Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Schizophrenia: from neurochemistry to circuits, symptoms and treatments

Abstract

Schizophrenia is a leading cause of global disability. Current pharmacotherapy for the disease predominantly uses one mechanism — dopamine D2 receptor blockade — but often shows limited efficacy and poor tolerability. These limitations highlight the need to better understand the aetiology of the disease to aid the development of alternative therapeutic approaches. Here, we review the latest meta-analyses and other findings on the neurobiology of prodromal, first-episode and chronic schizophrenia, and the link to psychotic symptoms, focusing on imaging evidence from people with the disorder. This evidence demonstrates regionally specific neurotransmitter alterations, including higher glutamate and dopamine measures in the basal ganglia, and lower glutamate, dopamine and γ-aminobutyric acid (GABA) levels in cortical regions, particularly the frontal cortex, relative to healthy individuals. We consider how dysfunction in cortico-thalamo-striatal–midbrain circuits might alter brain information processing to underlie psychotic symptoms. Finally, we discuss the implications of these findings for developing new, mechanistically based treatments and precision medicine for psychotic symptoms, as well as negative and cognitive symptoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dopaminergic synapses in healthy individuals and people with schizophrenia.
Fig. 2: The topography of projections from different brain regions to the striatum.
Fig. 3: Neurochemical and other abnormalities in schizophrenia.
Fig. 4: Integrated model of schizophrenia.
Fig. 5: Dopamine dysfunction leads to false associations and misperceptions.

Similar content being viewed by others

References

  1. McCutcheon, R. A., Reis Marques, T. & Howes, O. D. Schizophrenia—an overview. JAMA Psychiatry 77, 201 (2020).

    PubMed  Google Scholar 

  2. McCutcheon, R. A., Keefe, R. S. E. & McGuire, P. K. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol. Psychiatry 28, 1902–1918 (2023).

    PubMed  PubMed Central  Google Scholar 

  3. Morgan, C. et al. Reappraising the long-term course and outcome of psychotic disorders: the AESOP-10 study. Psychol. Med. 44, 2713–2726 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Andreasen, N. C. The lifetime trajectory of schizophrenia and the concept of neurodevelopment. Dialogues Clin. Neurosci. 12, 409–415 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Kaar, S. J., Natesan, S., McCutcheon, R. & Howes, O. D. Antipsychotics: mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 172, 107704 (2020).

    CAS  PubMed  Google Scholar 

  6. Correll, C. U. & Schooler, N. R. Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr. Dis. Treat. 16, 519–534 (2020).

    PubMed  PubMed Central  Google Scholar 

  7. Potkin, S. G. et al. The neurobiology of treatment-resistant schizophrenia: paths to antipsychotic resistance and a roadmap for future research. NPJ Schizophr. 6, 1 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. Haber, S. N. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 282, 248–257 (2014).

    CAS  PubMed  Google Scholar 

  9. Howes, O. D. et al. Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. Brain 136, 3242–3251 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Slifstein, M. et al. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia. JAMA Psychiatry 72, 316 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. van Hooijdonk, C. F. M. et al. The substantia nigra in the pathology of schizophrenia: a review on post-mortem and molecular imaging findings. Eur. Neuropsychopharmacol. 68, 57–77 (2023).

    PubMed  Google Scholar 

  12. Howes, O. D. et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch. Gen. Psychiatry 69, 776–786 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Breier, A. et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc. Natl Acad. Sci. USA 94, 2569–2574 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Reith, J. et al. Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc. Natl Acad. Sci. USA 91, 11651–11654 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. McCutcheon, R., Beck, K., Jauhar, S. & Howes, O. D. Defining the locus of dopaminergic dysfunction in schizophrenia: a meta-analysis and test of the mesolimbic hypothesis. Schizophr. Bull. 44, 1301–1311 (2018).

    PubMed  Google Scholar 

  16. Daubner, S. C., Le, T. & Wang, S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 508, 1–12 (2011).

    CAS  PubMed  Google Scholar 

  17. Kumakura, Y. & Cumming, P. PET studies of cerebral levodopa metabolism: a review of clinical findings and modeling approaches. Neuroscientist 15, 635–650 (2009).

    CAS  PubMed  Google Scholar 

  18. Volkow, N. D. et al. PET evaluation of the dopamine system of the human brain. J. Nucl. Med. 37, 1242–1256 (1996).

    CAS  PubMed  Google Scholar 

  19. Laruelle, M. et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc. Natl Acad. Sci. USA 93, 9235–9240 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Abi-Dargham, A. et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc. Natl Acad. Sci. USA 97, 8104–8109 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kegeles, L. S. et al. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch. Gen. Psychiatry 67, 231 (2010).

    CAS  PubMed  Google Scholar 

  22. Rogdaki, M. et al. Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study. Mol. Psychiatry 28, 1995–2006 (2021).

    PubMed  PubMed Central  Google Scholar 

  23. Egerton, A. et al. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol. Psychiatry 74, 106–112 (2013).

    CAS  PubMed  Google Scholar 

  24. Howes, O. D. et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch. Gen. Psychiatry 66, 13 (2009).

    PubMed  Google Scholar 

  25. Howes, O. D. et al. Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. Am. J. Psychiatry 168, 1311–1317 (2011).

    PubMed  PubMed Central  Google Scholar 

  26. Howes, O. et al. Progressive increase in striatal dopamine synthesis capacity as patients develop psychosis: a PET study. Mol. Psychiatry 16, 885–886 (2011).

    CAS  PubMed  Google Scholar 

  27. Jauhar, S. et al. A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry 74, 1206 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Benjamin, K. J. M. et al. Analysis of the caudate nucleus transcriptome in individuals with schizophrenia highlights effects of antipsychotics and new risk genes. Nat. Neurosci. 25, 1559–1568 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wong, D. F. et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234, 1558–1563 (1986).

    CAS  PubMed  Google Scholar 

  30. Kambeitz, J., Abi-Dargham, A., Kapur, S. & Howes, O. D. Alterations in cortical and extrastriatal subcortical dopamine function in schizophrenia: systematic review and meta-analysis of imaging studies. Br. J. Psychiatry 204, 420–429 (2014).

    PubMed  Google Scholar 

  31. Weinstein, J. J. et al. PET imaging of dopamine-D2 receptor internalization in schizophrenia. Mol. Psychiatry 23, 1506–1511 (2018).

    CAS  PubMed  Google Scholar 

  32. Rao, N. et al. Impaired prefrontal cortical dopamine release in schizophrenia during a cognitive task: a [11C]FLB 457 positron emission tomography study. Schizophr. Bull. 45, 670–679 (2019).

    PubMed  Google Scholar 

  33. Akil, M. et al. Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am. J. Psychiatry 156, 1580–1589 (1999).

    CAS  PubMed  Google Scholar 

  34. Davis, K., Kahn, R., Ko, G. & Davidson, M. Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiatry 148, 1474–1486 (1991).

    CAS  PubMed  Google Scholar 

  35. McCutcheon, R. A., Abi-Dargham, A. & Howes, O. D. Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci. 42, 205–220 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rothman, D. L., Behar, K. L., Hyder, F. & Shulman, R. G. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu. Rev. Physiol. 65, 401–427 (2003).

    CAS  PubMed  Google Scholar 

  37. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  38. Kew, J. N. C. & Kemp, J. A. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179, 4–29 (2005).

    CAS  PubMed  Google Scholar 

  39. Rubio, M. D., Drummond, J. B. & Meador-Woodruff, J. H. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments. Biomol. Ther. 20, 1–18 (2012).

    CAS  Google Scholar 

  40. Hu, W., MacDonald, M. L., Elswick, D. E. & Sweet, R. A. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann. N. Y. Acad. Sci. 1338, 38–57 (2015).

    CAS  PubMed  Google Scholar 

  41. Catts, V. S., Lai, Y. L., Weickert, C. S., Weickert, T. W. & Catts, S. V. A quantitative review of the postmortem evidence for decreased cortical N-methyl-d-aspartate receptor expression levels in schizophrenia: how can we link molecular abnormalities to mismatch negativity deficits? Biol. Psychol. 116, 57–67 (2016).

    PubMed  Google Scholar 

  42. Yonezawa, K. et al. AMPA receptors in schizophrenia: a systematic review of postmortem studies on receptor subunit expression and binding. Schizophr. Res. 243, 98–109 (2022).

    CAS  PubMed  Google Scholar 

  43. Poels, E. M. P. et al. Imaging glutamate in schizophrenia: review of findings and implications for drug discovery. Mol. Psychiatry 19, 20–29 (2014).

    CAS  PubMed  Google Scholar 

  44. Merritt, K. et al. Variability and magnitude of brain glutamate levels in schizophrenia: a meta and mega-analysis. Mol. Psychiatry 28, 2039–2048 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Merritt, K. et al. Association of age, antipsychotic medication, and symptom severity in schizophrenia with proton magnetic resonance spectroscopy brain glutamate level: a mega-analysis of individual participant-level data. JAMA Psychiatry 78, 667–681 (2021).

    PubMed  Google Scholar 

  46. McCutcheon, R. A., Merritt, K. & Howes, O. D. Dopamine and glutamate in individuals at high risk for psychosis: a meta-analysis of in vivo imaging findings and their variability compared to controls. World Psychiatry 20, 405–416 (2021).

    PubMed  PubMed Central  Google Scholar 

  47. Fu, H., Chen, Z., Josephson, L., Li, Z. & Liang, S. H. Positron emission tomography (PET) ligand development for ionotropic glutamate receptors: challenges and opportunities for radiotracer targeting N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors. J. Med. Chem. 62, 403–419 (2019).

    CAS  PubMed  Google Scholar 

  48. McCluskey, S. P., Plisson, C., Rabiner, E. A. & Howes, O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur. J. Nucl. Med. Mol. Imaging 47, 451–489 (2020).

    CAS  PubMed  Google Scholar 

  49. Beck, K. et al. Association of ketamine with psychiatric symptoms and implications for its therapeutic use and for understanding schizophrenia. JAMA Netw. Open. 3, e204693 (2020).

    PubMed  PubMed Central  Google Scholar 

  50. Krystal, J. H. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch. Gen. Psychiatry 51, 199 (1994).

    CAS  PubMed  Google Scholar 

  51. Javitt, D. C. & Kantrowitz, J. T. The glutamate/N-methyl-d-aspartate receptor (NMDAR) model of schizophrenia at 35: on the path from syndrome to disease. Schizophr. Res. 242, 56–61 (2022).

    CAS  PubMed  Google Scholar 

  52. Pilowsky, L. S. et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol. Psychiatry 11, 118–119 (2006).

    CAS  PubMed  Google Scholar 

  53. Beck, K. et al. N-Methyl-d-aspartate receptor availability in first-episode psychosis: a PET-MR brain imaging study. Transl. Psychiatry 11, 425 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Akkus, F. et al. Metabotropic glutamate receptor 5 neuroimaging in schizophrenia. Schizophr. Res. 183, 95–101 (2017).

    PubMed  Google Scholar 

  55. Régio Brambilla, C. et al. mGluR5 receptor availability is associated with lower levels of negative symptoms and better cognition in male patients with chronic schizophrenia. Hum. Brain Mapp. 41, 2762–2781 (2020).

    PubMed  PubMed Central  Google Scholar 

  56. Bowery, N. G. & Smart, T. G. GABA and glycine as neurotransmitters: a brief history. Br. J. Pharmacol. 147, S109–S119 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mody, I. & Pearce, R. A. Diversity of inhibitory neurotransmission through GABAA receptors. Trends Neurosci. 27, 569–575 (2004).

    CAS  PubMed  Google Scholar 

  58. de Jonge, J. C., Vinkers, C. H., Hulshoff Pol, H. E. & Marsman, A. GABAergic mechanisms in schizophrenia: linking postmortem and in vivo studies. Front. Psychiatry 8, 118 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. Lewis, D. A., Curley, A. A., Glausier, J. R. & Volk, D. W. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 35, 57–67 (2012).

    CAS  PubMed  Google Scholar 

  60. Curley, A. A. et al. Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am. J. Psychiatry 168, 921–929 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. Volk, D. W., Austin, M. C., Pierri, J. N., Sampson, A. R. & Lewis, D. A. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am. J. Psychiatry 158, 256–265 (2001).

    CAS  PubMed  Google Scholar 

  62. McCutcheon, R. A., Krystal, J. H. & Howes, O. D. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 19, 15–33 (2020).

    PubMed  PubMed Central  Google Scholar 

  63. Kaar, S. J., Angelescu, I., Marques, T. R. & Howes, O. D. Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies. J. Neural Transm. 126, 1637–1651 (2019).

    CAS  PubMed  Google Scholar 

  64. Dienel, S. J., Fish, K. N. & Lewis, D. A. The nature of prefrontal cortical GABA neuron alterations in schizophrenia: markedly lower somatostatin and parvalbumin gene expression without missing neurons. Am. J. Psychiatry 180, 495–507 (2023).

    PubMed  PubMed Central  Google Scholar 

  65. Nakahara, T. et al. Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-analysis of 1H-magnetic resonance spectroscopy studies. Mol. Psychiatry 27, 744–757 (2022).

    CAS  PubMed  Google Scholar 

  66. Egerton, A., Modinos, G., Ferrera, D. & McGuire, P. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl. Psychiatry 7, e1147 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Marques, T. R. et al. GABA-A receptor differences in schizophrenia: a positron emission tomography study using [11C]Ro154513. Mol. Psychiatry 26, 2616–2625 (2021).

    CAS  PubMed  Google Scholar 

  68. Farrant, M. & Nusser, Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci. 6, 215–229 (2005).

    CAS  PubMed  Google Scholar 

  69. Brickley, S. G. & Mody, I. Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron 73, 23–34 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Caraiscos, V. B. et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. Proc. Natl Acad. Sci. USA 101, 3662–3667 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Howes, O. D., McCutcheon, R., Owen, M. J. & Murray, R. M. The role of genes, stress, and dopamine in the development of schizophrenia. Biol. Psychiatry 81, 9–20 (2017).

    CAS  PubMed  Google Scholar 

  72. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jauhar, S. et al. Regulation of dopaminergic function: an [18F]-DOPA PET apomorphine challenge study in humans. Transl. Psychiatry 7, e1027 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hall, J., Trent, S., Thomas, K. L., O’Donovan, M. C. & Owen, M. J. Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol. Psychiatry 77, 52–58 (2015).

    CAS  PubMed  Google Scholar 

  75. Pocklington, A. J. et al. Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia. Neuron 86, 1203–1214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jauhar, S. et al. The relationship between cortical glutamate and striatal dopamine in first-episode psychosis: a cross-sectional multimodal PET and magnetic resonance spectroscopy imaging study. Lancet Psychiatry 5, 816–823 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Grace, A. A. & Gomes, F. V. The circuitry of dopamine system regulation and its disruption in schizophrenia: insights into treatment and prevention. Schizophr. Bull. 45, 148–157 (2019).

    PubMed  Google Scholar 

  78. Quiroz, C. et al. Local control of extracellular dopamine levels in the medial nucleus accumbens by a glutamatergic projection from the infralimbic cortex. J. Neurosci. 36, 851–859 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Jelen, L. A. et al. Functional magnetic resonance spectroscopy in patients with schizophrenia and bipolar affective disorder: glutamate dynamics in the anterior cingulate cortex during a working memory task. Eur. Neuropsychopharmacol. 29, 222–234 (2019).

    CAS  PubMed  Google Scholar 

  80. Taylor, R. et al. Functional magnetic resonance spectroscopy of glutamate in schizophrenia and major depressive disorder: anterior cingulate activity during a color-word Stroop task. NPJ Schizophr. 1, 15028 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Silberbauer, L. R. et al. Effect of ketamine on limbic GABA and glutamate: a human in vivo multivoxel magnetic resonance spectroscopy study. Front. Psychiatry 11, 549903 (2020).

    PubMed  PubMed Central  Google Scholar 

  82. Kokkinou, M., Ashok, A. H. & Howes, O. D. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol. Psychiatry 23, 59–69 (2018).

    CAS  PubMed  Google Scholar 

  83. Kokkinou, M. et al. Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: a translational imaging study with ketamine. Mol. Psychiatry 26, 2562–2576 (2021).

    CAS  PubMed  Google Scholar 

  84. Howes, O. D., Cummings, C., Chapman, G. E. & Shatalina, E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. Neuropsychopharmacology 48, 151–167 (2023).

    PubMed  Google Scholar 

  85. Dandash, O., Pantelis, C. & Fornito, A. Dopamine, fronto-striato-thalamic circuits and risk for psychosis. Schizophr. Res. 180, 48–57 (2017).

    PubMed  Google Scholar 

  86. Sabaroedin, K. et al. Frontostriatothalamic effective connectivity and dopaminergic function in the psychosis continuum. Brain 146, 372–386 (2023).

    PubMed  Google Scholar 

  87. Benoit, L. J., Canetta, S. & Kellendonk, C. Thalamocortical development: a neurodevelopmental framework for schizophrenia. Biol. Psychiatry 92, 491–500 (2022).

    PubMed  PubMed Central  Google Scholar 

  88. Howes, O. D. & Kapur, S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr. Bull. 35, 549–562 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. Farrell, K., Lak, A. & Saleem, A. B. Midbrain dopamine neurons signal phasic and ramping reward prediction error during goal-directed navigation. Cell Rep. 41, 111470 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Schultz, W. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  PubMed  Google Scholar 

  91. Schmack, K., Bosc, M., Ott, T., Sturgill, J. F. & Kepecs, A. Striatal dopamine mediates hallucination-like perception in mice. Science 372, eabf4740 (2021).

    CAS  PubMed  Google Scholar 

  92. Howes, O. D., Hird, E. J., Adams, R. A., Corlett, P. R. & McGuire, P. Aberrant salience, information processing, and dopaminergic signaling in people at clinical high risk for psychosis. Biol. Psychiatry 88, 304–314 (2020).

    PubMed  Google Scholar 

  93. Schlagenhauf, F. et al. Reward feedback alterations in unmedicated schizophrenia patients: relevance for delusions. Biol. Psychiatry 65, 1032–1039 (2009).

    PubMed  Google Scholar 

  94. Waltz, J. A. et al. Patients with schizophrenia have a reduced neural response to both unpredictable and predictable primary reinforcers. Neuropsychopharmacology 34, 1567–1577 (2009).

    CAS  PubMed  Google Scholar 

  95. Gradin, V. B. et al. Salience network–midbrain dysconnectivity and blunted reward signals in schizophrenia. Psychiatry Res. Neuroimaging 211, 104–111 (2013).

    Google Scholar 

  96. Murray, G. K. et al. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol. Psychiatry 13, 267–276 (2008).

    CAS  Google Scholar 

  97. Brozoski, T. J., Brown, R. M., Rosvold, H. E. & Goldman, P. S. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205, 929–932 (1979).

    CAS  PubMed  Google Scholar 

  98. Fusar-Poli, P. et al. Abnormal frontostriatal interactions in people with prodromal signs of psychosis. Arch. Gen. Psychiatry 67, 683 (2010).

    PubMed  Google Scholar 

  99. Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

    PubMed  Google Scholar 

  100. Gold, J. M. et al. Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. Arch. Gen. Psychiatry 69, 129–138 (2012).

    PubMed  PubMed Central  Google Scholar 

  101. Strauss, G. P. et al. Deficits in positive reinforcement learning and uncertainty-driven exploration are associated with distinct aspects of negative symptoms in schizophrenia. Biol. Psychiatry 69, 424–431 (2011).

    PubMed  Google Scholar 

  102. Radua, J. et al. Ventral striatal activation during reward processing in psychosis. JAMA Psychiatry 72, 1243 (2015).

    PubMed  Google Scholar 

  103. Bortolon, C., Macgregor, A., Capdevielle, D. & Raffard, S. Apathy in schizophrenia: a review of neuropsychological and neuroanatomical studies. Neuropsychologia 118, 22–33 (2018).

    PubMed  Google Scholar 

  104. Dienel, S. J., Schoonover, K. E. & Lewis, D. A. Cognitive dysfunction and prefrontal cortical circuit alterations in schizophrenia: developmental trajectories. Biol. Psychiatry 92, 450–459 (2022).

    PubMed  PubMed Central  Google Scholar 

  105. Dorrn, A. L., Yuan, K., Barker, A. J., Schreiner, C. E. & Froemke, R. C. Developmental sensory experience balances cortical excitation and inhibition. Nature 465, 932–936 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hensch, T. K. & Fagiolini, M. Excitatory–inhibitory balance and critical period plasticity in developing visual cortex. Prog. Brain. Res. 147, 115–124 (2005).

    CAS  PubMed  Google Scholar 

  107. Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999).

    CAS  PubMed  Google Scholar 

  108. Selemon, L. D. & Zecevic, N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl. Psychiatry 5, e623 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hensch, T. K. Critical period regulation. Annu. Rev. Neurosci. 27, 549–579 (2004).

    CAS  PubMed  Google Scholar 

  110. Luna, B. & Sweeney, J. A. The emergence of collaborative brain function: fMRI studies of the development of response inhibition. Ann. N. Y. Acad. Sci. 1021, 296–309 (2004).

    PubMed  Google Scholar 

  111. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    CAS  PubMed  Google Scholar 

  112. Marques, T. R. et al. Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies. Psychol. Med. 49, 2186–2196 (2019).

    PubMed  Google Scholar 

  113. Osimo, E. F., Beck, K., Reis Marques, T. & Howes, O. D. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol. Psychiatry 24, 549–561 (2019).

    CAS  PubMed  Google Scholar 

  114. Berdenis van Berlekom, A. et al. Synapse pathology in schizophrenia: a meta-analysis of postsynaptic elements in postmortem brain studies. Schizophr. Bull. 46, https://doi.org/10.1093/schbul/sbz060 (2019).

  115. Glausier, J. R. & Lewis, D. A. Dendritic spine pathology in schizophrenia. Neuroscience 251, 90–107 (2013).

    CAS  PubMed  Google Scholar 

  116. Onwordi, E. C. et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat. Commun. 11, 246 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Onwordi, E. C. et al. The relationship between synaptic density marker SV2A, glutamate and N-acetyl aspartate levels in healthy volunteers and schizophrenia: a multimodal PET and magnetic resonance spectroscopy brain imaging study. Transl. Psychiatry 11, 393 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kraguljac, N. V. et al. Neuroimaging biomarkers in schizophrenia. Am. J. Psychiatry 178, 509–521 (2021).

    PubMed  PubMed Central  Google Scholar 

  119. Clifton, N. E., Schulmann, A., Holmans, P. A., O’Donovan, M. C. & Vawter, M. P. The relationship between case–control differential gene expression from brain tissue and genetic associations in schizophrenia. Am. J. Med. Genet. Part. B: Neuropsychiatr. Genet. 192, 85–92 (2023).

    CAS  Google Scholar 

  120. Whitehurst, T. & Howes, O. The role of mitochondria in the pathophysiology of schizophrenia: a critical review of the evidence focusing on mitochondrial complex one. Neurosci. Biobehav. Rev. 132, 449–464 (2022).

    CAS  PubMed  Google Scholar 

  121. Carletti, F. et al. Alterations in white matter evident before the onset of psychosis. Schizophr. Bull. 38, 1170–1179 (2012).

    PubMed  PubMed Central  Google Scholar 

  122. Bloemen, O. J. N. et al. White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychol. Med. 40, 1297–1304 (2010).

    CAS  PubMed  Google Scholar 

  123. Karlsgodt, K. H., Niendam, T. A., Bearden, C. E. & Cannon, T. D. White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Biol. Psychiatry 66, 562–569 (2009).

    PubMed  PubMed Central  Google Scholar 

  124. Kochunov, P. & Hong, L. E. Neurodevelopmental and neurodegenerative models of schizophrenia: white matter at the center stage. Schizophr. Bull. 40, 721–728 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. Pradhan, S. et al. Comparison of single voxel brain MRS at 3 T and 7 T using 32-channel head coils. Magn. Reson. Imaging 33, 1013–1018 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Bak, L. K., Schousboe, A. & Waagepetersen, H. S. The glutamate/GABA–glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem. 98, 641–653 (2006).

    CAS  PubMed  Google Scholar 

  127. McKenna, M. C. The glutamate–glutamine cycle is not stoichiometric: fates of glutamate in brain. J. Neurosci. Res. 85, 3347–3358 (2007).

    CAS  PubMed  Google Scholar 

  128. Yun, S. et al. Antipsychotic drug efficacy correlates with the modulation of D1 rather than D2 receptor-expressing striatal projection neurons. Nat. Neurosci. 26, 1417–1428 (2023).

    CAS  PubMed  Google Scholar 

  129. Novick, D., Haro, J. M., Bertsch, J. & Haddad, P. M. Incidence of extrapyramidal symptoms and tardive dyskinesia in schizophrenia. J. Clin. Psychopharmacol. 30, 531–540 (2010).

    PubMed  Google Scholar 

  130. Howes, O. H. & Kaar, S. J. Antipsychotic drugs: challenges and future directions. World Psychiatry 17, 170–171 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. Tamminga, C. A., Schaffer, M. H., Smith, R. C. & Davis, J. M. Schizophrenic symptoms improve with apomorphine. Science 200, 567–568 (1978).

    CAS  PubMed  Google Scholar 

  132. Dedic, N. et al. SEP-363856, a novel psychotropic agent with a unique, non-D2 receptor mechanism of action. J. Pharmacol. Exp. Therapeutics 371, 1–14 (2019).

    CAS  Google Scholar 

  133. Saarinen, M. et al. TAAR1 dependent and independent actions of the potential antipsychotic and dual TAAR1/5-HT1A receptor agonist SEP-363856. Neuropsychopharmacology 47, 2319–2329 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Revel, F. G. et al. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol. Psychiatry 18, 543–556 (2013).

    CAS  PubMed  Google Scholar 

  135. Halff, E. F., Rutigliano, G., Garcia-Hidalgo, A. & Howes, O. D. Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders. Trends Neurosci. 46, 60–74 (2023).

    CAS  PubMed  Google Scholar 

  136. A trial of the efficacy and the safety of RO6889450 (Ralmitaront) vs placebo in patients with an acute exacerbation of schizophrenia or schizoaffective disorder. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04512066 (2023).

  137. Correll, C. U. et al. Safety and effectiveness of ulotaront (SEP-363856) in schizophrenia: results of a 6-month, open-label extension study. NPJ Schizophr. 7, 63 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Koblan, K. S. et al. A non-D2-receptor-binding drug for the treatment of schizophrenia. N. Engl. J. Med. 382, 1497–1506 (2020).

    CAS  PubMed  Google Scholar 

  139. Wess, J., Eglen, R. M. & Gautam, D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat. Rev. Drug. Discov. 6, 721–733 (2007).

    CAS  PubMed  Google Scholar 

  140. Tzavara, E. T. et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related central nervous system pathologies. FASEB J. 18, 1410–1412 (2004).

    CAS  PubMed  Google Scholar 

  141. Kantrowitz, J. T., Correll, C. U., Jain, R. & Cutler, A. J. New developments in the treatment of schizophrenia: an expert roundtable. Int. J. Neuropsychopharmacol. 26, 322–330 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Paul, S. M., Yohn, S. E., Popiolek, M., Miller, A. C. & Felder, C. C. Muscarinic acetylcholine receptor agonists as novel treatments for schizophrenia. Am. J. Psychiatry 179, 611–627 (2022).

    PubMed  Google Scholar 

  143. Stanhope, K. J. et al. The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat. J. Pharmacol. Exp. Ther. 299, 782–792 (2001).

    CAS  PubMed  Google Scholar 

  144. Andersen, M. B. et al. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys. Neuropsychopharmacology 28, 1168–1175 (2003).

    CAS  PubMed  Google Scholar 

  145. Jones, C. K., Eberle, E. L., Shaw, D. B., McKinzie, D. L. & Shannon, H. E. Pharmacologic interactions between the muscarinic cholinergic and dopaminergic systems in the modulation of prepulse inhibition in rats. J. Pharmacol. Exp. Therapeutics 312, 1055–1063 (2005).

    CAS  Google Scholar 

  146. Woolley, M. L., Carter, H. J., Gartlon, J. E., Watson, J. M. & Dawson, L. A. Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. Eur. J. Pharmacol. 603, 147–149 (2009).

    CAS  PubMed  Google Scholar 

  147. Barak, S. & Weiner, I. The M1/M4 preferring agonist xanomeline reverses amphetamine-, MK801- and scopolamine-induced abnormalities of latent inhibition: putative efficacy against positive, negative and cognitive symptoms in schizophrenia. Int. J. Neuropsychopharmacol. 14, 1233–1246 (2011).

    CAS  PubMed  Google Scholar 

  148. Mandai, T. et al. In vivo pharmacological comparison of TAK-071, a positive allosteric modulator of muscarinic M1 receptor, and xanomeline, an agonist of muscarinic M1/M4 receptor, in rodents. Neuroscience 414, 60–76 (2019).

    CAS  PubMed  Google Scholar 

  149. Shekhar, A. et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am. J. Psychiatry 165, 1033–1039 (2008).

    PubMed  Google Scholar 

  150. Brannan, S. K. et al. Muscarinic cholinergic receptor agonist and peripheral antagonist for schizophrenia. N. Engl. J. Med. 384, 717–726 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Correll, C. U., Angelov, A. S. & Brannan, S. K. Safety and efficacy of karXT (xanomeline–trospium) in patients with schizophrenia: results from a phase 3, randomised, double-blind, placebo-controlled trial (EMERGENT-2). Presented at ECNP Congress P.0193 (2022).

  152. Correll, C. et al. Safety and efficacy of KarXT (xanomeline trospium) in schizophrenia in the phase 3, randomized, double-blind, placebo-controlled EMERGENT-2 trial (abstr.). CNS Spect. 28, 220 (2023).

    Google Scholar 

  153. Krystal, J. H. et al. Emraclidine, a novel positive allosteric modulator of cholinergic M4 receptors, for the treatment of schizophrenia: a two-part, randomised, double-blind, placebo-controlled, phase 1b trial. Lancet 400, 2210–2220 (2022).

    CAS  PubMed  Google Scholar 

  154. Javitt, D. C. Management of negative symptoms of schizophrenia. Curr. Psychiatry Rep. 3, 413–417 (2001).

    CAS  PubMed  Google Scholar 

  155. Homayoun, H., Jackson, M. E. & Moghaddam, B. Activation of metabotropic glutamate 2/3 receptors reverses the effects of NMDA receptor hypofunction on prefrontal cortex unit activity in awake rats. J. Neurophysiol. 93, 1989–2001 (2005).

    CAS  PubMed  Google Scholar 

  156. Caraci, F., Leggio, G. M., Salomone, S. & Drago, F. New drugs in psychiatry: focus on new pharmacological targets. F1000Res 6, 397 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. Moghaddam, B. & Javitt, D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37, 4–15 (2012).

    CAS  PubMed  Google Scholar 

  158. Singh, S. P. & Singh, V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs 25, 859–885 (2011).

    CAS  PubMed  Google Scholar 

  159. Lane, H.-Y., Chang, Y.-C., Liu, Y.-C., Chiu, C.-C. & Tsai, G. E. Sarcosine or d-serine add-on treatment for acute exacerbation of schizophrenia. Arch. Gen. Psychiatry 62, 1196 (2005).

    CAS  PubMed  Google Scholar 

  160. Lane, H.-Y. et al. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and d-serine add-on treatment for schizophrenia. Int. J. Neuropsychopharmacol. 13, 451 (2010).

    CAS  PubMed  Google Scholar 

  161. Fleischhacker, W. W. et al. Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: a double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry 8, 191–201 (2021).

    PubMed  Google Scholar 

  162. Chow, A. et al. K+ channel expression distinguishes subpopulations of parvalbumin- and somatostatin-containing neocortical interneurons. J. Neurosci. 19, 9332–9345 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Rudy, B. & McBain, C. J. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci. 24, 517–526 (2001).

    CAS  PubMed  Google Scholar 

  164. Kaar, S. J., Nottage, J. F., Angelescu, I., Marques, T. R. & Howes, O. D. Gamma oscillations and potassium channel modulation in schizophrenia: targeting GABAergic dysfunction. Clin. EEG Neurosci. https://doi.org/10.1177/15500594221148643 (2023).

  165. Fox, M. D., Halko, M. A., Eldaief, M. C. & Pascual-Leone, A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage 62, 2232–2243 (2012).

    PubMed  Google Scholar 

  166. Wu, Q. et al. Developments in biological mechanisms and treatments for negative symptoms and cognitive dysfunction of schizophrenia. Neurosci. Bull. 37, 1609–1624 (2021).

    PubMed  PubMed Central  Google Scholar 

  167. Kaar, S. J. et al. The effects of AUT00206, a novel Kv3.1/3.2 potassium channel modulator, on task-based reward system activation: a test of mechanism in schizophrenia. Psychopharmacology 239, 3313–3323 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Howes, O. D. & Murray, R. M. Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet 383, 1677–1687 (2014).

    PubMed  Google Scholar 

  169. Brugger, S. P. & Howes, O. D. Heterogeneity and homogeneity of regional brain structure in schizophrenia: a meta-analysis. JAMA Psychiatry 74, 1104–1111 (2017).

    PubMed  PubMed Central  Google Scholar 

  170. Brugger, S. P. et al. Heterogeneity of striatal dopamine function in schizophrenia: meta-analysis of variance. Biol. Psychiatry 87, 215–224 (2020).

    CAS  PubMed  Google Scholar 

  171. Mouchlianitis, E. et al. Treatment-resistant schizophrenia patients show elevated anterior cingulate cortex glutamate compared to treatment-responsive. Schizophr. Bull. 42, 744–752 (2016).

    PubMed  Google Scholar 

  172. Lai, H., Carino, M. A. & Horita, A. Chronic treatments with zotepine, thioridazine, and haloperidol affect apomorphine-elicited stereotypic behavior and striatal 3H-spiroperidol binding sites in the rat. Psychopharmacology 75, 388–390 (1981).

    CAS  PubMed  Google Scholar 

  173. Fleminger, S., Rupniak, N. M. J., Hall, M. D., Jenner, P. & Marsden, C. D. Changes in apomorphine-induced stereotypy as a result of subacute neuroleptic treatment correlates with increased D-2 receptors, but not with increases in D-1 receptors. Biochem. Pharmacol. 32, 2921–2927 (1983).

    CAS  PubMed  Google Scholar 

  174. Jelen, L. A., King, S., Mullins, P. G. & Stone, J. M. Beyond static measures: a review of functional magnetic resonance spectroscopy and its potential to investigate dynamic glutamatergic abnormalities in schizophrenia. J. Psychopharmacol. 32, 497–508 (2018).

    CAS  PubMed  Google Scholar 

  175. Frankle, W. G. et al. [11C]Flumezanil binding is increased in a dose-dependent manner with tiagabine-induced elevations in GABA levels. PLOS One 7, e32443 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Frankle, W. G. et al. In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients. Am. J. Psychiatry 172, 1148–1159 (2015).

    PubMed  PubMed Central  Google Scholar 

  177. Dumas, T. C. Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Prog. Neurobiol. 76, 189–211 (2005).

    CAS  PubMed  Google Scholar 

  178. van Kesteren, C. F. M. G. et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl. Psychiatry 7, e1075 (2017).

    PubMed  PubMed Central  Google Scholar 

  179. Cuenod, M. et al. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol. Psychiatry 27, 1886–1897 (2022).

    CAS  PubMed  Google Scholar 

  180. Howes, O. D. & Onwordi, E. C. The synaptic hypothesis of schizophrenia version III: a master mechanism. Mol. Psychiatry 28, 1843–1856 (2023).

    PubMed  PubMed Central  Google Scholar 

  181. Ding, X.-Q. & Lanfermann, H. Whole brain 1H-spectroscopy: a developing technique for advanced analysis of cerebral metabolism. Clin. Neuroradiol. 25, 245–250 (2015).

    PubMed  Google Scholar 

  182. Selvaraj, S., Arnone, D., Cappai, A. & Howes, O. Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci. Biobehav. Rev. 45, 233–245 (2014).

    CAS  PubMed  Google Scholar 

  183. Erritzoe, D. et al. Brain serotonin release is reduced in patients with depression: a [11C]Cimbi-36 positron emission tomography study with a d-amphetamine challenge. Biol. Psychiatry 93, 1089–1098 (2022).

    PubMed  Google Scholar 

  184. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Association Publishing, 2022).

  185. Kuo, S. S. & Pogue-Geile, M. F. Variation in fourteen brain structure volumes in schizophrenia: a comprehensive meta-analysis of 246 studies. Neurosci. Biobehav. Rev. 98, 85–94 (2019).

    PubMed  PubMed Central  Google Scholar 

  186. Fortea, A. et al. Cortical gray matter reduction precedes transition to psychosis in individuals at clinical high-risk for psychosis: a voxel-based meta-analysis. Schizophr. Res. 232, 98–106 (2021).

    PubMed  Google Scholar 

  187. Gallardo-Ruiz, R., Crespo-Facorro, B., Setién-Suero, E. & Tordesillas-Gutierrez, D. Long-term grey matter changes in first episode psychosis: a systematic review. Psychiatry Investig. 16, 336–345 (2019).

    PubMed  PubMed Central  Google Scholar 

  188. Cropley, V. L. et al. Accelerated gray and white matter deterioration with age in schizophrenia. Am. J. Psychiatry 174, 286–295 (2017).

    PubMed  Google Scholar 

  189. de Zwarte, S. M. C. et al. The association between familial risk and brain abnormalities is disease specific: an ENIGMA-relatives study of schizophrenia and bipolar disorder. Biol. Psychiatry 86, 545–556 (2019).

    PubMed  PubMed Central  Google Scholar 

  190. Dong, D., Wang, Y., Chang, X., Luo, C. & Yao, D. Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophr. Bull. 44, 168–181 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. Dawkins for her contribution in reviewing the literature for the section on the integrated model of the pathophysiology of schizophrenia and implications for developing better treatments. K.B. has received funding from the Royal College of Psychiatrists, Rosetrees Trust and Stoneygate Trust; and O.D.H. has received funding from the Medical Research Council — UK (no. MC_A656_5QD30_2135), Maudsley Charity (no. 666) and Wellcome Trust (no. 094849/Z/10/Z) and the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the National Health Service (NHS)/NIHR, the Department of Health or any other organization.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Oliver D. Howes.

Ethics declarations

Competing interests

O.D.H. was previously a part-time employee of H Lundbeck A/s; has received investigator-initiated research funding from and/or participated in advisory/speaker meetings organized by Angellini, Autifony, Biogen, Boehringer-Ingelheim, Eli Lilly, Heptares, Global Medical Education, Invicro, Jansenn, Lundbeck, Neurocrine, Otsuka, Sunovion, Recordati, Roche and Viatris/Mylan; and has a patent for the use of dopaminergic imaging. The other authors report no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Andrea de Bartolomeis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howes, O.D., Bukala, B.R. & Beck, K. Schizophrenia: from neurochemistry to circuits, symptoms and treatments. Nat Rev Neurol 20, 22–35 (2024). https://doi.org/10.1038/s41582-023-00904-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00904-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing