Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Parkinson disease psychosis: from phenomenology to neurobiological mechanisms

Abstract

Parkinson disease (PD) psychosis (PDP) is a spectrum of illusions, hallucinations and delusions that are associated with PD throughout its disease course. Psychotic phenomena can manifest from the earliest stages of PD and might follow a continuum from minor hallucinations to structured hallucinations and delusions. Initially, PDP was considered to be a complication associated with dopaminergic drug use. However, subsequent research has provided evidence that PDP arises from the progression of brain alterations caused by PD itself, coupled with the use of dopaminergic drugs. The combined dysfunction of attentional control systems, sensory processing, limbic structures, the default mode network and thalamocortical connections provides a conceptual framework to explain how new incoming stimuli are incorrectly categorized, and how aberrant hierarchical predictive processing can produce false percepts that intrude into the stream of consciousness. The past decade has seen the publication of new data on the phenomenology and neurobiological basis of PDP from the initial stages of the disease, as well as the neurotransmitter systems involved in PDP initiation and progression. In this Review, we discuss the latest clinical, neuroimaging and neurochemical evidence that could aid early identification of psychotic phenomena in PD and inform the discovery of new therapeutic targets and strategies.

Key points

  • Parkinson disease (PD) psychosis (PDP) comprises a spectrum of illusions, hallucinations and delusions that are associated with PD throughout its course.

  • PDP is attributable not only to the use of dopaminergic drugs but also to inherent disruptions linked to the disease, which lead to dysfunction of neural systems governing visual perception, multimodal sensory integration, reality monitoring and attention.

  • Both minor and structured hallucinations in PD are associated with a pattern of cortical atrophy that includes the cuneus, precuneus, middle occipital gyrus, lingual and fusiform gyri, supramarginal gyrus, angular gyrus, anterior cingulate cortex, hippocampal regions and thalamus.

  • Functional neuroimaging studies indicate that PDP is associated with failure of top-down processing of attentional networks, aberrant coupling of the default mode network with visual networks and disconnection between the thalamus and posterior brain areas, leading to aberrant disinhibition of the default mode network.

  • Cortical cholinergic denervation and elevated levels of 5-HT2A serotonergic receptor binding in the ventral visual pathway, medial orbitofrontal cortex and insula have prominent roles in the development of visual hallucinations.

  • An important advance in the treatment of PDP has been the development of drugs that reduce the activity of cortical postsynaptic 5-HT2A receptors, of which pimavanserin is the most notable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual framework for the pathogenesis of Parkinson disease psychosis.
Fig. 2: Structural brain changes associated with minor and structured hallucinations.
Fig. 3: Functional connectivity changes associated with Parkinson disease psychosis.
Fig. 4: Neurotransmitter systems involved in Parkinson disease psychosis.

Similar content being viewed by others

References

  1. ffytche, D. H. et al. The psychosis spectrum in Parkinson disease. Nat. Rev. Neurol. 13, 81–95 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Diederich, N. J., Fénelon, G., Stebbins, G. & Goetz, C. G. Hallucinations in Parkinson disease. Nat. Rev. Neurol. 5, 331–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Damasio, A. R., Lobo-Antunes, J. & Macedo, C. Psychiatric aspects in Parkinsonism treated with L-dopa. J. Neurol. Neurosurg. Psychiatry 34, 502–507 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moskovitz, C., Moses, H. 3rd & Klawans, H. L. Levodopa-induced psychosis: a kindling phenomenon. Am. J. Psychiatry 135, 669–675 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Rinne, U. K., Sonninen, V. & Marttila, R. Dopaminergic agonist effects on Parkinsonian clinical features and brain monamine metabolism. Adv. Neurol. 9, 383–392 (1975).

    CAS  PubMed  Google Scholar 

  6. Parkes, J. D. et al. Bromocriptine treatment in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 39, 184–193 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holroyd, S. Prospective study of hallucinations and delusions in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 70, 734–738 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goetz, C. G., Leurgans, S., Pappert, E. J., Raman, R. & Stemer, A. B. Prospective longitudinal assessment of hallucinations in Parkinson’s disease. Neurology 57, 2078–2082 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Williams, D. R. & Lees, A. J. Visual hallucinations in the diagnosis of idiopathic Parkinson’s disease: a retrospective autopsy study. Lancet Neurol. 4, 605–610 (2005).

    Article  PubMed  Google Scholar 

  10. Fénelon, G. Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors. Brain 123, 733–745 (2000).

    Article  PubMed  Google Scholar 

  11. Fénelon, G., Goetz, C. G. & Karenberg, A. Hallucinations in Parkinson disease in the prelevodopa era. Neurology 66, 93–98 (2006).

    Article  PubMed  Google Scholar 

  12. Biousse, V. et al. Ophthalmologic features of Parkinson’s disease. Neurology 62, 177–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Ibarretxe-Bilbao, N. et al. Differential progression of brain atrophy in Parkinson’s disease with and without visual hallucinations. J. Neurol. Neurosurg. Psychiatry 81, 650–657 (2010).

    Article  PubMed  Google Scholar 

  14. Goldman, J. G. et al. Visuoperceptive region atrophy independent of cognitive status in patients with Parkinson’s disease with hallucinations. Brain 137, 849–859 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meppelink, A. M. et al. Impaired visual processing preceding image recognition in Parkinson’s disease patients with visual hallucinations. Brain 132, 2980–2993 (2009).

    Article  PubMed  Google Scholar 

  16. Pagonabarraga, J. et al. Neural correlates of minor hallucinations in non-demented patients with Parkinson’s disease. Parkinsonism Relat. Disord. 20, 290–296 (2014).

    Article  PubMed  Google Scholar 

  17. Lenka, A., Pagonabarraga, J., Pal, P. K., Bejr-Kasem, H. & Kulisvesky, J. Minor hallucinations in Parkinson disease. Neurology 93, 259–266 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fénelon, G., Soulas, T., de Langavant, L. C., Trinkler, I. & Bachoud-Levi, A.-C. Feeling of presence in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 82, 1219–1224 (2011).

    Article  PubMed  Google Scholar 

  19. Pagonabarraga, J. et al. Minor hallucinations occur in drug-naive Parkinson’s disease patients, even from the premotor phase. Mov. Disord. 31, 45–52 (2016).

    Article  PubMed  Google Scholar 

  20. Ravina, B. et al. Diagnostic criteria for psychosis in Parkinson’s disease: report of an NINDS, NIMH work group. Mov. Disord. 22, 1061–1068 (2007).

    Article  PubMed  Google Scholar 

  21. Fénelon, G., Soulas, T., Zenasni, F. & de Langavant, L. C. The changing face of Parkinson’s disease-associated psychosis: a cross-sectional study based on the new NINDS–NIMH criteria. Mov. Disord. 25, 763–766 (2010).

    Article  PubMed  Google Scholar 

  22. Zhong, M. et al. Prevalence and risk factors for minor hallucinations in patients with Parkinson’s disease. Behav. Neurol. 2021, 3469706 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wood, R. A., Hopkins, S. A., Moodley, K. K. & Chan, D. Fifty percent prevalence of extracampine hallucinations in Parkinson’s disease patients. Front. Neurol. 6, 263 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bejr‐Kasem, H. et al. Minor hallucinations reflect early gray matter loss and predict subjective cognitive decline in Parkinson’s disease. Eur. J. Neurol. 28, 438–447 (2021).

    Article  PubMed  Google Scholar 

  25. Doé de Maindreville, A., Fénelon, G. & Mahieux, F. Hallucinations in Parkinson’s disease: a follow‐up study. Mov. Disord. 20, 212–217 (2005).

    Article  Google Scholar 

  26. Sasaki, C. et al. Visual illusions in Parkinson’s disease: an interview survey of symptomatology. Psychogeriatrics 22, 38–48 (2022).

    Article  PubMed  Google Scholar 

  27. Nishio, Y. et al. Defining visual illusions in Parkinson’s disease: kinetopsia and object misidentification illusions. Parkinsonism Relat. Disord. 55, 111–116 (2018).

    Article  PubMed  Google Scholar 

  28. Kulisevsky, J., Pagonabarraga, J., Pascual-Sedano, B., García-Sánchez, C. & Gironell, A. Prevalence and correlates of neuropsychiatric symptoms in Parkinson’s disease without dementia. Mov. Disord. 23, 1889–1896 (2008).

    Article  PubMed  Google Scholar 

  29. Gibson, G. et al. Frequency, prevalence, incidence and risk factors associated with visual hallucinations in a sample of patients with Parkinson’s disease: a longitudinal 4-year study. Int. J. Geriatr. Psychiatry 28, 626–631 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Stang, C. D. et al. Incidence, prevalence, and mortality of psychosis associated with Parkinson’s disease (1991–2010). J. Parkinsons Dis. 12, 1319–1327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aarsland, D., Ballard, C., Larsen, J. P. & McKeith, I. A comparative study of psychiatric symptoms in dementia with Lewy bodies and Parkinson’s disease with and without dementia. Int. J. Geriatr. Psychiatry 16, 528–536 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Chendo, I. et al. High frequency of psychosis in late-stage Parkinson’s disease. Clin. Park. Relat. Disord. 5, 100119 (2021).

    PubMed  PubMed Central  Google Scholar 

  33. Forsaa, E. B. et al. A 12-year population-based study of psychosis in Parkinson disease. Arch. Neurol. 67, 996–1001 (2010).

    Article  PubMed  Google Scholar 

  34. O’Brien, J. et al. Visual hallucinations in neurological and ophthalmological disease: pathophysiology and management. J. Neurol. Neurosurg. Psychiatry 91, 512–519 (2020).

    Article  PubMed  Google Scholar 

  35. Goetz, C. G. & Stebbins, G. T. Mortality and hallucinations in nursing home patients with advanced Parkinson’s disease. Neurology 45, 669–671 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Montagnese, M. et al. Cognition, hallucination severity and hallucination-specific insight in neurodegenerative disorders and eye disease. Cogn. Neuropsychiatry 27, 105–121 (2022).

    Article  PubMed  Google Scholar 

  37. Mosimann, U. P. et al. Characteristics of visual hallucinations in Parkinson disease dementia and dementia with Lewy bodies. Am. J. Geriatr. Psychiatry 14, 153–160 (2006).

    Article  PubMed  Google Scholar 

  38. Onofrj, M., Thomas, A. & Bonanni, L. New approaches to understanding hallucinations in Parkinson’s disease: phenomenology and possible origins. Expert Rev. Neurother. 7, 1731–1750 (2007).

    Article  PubMed  Google Scholar 

  39. Eversfield, C. L. & Orton, L. D. Auditory and visual hallucination prevalence in Parkinson’s disease and dementia with Lewy bodies: a systematic review and meta-analysis. Psychol. Med. 49, 2342–2353 (2019).

    Article  PubMed  Google Scholar 

  40. Fénelon, G., Thobois, S., Bonnet, A.-M., Broussolle, E. & Tison, F. Tactile hallucinations in Parkinson’s disease. J. Neurol. 249, 1699–1703 (2002).

    Article  PubMed  Google Scholar 

  41. Goetz, C. G., Vogel, C., Tanner, C. M. & Stebbins, G. T. Early dopaminergic drug-induced hallucinations in parkinsonian patients. Neurology 51, 811–814 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Goetz, C. G., Stebbins, G. T. & Ouyang, B. Visual plus nonvisual hallucinations in Parkinson’s disease: development and evolution over 10 years. Mov. Disord. 26, 2196–2200 (2011).

    Article  PubMed  Google Scholar 

  43. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association Publishing, 2022).

  44. Factor, S. A. et al. Cognitive correlates of hallucinations and delusions in Parkinson’s disease. J. Neurol. Sci. 347, 316–321 (2014).

    Article  PubMed  Google Scholar 

  45. Warren, N., O’Gorman, C., Hume, Z., Kisely, S. & Siskind, D. Delusions in Parkinson’s disease: a systematic review of published cases. Neuropsychol. Rev. 28, 310–316 (2018).

    Article  PubMed  Google Scholar 

  46. Stefanis, N. et al. Isolated delusional syndrome in Parkinson’s disease. Parkinsonism Relat. Disord. 16, 550–552 (2010).

    Article  PubMed  Google Scholar 

  47. Kiziltan, G., Özekmekçi, S., Ertan, S., Ertan, T. & Erginöz, E. Relationship between age and subtypes of psychotic symptoms in Parkinson’s disease. J. Neurol. 254, 448–452 (2007).

    Article  PubMed  Google Scholar 

  48. Poletti, M. et al. Dopamine agonists and delusional jealousy in Parkinson’s disease: a cross-sectional prevalence study. Mov. Disord. 27, 1679–1682 (2012).

    Article  PubMed  Google Scholar 

  49. De Michele, G. et al. Othello syndrome in Parkinson’s disease: a systematic review and report of a case series. Neurol. Sci. 42, 2721–2729 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  50. Hashimoto, M., Sakamoto, S. & Ikeda, M. Clinical features of delusional jealousy in elderly patients with dementia. J. Clin. Psychiatry 76, 691–695 (2015).

    Article  PubMed  Google Scholar 

  51. Ballard, C. et al. Psychiatric morbidity in dementia with Lewy bodies: a prospective clinical and neuropathological comparative study with Alzheimer’s disease. Am. J. Psychiatry 156, 1039–1045 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Perini, G. et al. Misidentification delusions. Alzheimer Dis. Assoc. Disord. 30, 331–337 (2016).

    Article  PubMed  Google Scholar 

  53. Christodoulou, G. N., Margariti, M., Kontaxakis, V. P. & Christodoulou, N. G. The delusional misidentification syndromes: strange, fascinating, and instructive. Curr. Psychiatry Rep. 11, 185–189 (2009).

    Article  PubMed  Google Scholar 

  54. Pagonabarraga, J. et al. A prospective study of delusional misidentification syndromes in Parkinson’s disease with dementia. Mov. Disord. 23, 443–448 (2008).

    Article  PubMed  Google Scholar 

  55. Roane, D. M., Rogers, J. D., Robinson, J. H. & Feinberg, T. E. Delusional misidentification in association with parkinsonism. J. Neuropsychiatry Clin. Neurosci. 10, 194–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Hermanowicz, N. Delusional misidentification in Parkinson’s disease: report of two cases and a review. Postgrad. Med. 130, 280–283 (2018).

    Article  PubMed  Google Scholar 

  57. Moro, A., Munhoz, R. P., Moscovich, M., Arruda, W. O. & Teive, H. A. G. Delusional misidentification syndrome and other unusual delusions in advanced Parkinson’s disease. Parkinsonism Relat. Disord. 19, 751–754 (2013).

    Article  PubMed  Google Scholar 

  58. Nagahama, Y., Okina, T., Suzuki, N. & Matsuda, M. Neural correlates of psychotic symptoms in dementia with Lewy bodies. Brain 133, 557–567 (2010).

    Article  PubMed  Google Scholar 

  59. Mentis, M. J. et al. Abnormal brain glucose metabolism in the delusional misidentification syndromes: a positron emission tomography study in Alzheimer disease. Biol. Psychiatry 38, 438–449 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Weilnhammer, V. A., Stuke, H., Sterzer, P. & Schmack, K. The neural correlates of hierarchical predictions for perceptual decisions. J. Neurosci. 38, 5008–5021 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pezzoli, S. et al. Neuroanatomical and cognitive correlates of visual hallucinations in Parkinson’s disease and dementia with Lewy bodies: voxel-based morphometry and neuropsychological meta-analysis. Neurosci. Biobehav. Rev. 128, 367–382 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Aarsland, D. et al. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 7, 47 (2021).

    Article  PubMed  Google Scholar 

  63. Martinez-Horta, S. & Kulisevsky, J. Mild cognitive impairment in Parkinson’s disease. J. Neural Transm. 126, 897–904 (2019).

    Article  PubMed  Google Scholar 

  64. Anang, J. B. et al. Predictors of dementia in Parkinson disease: a prospective cohort study. Neurology 83, 1253–1260 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Goetz, C. G., Fan, W., Leurgans, S., Bernard, B. & Stebbins, G. T. The malignant course of “benign hallucinations” in Parkinson disease. Arch. Neurol. 63, 713–716 (2006).

    Article  PubMed  Google Scholar 

  66. Llebaria, G. et al. Neuropsychological correlates of mild to severe hallucinations in Parkinson’s disease. Mov. Disord. 25, 2785–2791 (2010).

    Article  PubMed  Google Scholar 

  67. Bronnick, K., Emre, M., Tekin, S., Haugen, S. B. & Aarsland, D. Cognitive correlates of visual hallucinations in dementia associated with Parkinson’s disease. Mov. Disord. 26, 824–829 (2011).

    Article  PubMed  Google Scholar 

  68. Thomas, G. E. C. et al. Changes in both top-down and bottom-up effective connectivity drive visual hallucinations in Parkinson’s disease. Brain Commun. 5, fcac329 (2023).

    Article  PubMed  Google Scholar 

  69. Serre, T., Oliva, A. & Poggio, T. A feedforward architecture accounts for rapid categorization. Proc. Natl Acad. Sci. USA 104, 6424–6429 (2007).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Blanke, O. Multisensory brain mechanisms of bodily self-consciousness. Nat. Rev. Neurosci. 13, 556–571 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Bernasconi, F. et al. Robot-induced hallucinations in Parkinson’s disease depend on altered sensorimotor processing in fronto-temporal network. Sci. Transl. Med. 13, eabc8362 (2021).

    Article  PubMed  Google Scholar 

  72. Bar, M. A cortical mechanism for triggering top-down facilitation in visual object recognition. J. Cogn. Neurosci. 15, 600–609 (2003).

    Article  PubMed  Google Scholar 

  73. Collerton, D., Perry, E. & McKeith, I. Why people see things that are not there: a novel perception and attention deficit model for recurrent complex visual hallucinations. Behav. Brain Sci. 28, 737–757 (2005).

    Article  PubMed  Google Scholar 

  74. Shine, J. M. et al. The role of dysfunctional attentional control networks in visual misperceptions in Parkinson’s disease. Hum. Brain Mapp. 35, 2206–2219 (2014).

    Article  PubMed  Google Scholar 

  75. Schendan, H. E. & Ganis, G. Top-down modulation of visual processing and knowledge after 250 ms supports object constancy of category decisions. Front. Psychol. 6, 1289 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schendan, H. E. & Maher, S. M. Object knowledge during entry-level categorization is activated and modified by implicit memory after 200 ms. Neuroimage 44, 1423–1438 (2009).

    Article  PubMed  Google Scholar 

  77. Bejr-Kasem, H. et al. The role of attentional control over interference in minor hallucinations in Parkinson’s disease. Parkinsonism Relat. Disord. 102, 101–107 (2022).

    Article  PubMed  Google Scholar 

  78. Barnes, J., Boubert, L., Harris, J., Lee, A. & David, A. S. Reality monitoring and visual hallucinations in Parkinson’s disease. Neuropsychologia 41, 565–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Johnson, M. K., Hashtroudi, S. & Lindsay, D. S. Source monitoring. Psychol. Bull. 114, 3–28 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Muller, A. J., Shine, J. M., Halliday, G. M. & Lewis, S. J. G. Visual hallucinations in Parkinson’s disease: theoretical models. Mov. Disord. 29, 1591–1598 (2014).

    Article  PubMed  Google Scholar 

  81. Collerton, D. et al. Understanding visual hallucinations: a new synthesis. Neurosci. Biobehav. Rev. 150, 105208 (2023).

    Article  PubMed  Google Scholar 

  82. Geddes, M. R. et al. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder. Cortex 74, 96–106 (2016).

    Article  PubMed  Google Scholar 

  83. Nishio, Y. et al. Deconstructing psychosis and misperception symptoms in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 88, 722–729 (2017).

    Article  PubMed  Google Scholar 

  84. Bejr-Kasem, H. et al. Disruption of the default mode network and its intrinsic functional connectivity underlies minor hallucinations in Parkinson’s disease. Mov. Disord. 34, 78–86 (2019).

    Article  PubMed  Google Scholar 

  85. Zhong, M. et al. Aberrant gray matter volume and functional connectivity in Parkinson’s disease with minor hallucination. Front. Aging Neurosci. 14, 923560 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nagahama, Y. et al. Classification of psychotic symptoms in dementia with Lewy bodies. Am. J. Geriatr. Psychiatry 15, 961–967 (2007).

    Article  PubMed  Google Scholar 

  87. Vignando, M. et al. Mapping brain structural differences and neuroreceptor correlates in Parkinson’s disease visual hallucinations. Nat. Commun. 13, 519 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. Barrett, M. J., Blair, J. C., Sperling, S. A., Smolkin, M. E. & Druzgal, T. J. Baseline symptoms and basal forebrain volume predict future psychosis in early Parkinson disease. Neurology 90, e1618–e1626 (2018).

    Article  PubMed  Google Scholar 

  89. Lenka, A. et al. Hippocampal subfield atrophy in patients with Parkinson’s disease and psychosis. J. Neural Transm. 125, 1361–1372 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Ramírez-Ruiz, B. et al. Cerebral atrophy in Parkinson’s disease patients with visual hallucinations. Eur. J. Neurol. 14, 750–756 (2007).

    Article  PubMed  Google Scholar 

  91. Shin, S. et al. Neuroanatomical substrates of visual hallucinations in patients with non-demented Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 83, 1155–1161 (2012).

    Article  PubMed  Google Scholar 

  92. Watanabe, H. et al. Cortical and subcortical brain atrophy in Parkinson’s disease with visual hallucination. Mov. Disord. 28, 1732–1736 (2013).

    Article  PubMed  Google Scholar 

  93. Okada, K., Suyama, N., Oguro, H., Yamaguchi, S. & Kobayashi, S. Medication-induced hallucination and cerebral blood flow in Parkinson’s disease. J. Neurol. 246, 365–368 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Stebbins, G. T. et al. Altered cortical visual processing in PD with hallucinations: an fMRI study. Neurology 63, 1409–1416 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Oishi, N. et al. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology 65, 1708–1715 (2011).

    Article  Google Scholar 

  96. Matsui, H. et al. Hypoperfusion of the visual pathway in parkinsonian patients with visual hallucinations. Mov. Disord. 21, 2140–2144 (2006).

    Article  PubMed  Google Scholar 

  97. Boecker, H., Ceballos-Baumann, A. O., Volk, D. & Conrad, B. Metabolic alterations in patients with Parkinson disease and visual hallucinations. Arch. Neurol. 64, 984–988 (2015).

    Article  Google Scholar 

  98. Goetz, C. G., Vaughan, C. L., Goldman, J. G. & Stebbins, G. T. I finally see what you see: Parkinson’s disease visual hallucinations captured with functional neuroimaging. Mov. Disord. 29, 115–117 (2014).

    Article  PubMed  Google Scholar 

  99. Gasca-Salas, C., Clavero, P., García-García, D., Obeso, J. A. & Rodríguez-Oroz, M. C. Significance of visual hallucinations and cerebral hypometabolism in the risk of dementia in Parkinson’s disease patients with mild cognitive impairment. Hum. Brain Mapp. 37, 968–977 (2016).

    Article  PubMed  Google Scholar 

  100. Ramírez-Ruiz, B., Junqué, C., Martí, M.-J., Valldeoriola, F. & Tolosa, E. Neuropsychological deficits in Parkinson’s disease patients with visual hallucinations. Mov. Disord. 21, 1483–1487 (2006).

    Article  PubMed  Google Scholar 

  101. Nagano-Saito, A. et al. Visual hallucination in Parkinson’s disease with FDG PET. Mov. Disord. 19, 801–806 (2004).

    Article  PubMed  Google Scholar 

  102. Ramirez-Ruiz, B. et al. Brain response to complex visual stimuli in Parkinson’s patients with hallucinations: a functional magnetic resonance imaging study. Mov. Disord. 23, 2335–2343 (2008).

    Article  PubMed  Google Scholar 

  103. Sanchez-Castaneda, C. et al. Frontal and associative visual areas related to visual hallucinations in dementia with Lewy bodies and Parkinson’s disease with dementia. Mov. Disord. 25, 615–622 (2010).

    Article  PubMed  Google Scholar 

  104. Gama, R. L. et al. Structural brain abnormalities in patients with Parkinson’s disease with visual hallucinations: a comparative voxel-based analysis. Brain Cogn. 87, 97–103 (2014).

    Article  PubMed  Google Scholar 

  105. Ibarretxe-Bilbao, N. et al. Hippocampal head atrophy predominance in Parkinson’s disease with hallucinations and with dementia. J. Neurol. 255, 1324–1331 (2008).

    Article  PubMed  Google Scholar 

  106. Janzen, J. et al. The pedunculopontine nucleus is related to visual hallucinations in Parkinson’s disease: preliminary results of a voxel-based morphometry study. J. Neurol. 259, 147–154 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Shine, J. M., Halliday, G. M., Naismith, S. L. & Lewis, S. J. G. Visual misperceptions and hallucinations in Parkinson’s disease: dysfunction of attentional control networks? Mov. Disord. 26, 2154–2159 (2011).

    Article  PubMed  Google Scholar 

  108. Shine, J. M. et al. Imagine that: elevated sensory strength of mental imagery in individuals with Parkinson’s disease and visual hallucinations. Proc. Biol. Sci. 282, 20142047 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Shine, J. M. et al. Abnormal connectivity between the default mode and the visual system underlies the manifestation of visual hallucinations in Parkinson’s disease: a task-based fMRI study. Parkinsons Dis. 1, 15003 (2015).

    Article  Google Scholar 

  110. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  112. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Lewis, G. J. & Bates, T. C. The long reach of the gene. Psychologist 26, 194–198 (2013).

    Google Scholar 

  114. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl Acad. Sci. USA 103, 10046–10051 (2006).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Eckert, M. A. et al. At the heart of the ventral attention system: the right anterior insula. Hum. Brain Mapp. 30, 2530–2541 (2009).

    Article  PubMed  Google Scholar 

  116. Shine, J. M., Halliday, G. H., Carlos, M., Naismith, S. L. & Lewis, S. J. G. Investigating visual misperceptions in Parkinson’s disease: a novel behavioral paradigm. Mov. Disord. 27, 500–505 (2012).

    Article  PubMed  Google Scholar 

  117. Hepp, D. H. et al. Loss of functional connectivity in patients with Parkinson disease and visual hallucinations. Radiology 285, 896–903 (2017).

    Article  PubMed  ADS  Google Scholar 

  118. Miloserdov, K. et al. Aberrant functional connectivity of resting state networks related to misperceptions and intra-individual variability in Parkinson’s disease. Neuroimage Clin. 25, 102076 (2020).

    Article  PubMed  Google Scholar 

  119. Dujardin, K. et al. What can we learn from fMRI capture of visual hallucinations in Parkinson’s disease? Brain Imaging Behav. 14, 329–335 (2020).

    Article  PubMed  Google Scholar 

  120. Walpola, I. C. et al. Mind-wandering in Parkinson’s disease hallucinations reflects primary visual and default network coupling. Cortex 125, 233–245 (2020).

    Article  PubMed  Google Scholar 

  121. Knolle, F. et al. Altered subcortical emotional salience processing differentiates Parkinson’s patients with and without psychotic symptoms. Neuroimage Clin. 27, 10227 (2020).

    Article  Google Scholar 

  122. Zarkali, A. et al. Changes in dynamic transitions between integrated and segregated states underlie visual hallucinations in Parkinson’s disease. Commun. Biol. 5, 928 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Onofrj, M., Espay, A. J., Bonanni, L., Delli Pizzi, S. & Sensi, S. L. Hallucinations, somatic‐functional disorders of PD‐DLB as expressions of thalamic dysfunction. Mov. Disord. 34, 1100–1111 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zarkali, A. et al. Fiber-specific white matter reductions in Parkinson hallucinations and visual dysfunction. Neurology 94, E1525–E1538 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zarkali, A., McColgan, P., Leyland, L. A., Lees, A. J. & Weil, R. S. Longitudinal thalamic white and grey matter changes associated with visual hallucinations in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 93, 169–179 (2022).

    Article  PubMed  Google Scholar 

  126. Zarkali, A. et al. Differences in network controllability and regional gene expression underlie hallucinations in Parkinson’s disease. Brain 143, 3435–3448 (2021).

    Article  Google Scholar 

  127. Thomas, G. E. C. et al. Changes in both top-down and bottom-up effective connectivity drive visual hallucinations in Parkinson’s disease. Brain Commun. 5, fcac329 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chaumon, M., Kveraga, K., Barrett, L. F. & Bar, M. Visual predictions in the orbitofrontal cortex rely on associative content. Cereb. Cortex 24, 2899–2907 (2014).

    Article  PubMed  Google Scholar 

  129. Zarkali, A. et al. Increased weighting on prior knowledge in Lewy body-associated visual hallucinations. Brain Commun. 1, fcz007 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lefebvre, S. et al. Hallucinations and conscious access to visual inputs in Parkinson’s disease. Sci. Rep. 6, 36284 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  131. Perinelli, A., Tabarelli, D., Miniussi, C. & Ricci, L. Dependence of connectivity on geometric distance in brain networks. Sci. Rep. 9, 13412 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  132. Yao, N. et al. The default mode network is disrupted in parkinson’s disease with visual hallucinations. Hum. Brain Mapp. 35, 5658–5666 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Franciotti, R. et al. Default mode network links to visual hallucinations: a comparison between Parkinson’s disease and multiple system atrophy. Mov. Disord. 30, 1237–1247 (2015).

    Article  PubMed  Google Scholar 

  134. Yao, N. et al. Multimodal MRI of the hippocampus in Parkinson’s disease with visual hallucinations. Brain Struct. Funct. 221, 287–300 (2016).

    Article  PubMed  Google Scholar 

  135. Yao, N. et al. Resting activity in visual and corticostriatal pathways in Parkinson’s disease with hallucinations. Parkinsonism Relat. Disord. 21, 131–137 (2015).

    Article  PubMed  Google Scholar 

  136. Lee, J. Y. et al. Lateral geniculate atrophy in Parkinson’s with visual hallucination: a trans-synaptic degeneration? Mov. Disord. 31, 547–554 (2016).

    Article  PubMed  Google Scholar 

  137. Miyata, M. et al. Optic radiation atrophy in Lewy body disease with visual hallucination on phase difference enhanced magnetic resonance images. Sci. Rep. 12, 18556 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  138. Hepp, D. H. et al. Damaged fiber tracts of the nucleus basalis of Meynert in Parkinson’s disease patients with visual hallucinations. Sci. Rep. 7, 10112 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  139. Yuki, N., Yoshioka, A., Mizuhara, R. & Kimura, T. Visual hallucinations and inferior longitudinal fasciculus in Parkinson’s disease. Brain Behav. 10, e01883 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zhong, J. M. et al. Why psychosis is frequently associated with Parkinson’s disease? Neural Regen. Res. 8, 2548–2556 (2013).

    PubMed  PubMed Central  ADS  Google Scholar 

  141. Hall, J. M. et al. Changes in structural network topology correlate with severity of hallucinatory behavior in Parkinson’s disease. Netw. Neurosci. 3, 521–538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Rootes-Murdy, K., Goldsmith, D. R. & Turner, J. A. Clinical and structural differences in delusions across diagnoses: a systematic review. Front. Integr. Neurosci. 15, 726321 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Factor, S. A., Molho, E. S., Podskalny, G. D. & Brown, D. Parkinson’s disease: drug-induced psychiatric states. Adv. Neurol. 65, 115–138 (1995).

    CAS  PubMed  Google Scholar 

  144. Goetz, C., Tanner, C. & Klawans, H. Pharmacology of hallucinations induced by long-term drug therapy. Am. J. Psychiatry 139, 494–497 (1982).

    Article  CAS  PubMed  Google Scholar 

  145. de la Riva, P., Smith, K., Xie, S. X. & Weintraub, D. Course of psychiatric symptoms and global cognition in early Parkinson disease. Neurology 83, 1096–1103 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Neumann, J. et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132, 1783–1794 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dotchin, C. L., Jusabani, A. & Walker, R. W. Non-motor symptoms in a prevalent population with Parkinson’s disease in Tanzania. Parkinsonism Relat. Disord. 15, 457–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Wolters, E. C. Dopaminomimetic psychosis in Parkinson’s disease patients: diagnosis and treatment. Neurology 52, S10–S13 (1999).

    CAS  PubMed  Google Scholar 

  149. McCutcheon, R. A. et al. Mesolimbic dopamine function is related to salience network connectivity: an integrative positron emission tomography and magnetic resonance study. Biol. Psychiatry 85, 368–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Russo, M. et al. The pharmacology of visual hallucinations in synucleinopathies. Front. Pharmacol. 10, 1379 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. van der Zee, S. et al. Altered cholinergic innervation in de novo Parkinson’s disease with and without cognitive impairment. Mov. Disord. 37, 713–723 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bohnen, N. I. et al. Cholinergic system changes in Parkinson’s disease: emerging therapeutic approaches. Lancet Neurol. 21, 381–392 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Whitehouse, P. J., Hedreen, J. C., White, C. L. & Price, D. L. Basal forebrain neurons in the dementia of Parkinson disease. Ann. Neurol. 13, 243–248 (1983).

    Article  CAS  PubMed  Google Scholar 

  154. Perry, E. K. et al. Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 48, 413–421 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shimada, H. et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73, 273–278 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Bohnen, N. I. et al. Progression of regional cortical cholinergic denervation in Parkinson’s disease. Brain Commun. 4, fcac320 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ray, N. J., Kanel, P. & Bohnen, N. I. Atrophy of the cholinergic basal forebrain can detect presynaptic cholinergic loss in Parkinson’s disease. Ann. Neurol. 93, 991–998 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Manganelli, F. et al. Functional involvement of central cholinergic circuits and visual hallucinations in Parkinson’s disease. Brain 132, 2350–2355 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Johnson, M. W., Hendricks, P. S., Barrett, F. S. & Griffiths, R. R. Classic psychedelics: an integrative review of epidemiology, therapeutics, mystical experience, and brain network function. Pharmacol. Ther. 197, 83–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Hofmann, A. Psychotomimetic drugs; chemical and pharmacological aspects. Acta Physiol. Pharmacol. Neerl. 8, 240–258 (1959).

    CAS  PubMed  Google Scholar 

  161. Cheng, A. V. T. et al. Cortical serotonin-S2 receptor binding in Lewy body dementia, Alzheimer’s and Parkinson’s diseases. J. Neurol. Sci. 106, 50–55 (1991).

    Article  CAS  PubMed  Google Scholar 

  162. Chen, C. et al. Post-synaptic 5-HT1A and 5-HT2A receptors are increased in Parkinson’s disease neocortex. Ann. N. Y. Acad. Sci. 861, 288–289 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  163. Rasmussen, N. B. et al. 5-HT2A receptor binding in the frontal cortex of Parkinson’s disease patients and alpha-synuclein overexpressing mice: a postmortem study. Parkinsons Dis. 2016, 3682936 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. Huot, P. et al. Increased 5-HT2A receptors in the temporal cortex of parkinsonian patients with visual hallucinations. Mov. Disord. 25, 1399–1408 (2010).

    Article  PubMed  Google Scholar 

  165. Ballanger, B. et al. Serotonin 2A receptors and visual hallucinations in Parkinson disease. Arch. Neurol. 67, 416–421 (2010).

    Article  PubMed  Google Scholar 

  166. Burstein, E. S. Relevance of 5-HT2A receptor modulation of pyramidal cell excitability for dementia-related psychosis: implications for pharmacotherapy. CNS Drugs 35, 727–741 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Papapetropoulos, S. Regional alpha-synuclein aggregation, dopaminergic dysregulation, and the development of drug-related visual hallucinations in Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 18, 149–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Barnes, N. M., Hales, T. G., Lummis, S. C. R. & Peters, J. A. The 5-HT3 receptor — the relationship between structure and function. Neuropharmacology 56, 273–284 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Tsitsipa, E. et al. Selective 5HT3 antagonists and sensory processing: a systematic review. Neuropsychopharmacology 47, 880–890 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang, Z.-J. et al. Beneficial effects of ondansetron as an adjunct to haloperidol for chronic, treatment-resistant schizophrenia: a double-blind, randomized, placebo-controlled study. Schizophr. Res. 88, 102–110 (2006).

    Article  PubMed  Google Scholar 

  171. Arnsten, A. F. T., Lin, C. H., Van Dyck, C. H. & Stanhope, K. J. The effects of 5-HT3 receptor antagonists on cognitive performance in aged monkeys. Neurobiol. Aging 18, 21–28 (1997).

    Article  CAS  PubMed  Google Scholar 

  172. Gil-Bea, F. J. et al. Facilitation of cholinergic transmission by combined treatment of ondansetron with flumazenil after cortical cholinergic deafferentation. Neuropharmacology 47, 225–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Garani, R., Watts, J. J. & Mizrahi, R. Endocannabinoid system in psychotic and mood disorders, a review of human studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 106, 110096 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Lu, H.-C. & Mackie, K. An introduction to the endogenous cannabinoid system. Biol. Psychiatry 79, 516–525 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Katona, I. & Freund, T. F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat. Med. 14, 923–930 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Marco, E. Endocannabinoid system and psychiatry: in search of a neurobiological basis for detrimental and potential therapeutic effects. Front. Behav. Neurosci. 5, 63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Van Laere, K. et al. Regional changes in type 1 cannabinoid receptor availability in Parkinson’s disease in vivo. Neurobiol. Aging 33, 620.e1–620.e8 (2012).

    Article  PubMed  Google Scholar 

  178. Halff, E. F., Rutigliano, G., Garcia-Hidalgo, A. & Howes, O. D. Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders. Trends Neurosci. 46, 60–74 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Dave, S., Weintraub, D., Aarsland, D. & ffytche, D. H. Drug and disease effects in Parkinson’s psychosis: revisiting the role of dopamine. Mov. Disord. Clin. Pract. 7, 32–36 (2020).

    Article  PubMed  Google Scholar 

  180. Friedman, J. H. & Factor, S. A. Atypical antipsychotics in the treatment of drug-induced psychosis in Parkinson’s disease. Mov. Disord. 15, 201–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Meco, G., Alessandria, A., Bonifati, V. & Giustini, P. Risperidone for hallucinations in levodopa-treated Parkinson’s disease patients. Lancet 343, 1370–1371 (1994).

    Article  CAS  PubMed  Google Scholar 

  182. Goetz, C. G., Blasucci, L. M., Leurgans, S. & Pappert, E. J. Olanzapine and clozapine. Neurology 55, 789–794 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Kashihara, K., Maeda, T. & Yoshida, K. Safety and tolerability of aripiprazole in patients with psychosis associated with Parkinson’s disease—results of a multicenter open trial. Neuropsychopharmacol. Rep. 42, 135–141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Younce, J. R., Davis, A. A. & Black, K. J. A systematic review and case series of ziprasidone for psychosis in Parkinson’s disease. J. Parkinsons Dis. 9, 63–71 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Seppi, K. et al. Update on treatments for nonmotor symptoms of Parkinson’s disease—an evidence‐based medicine review. Mov. Disord. 34, 180–198 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Weintraub, D. et al. Association of antipsychotic use with mortality risk in patients with Parkinson disease. JAMA Neurol. 73, 535–541 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Pollak, P. et al. Clozapine in drug induced psychosis in Parkinson’s disease: a randomised, placebo controlled study with open follow up. J. Neurol. Neurosurg. Psychiatry 75, 689–695 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Parkinson Study Group. Low-dose clozapine for the treatment of drug-induced psychosis in Parkinson’s disease. N. Engl. J. Med. 340, 757–763 (1999).

    Article  Google Scholar 

  189. Emre, M. et al. Rivastigmine for dementia associated with Parkinson’s disease. N. Engl. J. Med. 351, 2509–2518 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Burn, D. et al. Effects of rivastigmine in patients with and without visual hallucinations in dementia associated wsith Parkinson’s disease. Mov. Disord. 21, 1899–1907 (2006).

    Article  MathSciNet  PubMed  Google Scholar 

  191. Reading, P. J., Luce, A. K. & McKeith, I. G. Rivastigmine in the treatment of parkinsonian psychosis and cognitive impairment: preliminary findings from an open trial. Mov. Disord. 16, 1171–1174 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Henderson, E. J. et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 249–258 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. d’Angremont, E., Begemann, M. J. H., van Laar, T. & Sommer, I. E. C. Cholinesterase inhibitors for treatment of psychotic symptoms in Alzheimer disease and Parkinson disease. JAMA Neurol. 80, 813–823 (2023).

    Article  PubMed  Google Scholar 

  194. Vanover, K. E. et al. Pharmacological and behavioral profile of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N-(4-(2-methylpropyloxy)phenylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103), a novel 5-hydroxytryptamine-2A receptor inverse agonist. J. Pharmacol. Exp. Ther. 317, 910–918 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. Cummings, J. et al. Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 383, 533–540 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Meltzer, H. Y. et al. Pimavanserin, a serotonin2A receptor inverse agonist, for the treatment of Parkinson’s disease psychosis. Neuropsychopharmacology 35, 881–892 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Tariot, P. N. et al. Trial of pimavanserin in dementia-related psychosis. N. Engl. J. Med. 385, 309–319 (2021).

    Article  CAS  PubMed  Google Scholar 

  198. Isaacson, S. H. et al. Efficacy results of pimavanserin from a multi-center, open-label extension study in Parkinson’s disease psychosis patients. Parkinsonism Relat. Disord. 87, 25–31 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Ballard, C. G. et al. Long-term evaluation of open-label pimavanserin safety and tolerability in Parkinson’s disease psychosis. Parkinsonism Relat. Disord. 77, 100–106 (2020).

    Article  PubMed  Google Scholar 

  200. Longardner, K. et al. Assessing the risks of treatment in Parkinson disease psychosis: an in-depth analysis. PLoS ONE 18, e0278262 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Pham Nguyen, T. P., Thibault, D., Hamedani, A. G., Weintraub, D. & Willis, A. W. Atypical antipsychotic use and mortality risk in Parkinson disease. Parkinsonism Relat. Disord. 103, 17–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  202. Wildeboer, K. M., Zheng, L., Choo, K. S. & Stevens, K. E. Ondansetron results in improved auditory gating in DBA/2 mice through a cholinergic mechanism. Brain Res. 1300, 41–50 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hashimoto, K., Iyo, M., Freedman, R. & Stevens, K. E. Tropisetron improves deficient inhibitory auditory processing in DBA/2 mice: role of α7 nicotinic acetylcholine receptors. Psychopharmacology 183, 13–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  204. Kishi, T., Mukai, T., Matsuda, Y. & Iwata, N. Selective serotonin 3 receptor antagonist treatment for schizophrenia: meta-analysis and systematic review. Neuromolecular Med. 16, 61–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Zoldan, J., Friedberg, G., Livneh, M. & Melamed, E. Psychosis in advanced Parkinson’s disease: treatment with ondansetron, a 5-HT3 receptor antagonist. Neurology 45, 1305–1308 (1995).

    Article  CAS  PubMed  Google Scholar 

  206. Zoldan, J., Friedberg, G., Goldberg-Stern, H. & Melamed, E. Ondansetron for hallucinosis in advanced Parkinson’s disease. Lancet 341, 562–563 (1993).

    Article  CAS  PubMed  Google Scholar 

  207. Kluger, B., Triolo, P., Jones, W. & Jankovic, J. The therapeutic potential of cannabinoids for movement disorders. Mov. Disord. 30, 313–327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Balash, Y. et al. Medical cannabis in Parkinson disease: real-life patients’ experience. Clin. Neuropharmacol. 40, 268–272 (2017).

    Article  PubMed  Google Scholar 

  209. Chesney, E., Oliver, D. & McGuire, P. Cannabidiol (CBD) as a novel treatment in the early phases of psychosis. Psychopharmacology 239, 1179–1190 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. McGuire, P. et al. Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am. J. Psychiatry 175, 225–231 (2018).

    Article  PubMed  Google Scholar 

  211. Zuardi, A. et al. Cannabidiol for the treatment of psychosis in Parkinson’s disease. J. Psychopharmacol. 23, 979–983 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Chagas, M. H. N. et al. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: an exploratory double-blind trial. J. Psychopharmacol. 28, 1088–1098 (2014).

    Article  PubMed  Google Scholar 

  213. Koblan, K. S. et al. A non-D2-receptor-binding drug for the treatment of schizophrenia. N. Engl. J. Med. 382, 1497–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Isaacson, S. H. & Citrome, L. Hallucinations and delusions associated with Parkinson’s disease psychosis: safety of current treatments and future directions. Expert Opin. Drug Saf. 21, 873–879 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by funding from Centres de Recerca de Catalunya (CERCA) and Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas (CIBERNED).

Author information

Authors and Affiliations

Authors

Contributions

J.P., H.B.-K. and S.M.-H. researched data for the article. All authors contributed substantially to discussion of the content, wrote the manuscript and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Javier Pagonabarraga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks J. Friedman, S. Lewis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bottom-up processing

Processing of information on the basis of incoming data from the environment to form a perception.

Capgras syndrome

The belief that another person, often a friend or relative, has been replaced by an identical or near-identical impostor.

Complex visual illusions

Illusions in which a real object is perceived as another entity, for example, a lamp in the living room is perceived as a standing person.

Controllability ranking

Quantification of the influence that a brain region has across the rest of the network.

Delusional jealousy

Recurrent suspicions, without justification, regarding the fidelity of one’s spouse or sexual partner.

Delusions of control

The experience that one’s feelings, impulses, thoughts or actions are not one’s own but are being imposed by some external force.

Delusions of reference

The false belief that innocuous events or mere coincidences have strong personal significance.

Delusions of theft

The false belief that someone is stealing one’s belongings.

Dysmorphopsia

A visual illusion in which the shape of an object appears distorted.

Effective connectivity

The influence that a node exerts over another under a network model of causal dynamics, which defines the mechanisms of neuronal coupling.

Endogenous systems

Neuronal networks subserving the processing of internal mentations independently from environmental stimuli.

Exogenous attentional systems

Neuronal networks and engrams involved in directing mental processes towards environmental stimuli.

Fregoli syndrome

The belief that another person, often a friend or relative, is able to disguise themself as an unfamiliar person to influence the behaviour of the patient.

Functional coactivation

Functional interactions among different brain regions.

Intermetamorphosis

The belief that another person, often a friend or relative, has been transformed both physically and psychologically into another person.

Kinetopsia

A visual illusion in which stationary objects seem to be moving.

Metachromatopsia

A visual illusion in which colours of an object appear different from those in reality.

Mirrored-self misidentification

Misidentification and reduplication of oneself in the mirror.

Pareidolias

Visual illusions in which formless visual stimuli, such as clouds, tree bark or patterns in carpets or wallpaper, are perceived as human faces or animals.

Persecutory delusions

Pervasive distrust and suspicion of others such that their motives are interpreted as malevolent (exploiting, harming, threatening or deceiving).

Reduplication of a person

The belief that a double of another person exists. Also known as the syndrome of subjective doubles.

Reduplicative paramnesia

The belief that oneself has been relocated to an identical or near-identical duplicated place.

Sensorimotor delay

Time delay between a perception and movements previously associated with that perception.

Visual hallucinations

Visual perceptions of an animate being, object or event in the absence of any external stimulus.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagonabarraga, J., Bejr-Kasem, H., Martinez-Horta, S. et al. Parkinson disease psychosis: from phenomenology to neurobiological mechanisms. Nat Rev Neurol 20, 135–150 (2024). https://doi.org/10.1038/s41582-023-00918-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00918-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing