Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epithelial cell states associated with kidney and allograft injury

Abstract

The kidney epithelium, with its intricate arrangement of highly specialized cell types, constitutes the functional core of the organ. Loss of kidney epithelium is linked to the loss of functional nephrons and a subsequent decline in kidney function. In kidney transplantation, epithelial injury signatures observed during post-transplantation surveillance are strong predictors of adverse kidney allograft outcomes. However, epithelial injury is currently neither monitored clinically nor addressed therapeutically after kidney transplantation. Several factors can contribute to allograft epithelial injury, including allograft rejection, drug toxicity, recurrent infections and postrenal obstruction. The injury mechanisms that underlie allograft injury overlap partially with those associated with acute kidney injury (AKI) and chronic kidney disease (CKD) in the native kidney. Studies using advanced transcriptomic analyses of single cells from kidney or urine have identified a role for kidney injury-induced epithelial cell states in exacerbating and sustaining damage in AKI and CKD. These epithelial cell states and their associated expression signatures are also observed in transplanted kidney allografts, suggesting that the identification and characterization of transcriptomic epithelial cell states in kidney allografts may have potential clinical implications for diagnosis and therapy.

Key points

  • Transcriptomic studies using single-cell sequencing and spatial transcriptomics have identified epithelial cell populations associated with acute kidney injury (AKI) and chronic kidney disease (CKD) in mouse and human kidneys.

  • These injured epithelial cell populations are especially predominant in the proximal tubules but extend to other cell types, particularly in human AKI and CKD.

  • AKI- and CKD-associated epithelial cell populations show a marked downregulation of marker genes associated with the healthy kidney epithelium and can show a pro-inflammatory and pro-fibrotic gene expression profile.

  • Some injured epithelial cell populations can persist for a period of time after AKI and in CKD, attracting and activating fibroblasts and leukocytes, and thereby potentially promoting further kidney damage.

  • Epithelial injury is an under-appreciated major risk factor of allograft survival after episodes of rejection in kidney transplants.

  • Molecular signatures of injured epithelial cell populations in kidney transplants after post-transplantation complications are highly reminiscent of those seen in AKI and CKD, and offer potential new avenues for monitoring and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Induction of cell states in the kidney tubule following acute kidney injury.
Fig. 2: Signalling between injured and healthy cells.
Fig. 3: Conserved epithelial injury responses in in human acute kidney injury.
Fig. 4: Potential mechanisms of epithelial injury after kidney transplantation.
Fig. 5: Potential models of epithelial injury after T cell-mediated rejection or antibody-mediated rejection.
Fig. 6: Potential use of injured epithelial cell states in the context of kidney transplantation.

Similar content being viewed by others

References

  1. Abecassis, M. et al. Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clin. J. Am. Soc. Nephrol. 3, 471–480 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lentine, K. L. et al. OPTN/SRTR 2021 annual data report: kidney. Am. J. Transpl. 23, S21–S120 (2023).

    Article  Google Scholar 

  3. Halloran, P. F., Famulski, K. S. & Reeve, J. Molecular assessment of disease states in kidney transplant biopsy samples. Nat. Rev. Nephrol. 12, 534–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Madill-Thomsen, K. S. et al. Relating molecular T cell-mediated rejection activity in kidney transplant biopsies to time and to histologic tubulitis and atrophy-fibrosis. Transplantation 107, 1102–1114 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Halloran, P. F. et al. Review: the transcripts associated with organ allograft rejection. Am. J. Transpl. 18, 785–795 (2018).

    Article  CAS  Google Scholar 

  6. Liu, Y. et al. Single-cell analysis reveals immune landscape in kidneys of patients with chronic transplant rejection. Theranostics 10, 8851–8862 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Malone, A. F. et al. Harnessing expressed single nucleotide variation and single cell RNA sequencing to define immune cell chimerism in the rejecting kidney transplant. J. Am. Soc. Nephrol. 31, 1977–1986 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rashmi, P. et al. Multiplexed droplet single-cell sequencing (Mux-Seq) of normal and transplant kidney. Am. J. Transpl. 22, 876–885 (2022).

    Article  CAS  Google Scholar 

  9. Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McDaniels, J. M. et al. Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis. Kidney Int. 103, 1077–1092 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Suryawanshi, H. et al. Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts. PLoS ONE 17, e0267704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kellum, J. A. & Lameire, N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit. Care 17, 204 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hoste, E. A. J. et al. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 14, 607–625 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Vijayan, A. Tackling AKI: prevention, timing of dialysis and follow-up. Nat. Rev. Nephrol. 17, 87–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Ronco, C. Acute kidney injury: from clinical to molecular diagnosis. Crit. Care 20, 201 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kane-Gill, S. L. et al. Risk factors for acute kidney injury in older adults with critical illness: a retrospective cohort study. Am. J. Kidney Dis. 65, 860–869 (2015).

    Article  PubMed  Google Scholar 

  17. Coca, S. G., Yusuf, B., Shlipak, M. G., Garg, A. X. & Parikh, C. R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 53, 961–973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Newsome, B. B. et al. Long-term risk of mortality and end-stage renal disease among the elderly after small increases in serum creatinine level during hospitalization for acute myocardial infarction. Arch. Intern. Med. 168, 609–616 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Abdala, P. M., Swanson, E. A. & Hutchens, M. P. Meta-analysis of AKI to CKD transition in perioperative patients. Perioper. Med. 10, 24 (2021).

    Article  Google Scholar 

  20. Guzzi, F., Cirillo, L., Roperto, R. M., Romagnani, P. & Lazzeri, E. Molecular mechanisms of the acute kidney injury to chronic kidney disease transition: an updated view. Int. J. Mol. Sci. 20, 4941 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fogo, A. B., Lusco, M. A., Najafian, B. & Alpers, C. E. AJKD atlas of renal pathology: ischemic acute tubular injury. Am. J. Kidney Dis. 67, e25 (2016).

    Article  PubMed  Google Scholar 

  22. Fogo, A. B., Lusco, M. A., Najafian, B. & Alpers, C. E. AJKD atlas of renal pathology: toxic acute tubular injury. Am. J. Kidney Dis. 67, e31–e32 (2016).

    Article  PubMed  Google Scholar 

  23. Liu, J. et al. Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight 2, e94716 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cippa, P. E. & McMahon, A. P. Proximal tubule responses to injury: interrogation by single-cell transcriptomics. Curr. Opin. Nephrol. Hypertens. 32, 352–358 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, K. et al. Unique transcriptional programs identify subtypes of AKI. J. Am. Soc. Nephrol. 28, 1729–1740 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Vigolo, E. et al. Canonical BMP signaling in tubular cells mediates recovery after acute kidney injury. Kidney Int. 95, 108–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Marko, L. et al. Tubular epithelial NF-κB activity regulates ischemic AKI. J. Am. Soc. Nephrol. 27, 2658–2669 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Supavekin, S. et al. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 63, 1714–1724 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Yuen, P. S., Jo, S. K., Holly, M. K., Hu, X. & Star, R. A. Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses. Physiol. Genomics 25, 375–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida, T. et al. Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidney Int. 61, 1646–1654 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Gerhardt, L. M. S. & McMahon, A. P. Identifying common molecular mechanisms in experimental and human acute kidney injury. Semin. Nephrol. 42, 151286 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang-Panesso, M. & Humphreys, B. D. Cellular plasticity in kidney injury and repair. Nat. Rev. Nephrol. 13, 39–46 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Chang-Panesso, M. et al. FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury. J. Clin. Invest. 129, 5501–5517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Humphreys, B. D. Kidney injury, stem cells and regeneration. Curr. Opin. Nephrol. Hypertens. 23, 25–31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol. 178, 828–837 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Angelotti, M. L. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cell 30, 1714–1725 (2012).

    Article  CAS  Google Scholar 

  38. Loverre, A. et al. Increase of proliferating renal progenitor cells in acute tubular necrosis underlying delayed graft function. Transplantation 85, 1112–1119 (2008).

    Article  PubMed  Google Scholar 

  39. Peired, A. J. et al. Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Sci. Transl. Med. 12, eaaw6003 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Scholz, H. et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat. Rev. Nephrol. 17, 335–349 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Shen, T. H. et al. Snapshots of nascent RNA reveal cell- and stimulus-specific responses to acute kidney injury. JCI Insight 7, e146374 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu, J. et al. Cell-specific translational profiling in acute kidney injury. J. Clin. Invest. 124, 1242–1254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 117, 15874–15883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gerhardt, L. M. S. et al. Lineage tracing and single-nucleus multiomics reveal novel features of adaptive and maladaptive repair after acute kidney injury. J. Am. Soc. Nephrol. 34, 554–571 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dixon, E. E., Wu, H., Muto, Y., Wilson, P. C. & Humphreys, B. D. Spatially resolved transcriptomic analysis of acute kidney injury in a female murine model. J. Am. Soc. Nephrol. 33, 279–289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hinze, C. et al. Single-cell transcriptomics reveals common epithelial response patterns in human acute kidney injury. Genome Med. 14, 103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Klocke, J. et al. Urinary single-cell sequencing captures kidney injury and repair processes in human acute kidney injury. Kidney Int. 102, 1359–1370 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Rudman-Melnick, V. et al. Single-cell profiling of AKI in a murine model reveals novel transcriptional signatures, profibrotic phenotype, and epithelial-to-stromal crosstalk. J. Am. Soc. Nephrol. 31, 2793–2814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Balzer, M. S. et al. Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat. Commun. 13, 4018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Legouis, D. et al. Single cell profiling in COVID-19 associated acute kidney injury reveals patterns of tubule injury and repair in human. Preprint at bioRxiv https://doi.org/10.1101/2021.10.05.463150 (2021).

  53. Jansen, J. et al. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell 29, 217–231.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gerhardt, L. M. S., Liu, J., Koppitch, K., Cippa, P. E. & McMahon, A. P. Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury. Proc. Natl Acad. Sci. USA 118, e2026684118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Ide, S. et al. Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. Elife 10, e68603 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao, Z. et al. XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. Cell Death Dis. 11, 629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, H., Dixon, E. E., Wu, H. & Humphreys, B. D. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 34, 1977–1998.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, Z. et al. Single-cell sequencing reveals homogeneity and heterogeneity of the cytopathological mechanisms in different etiology-induced AKI. Cell Death Dis. 14, 318 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 7, 684–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Li, L., Fu, H. & Liu, Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat. Rev. Nephrol. 18, 545–557 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Tapmeier, T. T. et al. Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int. 78, 351–362 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Anders, H. J. et al. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J. Clin. Invest. 109, 251–259 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gewin, L. The many talents of transforming growth factor-β in the kidney. Curr. Opin. Nephrol. Hypertens. 28, 203–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Floege, J., Eitner, F. & Alpers, C. E. A new look at platelet-derived growth factor in renal disease. J. Am. Soc. Nephrol. 19, 12–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Livingston, M. J. et al. Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis. Autophagy 19, 256–277 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Zhu, H. et al. Tenascin-C promotes acute kidney injury to chronic kidney disease progression by impairing tubular integrity via ɑvβ6 integrin signaling. Kidney Int. 97, 1017–1031 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abedini, A. et al. Spatially resolved human kidney multi-omics single cell atlas highlights the key role of the fibrotic microenvironment in kidney disease progression. Preprint at bioRxiv https://doi.org/10.1101/2022.10.24.513598 (2022).

  74. Nagao, T. et al. Osteopontin plays a critical role in interstitial fibrosis but not glomerular sclerosis in diabetic nephropathy. Nephron Extra 2, 87–103 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sato, Y. & Yanagita, M. Resident fibroblasts in the kidney: a major driver of fibrosis and inflammation. Inflamm. Regen. 37, 17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Coca, S. G. Acute kidney injury in elderly persons. Am. J. Kidney Dis. 56, 122–131 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Stevens, L. A., Viswanathan, G. & Weiner, D. E. Chronic kidney disease and end-stage renal disease in the elderly population: current prevalence, future projections, and clinical significance. Adv. Chronic Kidney Dis. 17, 293–301 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tonelli, M. et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am. J. Transpl. 11, 2093–2109 (2011).

    Article  CAS  Google Scholar 

  79. Bastani, B. The present and future of transplant organ shortage: some potential remedies. J. Nephrol. 33, 277–288 (2020).

    Article  PubMed  Google Scholar 

  80. Ponticelli, C., Villa, M., Cesana, B., Montagnino, G. & Tarantino, A. Risk factors for late kidney allograft failure. Kidney Int. 62, 1848–1854 (2002).

    Article  PubMed  Google Scholar 

  81. Kwon, H. et al. Pure T-cell mediated rejection following kidney transplant according to response to treatment. PLoS ONE 16, e0256898 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kant, S., Dasgupta, A., Bagnasco, S. & Brennan, D. C. BK virus nephropathy in kidney transplantation: a state-of-the-art review. Viruses 14, 1616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Requiao-Moura, L. R., Durão Junior, M. de S., Matos, A. C. & Pacheco-Silva, A. Ischemia and reperfusion injury in renal transplantation: hemodynamic and immunological paradigms. Einstein 13, 129–135 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mbianda, C., El-Meanawy, A. & Sorokin, A. Mechanisms of BK virus infection of renal cells and therapeutic implications. J. Clin. Virol. 71, 59–62 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Halloran, P. F. et al. Molecular diagnosis of ABMR with or without donor-specific antibody in kidney transplant biopsies: differences in timing and intensity but similar mechanisms and outcomes. Am. J. Transpl. 22, 1976–1991 (2022).

    Article  CAS  Google Scholar 

  86. Cippa, P. E. et al. Transcriptional trajectories of human kidney injury progression. JCI Insight 3, e123151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Famulski, K. S. et al. Molecular phenotypes of acute kidney injury in kidney transplants. J. Am. Soc. Nephrol. 23, 948–958 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. O’Connell, P. J. et al. Biopsy transcriptome expression profiling to identify kidney transplants at risk of chronic injury: a multicentre, prospective study. Lancet 388, 983–993 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ke, B., Fan, C., Yang, L. & Fang, X. Matrix metalloproteinases-7 and kidney fibrosis. Front. Physiol. 8, 21 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. Nankivell, B. J. et al. The natural history of chronic allograft nephropathy. N. Engl. J. Med. 349, 2326–2333 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Loupy, A. et al. The Banff 2019 Kidney Meeting report (I): updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transpl. 20, 2318–2331 (2020).

    Article  CAS  Google Scholar 

  92. Jeong, H. J. Diagnosis of renal transplant rejection: Banff classification and beyond. Kidney Res. Clin. Pract. 39, 17–31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chandran, S. & Mannon, R. B. T cell-mediated rejection in kidney transplant recipients: the end(point) is also the beginning. Am. J. Transpl. 22, 683–684 (2022).

    Article  Google Scholar 

  94. Bohmig, G. A., Eskandary, F., Doberer, K. & Halloran, P. F. The therapeutic challenge of late antibody-mediated kidney allograft rejection. Transpl. Int. 32, 775–788 (2019).

    Article  PubMed  Google Scholar 

  95. Ho, J. et al. Effectiveness of T cell-mediated rejection therapy: a systematic review and meta-analysis. Am. J. Transpl. 22, 772–785 (2022).

    Article  Google Scholar 

  96. Townamchai, N. & Avihingsanon, Y. Updated management for antibody-mediated rejection: opportunity to prolong kidney allograft survival. Curr. Opin. Nephrol. Hypertens. 32, 13–19 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Einecke, G. et al. Factors associated with kidney graft survival in pure antibody-mediated rejection at the time of indication biopsy: importance of parenchymal injury but not disease activity. Am. J. Transpl. 21, 1391–1401 (2021).

    Article  CAS  Google Scholar 

  98. Halloran, P. F. et al. Discovering novel injury features in kidney transplant biopsies associated with TCMR and donor aging. Am. J. Transpl. 21, 1725–1739 (2021).

    Article  CAS  Google Scholar 

  99. Halloran, P. F. et al. Archetypal analysis of injury in kidney transplant biopsies identifies two classes of early AKI. Front. Med. 9, 817324 (2022).

    Article  Google Scholar 

  100. Lamarthee, B. et al. Transcriptional and spatial profiling of the kidney allograft unravels a central role for FcyRIII+ innate immune cells in rejection. Nat. Commun. 14, 4359 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, Y. et al. Single-cell RNA-seq analysis identified kidney progenitor cells from human urine. Protein Cell 12, 305–312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Abedini, A. et al. Urinary single-cell profiling captures the cellular diversity of the kidney. J. Am. Soc. Nephrol. 32, 614–627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Latt, K. Z. et al. Urine single-cell RNA sequencing in focal segmental glomerulosclerosis reveals inflammatory signatures. Kidney Int. Rep. 7, 289–304 (2022).

    Article  PubMed  Google Scholar 

  104. Cheung, M. D. et al. Single-cell RNA sequencing of urinary cells reveals distinct cellular diversity in COVID-19-associated AKI. Kidney360 3, 28–36 (2022).

    Article  PubMed  Google Scholar 

  105. Goerlich, N. et al. Kidney transplant monitoring by urinary flow cytometry: biomarker combination of T cells, renal tubular epithelial cells, and podocalyxin-positive cells detects rejection. Sci. Rep. 10, 796 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Galante, N. Z. et al. Noninvasive immune monitoring assessed by flow cytometry and real time RT-PCR in urine of renal transplantation recipients. Transpl. Immunol. 16, 73–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Doke, T. et al. Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis. Nat. Immunol. 23, 947–959 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mylonas, K. J. et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci. Transl. Med. 13, eabb0203 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Dhillon, P. et al. The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metab. 33, 379–394.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Taguchi, K. et al. Cyclin G1 induces maladaptive proximal tubule cell dedifferentiation and renal fibrosis through CDK5 activation. J. Clin. Invest. 132, e158096 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed, and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kai M. Schmidt-Ott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Benjamin Humphreys, Maarten Naesens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinze, C., Lovric, S., Halloran, P.F. et al. Epithelial cell states associated with kidney and allograft injury. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00834-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00834-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing