Google Scholar 

  126. Fischer, A. W., Cannon, B. & Nedergaard, J. No insulating effect of obesity, neither in mice nor in humans. Am. J. Physiol. Endocrinol. Metab. 317, E952–E953 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Fischer, A. W., Csikasz, R. I., von Essen, G., Cannon, B. & Nedergaard, J. No insulating effect of obesity. Am. J. Physiol. Endocrinol. Metab. 311, E202–E213 (2016).

    Article  PubMed  Google Scholar 

  128. Brychta, R. J. et al. Quantification of the capacity for cold-induced thermogenesis in young men with and without obesity. J. Clin. Endocrinol. Metab. 104, 4865–4878 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Brychta, R. J., Cypess, A. M., Reitman, M. L. & Chen, K. Y. Reply to letter to the editor: ‘No insulating effect of obesity, neither in mice nor in humans’. Am. J. Physiol. Endocrinol. Metab. 317, E954–E956 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Verbraecken, J., Van de Heyning, P., De Backer, W. & Van Gaal, L. Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism 55, 515–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Dow, C. A., Stauffer, B. L., Brunjes, D. L., Greiner, J. J. & DeSouza, C. A. Regular aerobic exercise reduces endothelin-1-mediated vasoconstrictor tone in overweight and obese adults. Exp. Physiol. 102, 1133–1142 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Barton, M., Baretella, O. & Meyer, M. R. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction. Br. J. Pharmacol. 165, 591–602 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sivitz, W. I., Wayson, S. M., Bayless, M. L., Sinkey, C. A. & Haynes, W. G. Obesity impairs vascular relaxation in human subjects: hyperglycemia exaggerates adrenergic vasoconstriction arterial dysfunction in obesity and diabetes. J. Diabetes Complications 21, 149–157 (2007).

    Article  PubMed  Google Scholar 

  134. Schinzari, F. et al. Vasodilator responses and endothelin-dependent vasoconstriction in metabolically healthy obesity and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 309, E787–E792 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Komegae, E. N., Fonseca, M. T. & Steiner, A. A. Diet-induced obesity attenuates the hypothermic response to lipopolysaccharide independently of TNF-alpha production. Temperature 7, 270–276 (2020).

    Article  Google Scholar 

  136. Sardjoe Mishre, A. S. D. et al. Association of shivering threshold time with body composition and brown adipose tissue in young adults. J. Therm. Biol. 108, 103277 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, H., Xie, D. & Xiao, P. Research on thermal comfort of obese and overweight people during indoor running exercise. Build. Environ. 242, 110574 (2023).

    Article  Google Scholar 

  138. Sehl, P. L., Leites, G. T., Martins, J. B. & Meyer, F. Responses of obese and non-obese boys cycling in the heat. Int. J. Sports Med. 33, 497–501 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Loffler, H., Aramaki, J. U. & Effendy, I. The influence of body mass index on skin susceptibility to sodium lauryl sulphate. Skin. Res. Technol. 8, 19–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009). This study showed that glucose uptake into brown adipose tissue is inversely correlated with obesity.

    Article  PubMed  Google Scholar 

  142. Hollstein, T. et al. Reduced brown adipose tissue activity during cold exposure is a metabolic feature of the human thrifty phenotype. Metabolism 117, 154709 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Leitner, B. P. et al. Mapping of human brown adipose tissue in lean and obese young men. Proc. Natl Acad. Sci. USA 114, 8649–8654 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Morrison, S. F. RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am. J. Physiol. 276, R962–R973 (1999).

    CAS  PubMed  Google Scholar 

  145. Choi, K. M. et al. Defective brown adipose tissue thermogenesis and impaired glucose metabolism in mice lacking Letmd1. Cell Rep. 37, 110104 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Da Eira, D., Jani, S. & Ceddia, R. B. An obesogenic diet impairs uncoupled substrate oxidation and promotes whitening of the brown adipose tissue in rats. J. Physiol. 601, 69–82 (2023).

    Article  PubMed  Google Scholar 

  147. Sanchez-Rangel, E. et al. Norepinephrine transporter availability in brown fat is reduced in obesity: a human PET study with [(11)C] MRB. Int. J. Obes. 44, 964–967 (2020).

    Article  CAS  Google Scholar 

  148. Davis, T. R. & Mayer, J. Imperfect homeothermia in the hereditary obese-hyperglycemic syndrome of mice. Am. J. Physiol. 177, 222–226 (1954).

    Article  CAS  PubMed  Google Scholar 

  149. Trayhurn, P., Thurlby, P. L. & James, W. P. Thermogenic defect in pre-obese ob/ob mice. Nature 266, 60–62 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  150. Levin, B. E., Comai, K. & Sullivan, A. C. Metabolic and sympatho-adrenal abnormalities in the obese Zucker rat: effect of chronic phenoxybenzamine treatment. Pharmacol. Biochem. Behav. 14, 517–525 (1981).

    Article  CAS  PubMed  Google Scholar 

  151. Jung, R. T., Shetty, P. S., James, W. P., Barrand, M. A. & Callingham, B. A. Reduced thermogenesis in obesity. Nature 279, 322–323 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  152. Knehans, A. W. & Romsos, D. R. Reduced norepinephrine turnover in brown adipose tissue of ob/ob mice. Am. J. Physiol. 242, E253–E261 (1982).

    CAS  PubMed  Google Scholar 

  153. Young, J. B., Saville, E., Rothwell, N. J., Stock, M. J. & Landsberg, L. Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat. J. Clin. Invest. 69, 1061–1071 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Madden, C. J., Santos da Conceicao, E. P. & Morrison, S. F. Vagal afferent activation decreases brown adipose tissue (BAT) sympathetic nerve activity and BAT thermogenesis. Temperature 4, 89–96 (2017).

    Article  Google Scholar 

  155. Cao, W. H., Madden, C. J. & Morrison, S. F. Inhibition of brown adipose tissue thermogenesis by neurons in the ventrolateral medulla and in the nucleus tractus solitarius. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R277–R290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Doyle, M. W., Bailey, T. W., Jin, Y. H. & Andresen, M. C. Vanilloid receptors presynaptically modulate cranial visceral afferent synaptic transmission in nucleus tractus solitarius. J. Neurosci. 22, 8222–8229 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hofmann, M. E. & Andresen, M. C. Vanilloids selectively sensitize thermal glutamate release from TRPV1 expressing solitary tract afferents. Neuropharmacology 101, 401–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Green, D. et al. Central activation of TRPV1 and TRPA1 by novel endogenous agonists contributes to mechanical allodynia and thermal hyperalgesia after burn injury. Mol. Pain. 12, 1744806916661725 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Patwardhan, A. M. et al. Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J. Clin. Invest. 120, 1617–1626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Osthues, T. & Sisignano, M. Oxidized lipids in persistent pain states. Front. Pharmacol. 10, 1147 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mohammed, M., Madden, C. J., Andresen, M. C. & Morrison, S. F. Activation of TRPV1 in nucleus tractus solitarius reduces brown adipose tissue thermogenesis, arterial pressure, and heart rate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R134–R143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Okada, S. et al. Functional involvement of nucleus tractus solitarii neurons projecting to the parabrachial nucleus in trigeminal neuropathic pain. J. Oral Sci. 61, 370–378 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Yang, W. Z. et al. Parabrachial neuron types categorically encode thermoregulation variables during heat defense. Sci. Adv. 6, eabb9414 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hermanson, O., Telkov, M., Geijer, T., Hallbeck, M. & Blomqvist, A. Preprodynorphin mRNA-expressing neurones in the rat parabrachial nucleus: subnuclear localization, hypothalamic projections and colocalization with noxious-evoked fos-like immunoreactivity. Eur. J. Neurosci. 10, 358–367 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Huang, D., Grady, F. S., Peltekian, L. & Geerling, J. C. Efferent projections of Vglut2, Foxp2, and Pdyn parabrachial neurons in mice. J. Comp. Neurol. 529, 657–693 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Norris, A. J., Shaker, J. R., Cone, A. L., Ndiokho, I. B. & Bruchas, M. R. Parabrachial opioidergic projections to preoptic hypothalamus mediate behavioral and physiological thermal defenses. eLife 10, e60779 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cintron-Colon, R. et al. Activation of kappa opioid receptor regulates the hypothermic response to calorie restriction and limits body weight loss. Curr. Biol. 29, 4291–4299.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xin, L., Geller, E. B. & Adler, M. W. Body temperature and analgesic effects of selective mu and kappa opioid receptor agonists microdialyzed into rat brain. J. Pharmacol. Exp. Ther. 281, 499–507 (1997).

    CAS  PubMed  Google Scholar 

  169. Geerling, J. C. et al. Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R41–R54 (2016).

    Article  PubMed  Google Scholar 

  170. Yang, W. Z. et al. A parabrachial-hypothalamic parallel circuit governs cold defense in mice. Preprint at bioRxiv https://doi.org/10.1101/2023.04.19.537288 (2023).

  171. Nakamura, K. & Morrison, S. F. A thermosensory pathway that controls body temperature. Nat. Neurosci. 11, 62–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Yahiro, T., Kataoka, N. & Nakamura, K. Two ascending thermosensory pathways from the lateral parabrachial nucleus that mediate behavioral and autonomous thermoregulation. Preprint at bioRxiv https://doi.org/10.1101/2023.04.10.536301 (2023).

  173. Cano, G. et al. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J. Comp. Neurol. 460, 303–326 (2003).

    Article  PubMed  Google Scholar 

  174. Bratincsak, A. & Palkovits, M. Activation of brain areas in rat following warm and cold ambient exposure. Neuroscience 127, 385–397 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Kasuga, R. et al. Role of TRPM8 in cold avoidance behaviors and brain activation during innocuous and nocuous cold stimuli. Physiol. Behav. 248, 113729 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Feng, C. et al. Cold-sensitive ventromedial hypothalamic neurons control homeostatic thermogenesis and social interaction-associated hyperthermia. Cell Metab. 34, 888–901.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Chitravanshi, V. C., Kawabe, K. & Sapru, H. N. Stimulation of the hypothalamic arcuate nucleus increases brown adipose tissue nerve activity via hypothalamic paraventricular and dorsomedial nuclei. Am. J. Physiol. Heart Circ. Physiol. 311, H433–H444 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Mota, C. M. D. & Madden, C. J. Mediobasal hypothalamic neurons contribute to the control of brown adipose tissue sympathetic nerve activity and cutaneous vasoconstriction. J. Therm. Biol. 114, 103551 (2023).

    Article  PubMed  Google Scholar 

  179. Cowley, M. A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  181. Horvath, T. L., Bechmann, I., Naftolin, F., Kalra, S. P. & Leranth, C. Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res. 756, 283–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  182. Tang, Q. et al. MANF in POMC neurons promotes brown adipose tissue thermogenesis and protects against diet-induced obesity. Diabetes 71, 2344–2359 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kong, D. et al. GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151, 645–657 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mota, C. M. D., Siler, D. A., Burchiel, K. J. & Madden, C. J. Acute deep brain stimulation of the paraventricular nucleus of the hypothalamus increases brown adipose tissue thermogenesis in rats. Neurosci. Lett. 799, 137130 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Munzberg, H. & Myers, M. G. Jr. Molecular and anatomical determinants of central leptin resistance. Nat. Neurosci. 8, 566–570 (2005).

    Article  PubMed  Google Scholar 

  186. Enriori, P. J., Sinnayah, P., Simonds, S. E., Garcia Rudaz, C. & Cowley, M. A. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J. Neurosci. 31, 12189–12197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Munzberg, H., Flier, J. S. & Bjorbaek, C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145, 4880–4889 (2004).

    Article  PubMed  Google Scholar 

  188. El-Haschimi, K., Pierroz, D. D., Hileman, S. M., Bjorbaek, C. & Flier, J. S. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest. 105, 1827–1832 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kaiyala, K. J., Ogimoto, K., Nelson, J. T., Muta, K. & Morton, G. J. Physiological role for leptin in the control of thermal conductance. Mol. Metab. 5, 892–902 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Mark, A. L. Selective leptin resistance revisited. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R566–R581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lin, X. et al. Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. J. Clin. Invest. 114, 908–916 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Benedict, C. et al. Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes 60, 114–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  194. Fosch, A., Zagmutt, S., Casals, N. & Rodriguez-Rodriguez, R. New insights of SF1 neurons in hypothalamic regulation of obesity and diabetes. Int. J. Mol. Sci. 22, 6186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tong, Q. et al. Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 5, 383–393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Brown, G. M. & Page, J. The effect of chronic exposure to cold on temperature and blood flow of the hand. J. Appl. Physiol. 5, 221–227 (1952).

    Article  CAS  PubMed  Google Scholar 

  197. Brown, G. M., Hatcher, J. D. & Page, J. Temperature and blood flow in the forearm of the Eskimo. J. Appl. Physiol. 5, 410–420 (1953).

    Article  CAS  PubMed  Google Scholar 

  198. Little, M. A., Thomas, R. B., Mazess, R. B. & Baker, P. T. Population differences and developmental changes in extremity temperature responses to cold among Andean Indians. Hum. Biol. 43, 70–91 (1971).

    CAS  PubMed  Google Scholar 

  199. Nelms, J. D. & Soper, D. J. Cold vasodilatation and cold acclimatization in the hands of British fish filleters. J. Appl. Physiol. 17, 444–448 (1962).

    Article  CAS  PubMed  Google Scholar 

  200. Enander, A., Skoldstrom, B. & Holmer, I. Reactions to hand cooling in workers occupationally exposed to cold. Scand. J. Work Env. Health 6, 58–65 (1980).

    Article  CAS  Google Scholar 

  201. Carman, K. W. & Knight, K. L. Habituation to cold-pain during repeated cryokinetic sessions. J. Athl. Train. 27, 223–230 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Tipton, M. J. et al. Habituation of the metabolic and ventilatory responses to cold-water immersion in humans. J. Therm. Biol. 38, 24–31 (2013).

    Article  ADS  PubMed  Google Scholar 

  203. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. Gerngross, C., Schretter, J., Klingenspor, M., Schwaiger, M. & Fromme, T. Active brown fat during (18)F-FDG PET/CT imaging defines a patient group with characteristic traits and an increased probability of brown fat redetection. J. Nucl. Med. 58, 1104–1110 (2017).

    Article  PubMed  Google Scholar 

  205. Orava, J. et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity 21, 2279–2287 (2013).

    Article  CAS  PubMed  Google Scholar 

  206. Blondin, D. P. et al. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes 64, 2388–2397 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Balkan, B., Strubbe, J. H., Bruggink, J. E. & Steffens, A. B. Overfeeding-induced obesity in rats: insulin sensitivity and autonomic regulation of metabolism. Metabolism 42, 1509–1518 (1993).

    Article  CAS  PubMed  Google Scholar 

  208. Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all authors whose work in thermoregulation and related areas contributed to this Review. The authors also thank the editor and reviewers for their constructive suggestions, which helped us to improve our Review. This work was supported by the National Institutes of Health (DK112198).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this paper.

Corresponding author

Correspondence to Christopher J. Madden.

Ethics declarations

Competing interest

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Jon Resch, Shaun F. Morrison and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, C.M.D., Madden, C.J. Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands. Nat. Rev. Neurosci. 25, 143–158 (2024). https://doi.org/10.1038/s41583-023-00785-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00785-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing