Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug stewardship in chronic kidney disease to achieve effective and safe medication use

Abstract

People living with chronic kidney disease (CKD) often experience multimorbidity and require polypharmacy. Kidney dysfunction can also alter the pharmacokinetics and pharmacodynamics of medications, which can modify their risks and benefits; the extent of these changes is not well understood for all situations or medications. The principle of drug stewardship is aimed at maximizing medication safety and effectiveness in a population of patients through a variety of processes including medication reconciliation, medication selection, dose adjustment, monitoring for effectiveness and safety, and discontinuation (deprescribing) when no longer necessary. This Review is aimed at serving as a resource for achieving optimal drug stewardship for patients with CKD. We describe special considerations for medication use during pregnancy and lactation, during acute illness and in patients with cancer, as well as guidance for the responsible use of over-the-counter drugs, herbal remedies, supplements and sick-day rules. We also highlight inequities in medication access worldwide and suggest policies to improve access to quality and essential medications for all persons with CKD. Further strategies to promote drug stewardship include patient education and engagement, the use of digital health tools, shared decision-making and collaboration within interdisciplinary teams. Throughout, we position the person with CKD at the centre of all drug stewardship efforts.

Key points

  • Medication reconciliation and review is an essential first step in patient-centred drug stewardship.

  • Doses should be adjusted according to a patient’s glomerular filtration rate (GFR). Most pharmacokinetic information available is derived from creatinine-based equations, and for many medications, different creatinine-based equations to estimate GFR are interchangeable; however, use of equations that utilize both creatinine and cystatin C, or direct measurement of GFR, is advocated when the therapeutic range is narrow and precision is needed.

  • Drug choice should consider relative and absolute contraindications by GFR, and the increased nephrotoxicity of nephrotoxic medications to people with chronic kidney disease.

  • Acute illness and fluctuations in GFR should prompt frequent reassessment of GFR and medications; however, the implementation of routine sick-day rules has a substantial cost or opportunity cost, is not supported by evidence and may cause more harm than good.

  • For people with chronic kidney disease who might become pregnant, education around potential teratogens is important, but people should not be denied medication on the basis that they might become pregnant.

  • Culturally appropriate, multi-faceted educational and empowerment activities may include written instructional materials and digital technologies.

  • Health care workers and patients should collaborate to promote more equitable access to evidence-based medications within their countries and globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Suggested approach to GFR evaluation for drug dosing.
Fig. 2: A general approach to prescribing medications that may carry contraindications in people with CKD.
Fig. 3: Suggested steps of medication review and reconciliation.
Fig. 4: Impact of acute illness on medication management in CKD.

Similar content being viewed by others

References

  1. Cardone, K. E., Bacchus, S., Assimon, M. M., Pai, A. B. & Manley, H. J. Medication-related problems in CKD. Adv. Chronic Kidney Dis. 17, 404–412 (2010).

    Article  PubMed  Google Scholar 

  2. Konstantinidis, I. et al. Representation of patients with kidney disease in trials of cardiovascular interventions: an updated systematic review. JAMA Intern. Med. 176, 121–124, (2016).

    Article  PubMed  Google Scholar 

  3. Roberts, D. M., Sevastos, J., Carland, J. E., Stocker, S. L. & Lea-Henry, T. N. Clinical pharmacokinetics in kidney disease: application to rational design of dosing regimens. Clin. J. Am. Soc. Nephrol. 13, 1254–1263 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Janse, R. J. et al. Use of guideline-recommended medical therapy in patients with heart failure and chronic kidney disease: from physician’s prescriptions to patient’s dispensations, medication adherence and persistence. Eur. J. Heart Fail. 24, 2185–2195 (2022).

    Article  PubMed  Google Scholar 

  5. Bramlage, P. et al. Guidelines adherence in the prevention and management of chronic kidney disease in patients with diabetes mellitus on the background of recent European recommendations - a registry-based analysis. BMC Nephrol. 22, 184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rawson, T. M. et al. Optimizing antimicrobial use: challenges, advances and opportunities. Nat. Rev. Microbiol. 19, 747–758 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Alberta Health Services Pharmacy. Drug Stewardship: Information for Health Professionals https://www.albertahealthservices.ca/phm/Page17557.aspx#:~:text=Drug%20Stewardship%20within%20Alberta%20Health,by%20all%20staff%20and%20physicians (2023).

  8. KDIGO Workgroup. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. https://doi.org/10.1016/j.kint.2023.10.018 (2024).

  9. Long, C. L., Raebel, M. A., Price, D. W. & Magid, D. J. Compliance with dosing guidelines in patients with chronic kidney disease. Ann. Pharmacother. 38, 853–858 (2004).

    Article  PubMed  Google Scholar 

  10. Vondracek, S. F., Teitelbaum, I. & Kiser, T. H. Principles of kidney pharmacotherapy for the nephrologist: core curriculum 2021. Am. J. Kidney Dis. 78, 442–458 (2021).

    Article  PubMed  Google Scholar 

  11. Hepler, C. D. & Strand, L. M. Opportunities and responsibilities in pharmaceutical care. Am. J. Hosp. Pharm. 47, 533–543 (1990).

    CAS  PubMed  Google Scholar 

  12. Manley, H. J. et al. Factors associated with medication-related problems in ambulatory hemodialysis patients. Am. J. Kidney Dis. 41, 386–393 (2003).

    Article  PubMed  Google Scholar 

  13. Smyth, B. et al. Representativeness of randomized clinical trial cohorts in end-stage kidney disease: a meta-analysis. JAMA Intern. Med. 179, 1316–1324, (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Budnitz, D. S. et al. National surveillance of emergency department visits for outpatient adverse drug events. JAMA 296, 1858–1866, (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Levey, A. S. et al. Change in albuminuria and GFR as end points for clinical trials in early stages of CKD: a scientific workshop sponsored by the national kidney foundation in collaboration with the US Food and Drug Administration and European Medicines Agency. Am. J. Kidney Dis. 75, 84–104 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Ricci, Z., Cruz, D. & Ronco, C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int. 73, 538–546 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron. Clin. Pract. 120, c179–184, (2012).

    Article  PubMed  Google Scholar 

  18. Mehta, R. L. et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 66, 1613–1621 (2004).

    Article  PubMed  Google Scholar 

  19. Hoste, E. A. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive care Med. 41, 1411–1423 (2015).

    Article  PubMed  Google Scholar 

  20. Chawla, L. S. & Kimmel, P. L. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 82, 516–524 (2012).

    Article  PubMed  Google Scholar 

  21. Jha, A. K. et al. Identifying adverse drug events: development of a computer-based monitor and comparison with chart review and stimulated voluntary report. J. Am. Med. Inf. Assoc. 5, 305–314 (1998).

    Article  CAS  Google Scholar 

  22. Adimadhyam, S. et al. Leveraging the capabilities of the FDA’s sentinel system to improve kidney care. J. Am. Soc. Nephrol. 31, 2506–2516 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dave, C. V., Schneeweiss, S. & Patorno, E. Association of sodium-glucose cotransporter 2 inhibitor treatment with risk of hospitalization for Fournier gangrene among men. JAMA Intern. Med. 179, 1587–1590, (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Douros, A. et al. Sodium-glucose cotransporter-2 inhibitors and the risk for diabetic ketoacidosis : a multicenter cohort study. Ann. Intern. Med. 173, 417–425 (2020).

    Article  PubMed  Google Scholar 

  25. Fu, E. L. Target trial emulation to improve causal inference from observational data: what, why, and how? J. Am. Soc. Nephrol. 34, 1305–1314 (2023).

    Article  PubMed  Google Scholar 

  26. Bhandari, S. et al. Renin-angiotensin system inhibition in advanced chronic kidney disease. N. Engl. J. Med. 387, 2021–2032 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Fu, E. L. et al. Stopping renin-angiotensin system inhibitors in patients with advanced CKD and risk of adverse outcomes: a nationwide study. J. Am. Soc. Nephrol. 32, 424–435 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Guirguis-Blake, J. et al. Prescription of high-risk medications among patients with chronic kidney disease: a cross-sectional study from the Washington, Wyoming, Alaska, Montana and Idaho region Practice and Research Network. Fam. Pract. 35, 589–594 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Inker, L. A. & Titan, S. Measurement and estimation of GFR for use in clinical practice: core curriculum 2021. Am. J. Kidney Dis. 78, 736–749 (2021).

    Article  PubMed  Google Scholar 

  30. Sherman, D. S., Fish, D. N. & Teitelbaum, I. Assessing renal function in cirrhotic patients: problems and pitfalls. Am. J. Kidney Dis. 41, 269–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, X. et al. Non-GFR determinants of low-molecular-weight serum protein filtration markers in CKD. Am. J. Kidney Dis. 68, 892–900 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shlipak, M. G., Inker, L. A. & Coresh, J. Serum cystatin C for estimation of GFR. JAMA 328, 883–884 (2022).

    Article  PubMed  Google Scholar 

  33. Stevens, L. A. et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 75, 652–660 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Foster, M. C. et al. Non-GFR determinants of low-molecular-weight serum protein filtration markers in the elderly: AGES-kidney and MESA-kidney. Am. J. Kidney Dis. 70, 406–414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Knight, E. L. et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 65, 1416–1421 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Chang, A. R., Zafar, W. & Grams, M. E. Kidney function in obesity-challenges in indexing and estimation. Adv. Chronic Kidney Dis. 25, 31–40 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sjostrom, P., Tidman, M. & Jones, I. Determination of the production rate and non-renal clearance of cystatin C and estimation of the glomerular filtration rate from the serum concentration of cystatin C in humans. Scand. J. Clin. Lab. Invest. 65, 111–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Schei, J. et al. Residual associations of inflammatory markers with eGFR after accounting for measured GFR in a community-based cohort without CKD. Clin. J. Am. Soc. Nephrol. 11, 280–286 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Melsom, T. et al. Estimated GFR is biased by non-traditional cardiovascular risk factors. Am. J. Nephrol. 41, 7–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Xin, C., Xie, J., Fan, H., Sun, X. & Shi, B. Association between serum cystatin C and thyroid diseases: a systematic review and meta-analysis. Front. Endocrinol. 12, 766516 (2021).

    Article  Google Scholar 

  41. Inker, L. A. & Titan, S. Measurement and estimation of GFR for use in clinical practice: core curriculum 2021. Am. J. Kidney Dis. S0272-6386, 00707–00701 (2021).

    Google Scholar 

  42. Levey, A. S., Inker, L. A. & Coresh, J. GFR estimation: from physiology to public health. Am. J. Kidney Dis. 63, 820–834 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Levey, A. S., Coresh, J., Tighiouart, H., Greene, T. & Inker, L. A. Measured and estimated glomerular filtration rate: current status and future directions. Nat. Rev. Nephrol. 16, 51–64 (2020).

    Article  PubMed  Google Scholar 

  44. Vidal, L., Shavit, M., Fraser, A., Paul, M. & Leibovici, L. Systematic comparison of four sources of drug information regarding adjustment of dose for renal function. BMJ 331, 263 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. US Food and Drug Administration. Pharmacokinetics in Patients with Impaired Renal Function — Study Design, Data Analysis, and Impact on Dosing and Labeling. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pharmacokinetics-patients-impaired-renal-function-study-design-data-analysis-and-impact-dosing (2020).

  46. Cockcroft, D. W. & Gault, M. H. Prediction of creatinine clearance from serum creatinine. Nephron 16, 31–41 (1976).

    Article  CAS  PubMed  Google Scholar 

  47. Delanaye, P. et al. Performance of creatinine-based equations to estimate glomerular filtration rate with a methodology adapted to the context of drug dosage adjustment. Br. J. Clin. Pharmacol. 88, 2118–2127 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Kwon, S. et al. The long-term effects of metformin on patients with type 2 diabetic kidney disease. Diabetes Care 43, 948–955 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 854–865 (1998).

    Google Scholar 

  50. Salpeter, S. R., Greyber, E., Pasternak, G. A. & Salpeter, E. E. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2010, Cd002967 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Lazarus, B. et al. Association of metformin use with risk of lactic acidosis across the range of kidney function: a community-based cohort study. JAMA Intern. Med. 178, 903–910 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Levey, A. S. et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 145, 247–254 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Inker, L. A. et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N. Engl. J. Med. 385, 1737–1749 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peters, B. J. et al. Impact of serum cystatin C-based glomerular filtration rate estimates on drug dose selection in hospitalized patients. Pharmacotherapy 38, 1068–1073 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Carrero, J. J. et al. Discordances between creatinine- and cystatin C-based estimated GFR and adverse clinical outcomes in routine clinical practice. Am. J. Kidney Dis. 82, 534–542 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Markos, J. R. et al. Clinician perspectives on inpatient cystatin C utilization: a qualitative case study at Mayo Clinic. PLoS One 15, e0243618 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fu, E. L. et al. Accuracy of GFR estimating equations in patients with discordances between creatinine and cystatin C-based estimations. J. Am. Soc. Nephrol. 34, 1241–1251 (2023).

    Article  PubMed  Google Scholar 

  59. Frazee, E. et al. Cystatin C-guided vancomycin dosing in critically Ill patients: a quality improvement project. Am. J. Kidney Dis. 69, 658–666 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Titan, S. et al. Performance of indexed and nonindexed estimated GFR. Am. J. Kidney Dis. 76, 446–449 (2020).

    Article  PubMed  Google Scholar 

  61. Swartling, O. et al. Sex differences in the recognition, monitoring, and management of CKD in health care: an observational cohort study. J. Am. Soc. Nephrol. 33, 1903–1914 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bosi, A. et al. Use of nephrotoxic medications in adults with chronic kidney disease in Swedish and US routine care. Clin. Kidney J. 15, 442–451 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Collister, D., Saad, N., Christie, E. & Ahmed, S. Providing care for transgender persons with kidney disease: a narrative review. Can. J. Kidney Health Dis. 8, 2054358120985379 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bots, S. H. et al. Adverse drug reactions to guideline-recommended heart failure drugs in women: a systematic review of the literature. JACC Heart Fail. 7, 258–266 (2019).

    Article  PubMed  Google Scholar 

  65. Zucker, I. & Prendergast, B. J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex. Differ. 11, 32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mauvais-Jarvis, F. et al. Sex- and gender-based pharmacological response to drugs. Pharmacol. Rev. 73, 730–762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Soldin, O. P. & Mattison, D. R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 48, 143–157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bots, S. H. et al. Heart failure medication dosage and survival in women and men seen at outpatient clinics. Heart 107, 1748–1755 (2021).

    Article  PubMed  Google Scholar 

  69. Santema, B. T. et al. Identifying optimal doses of heart failure medications in men compared with women: a prospective, observational, cohort study. Lancet 394, 1254–1263 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Driessen, J., Vree, T. & Guelen, P. The effects of acute changes in renal function on the pharmacokinetics of midazolam during long-term infusion in ICU patients. Acta Anaesthesiol. Belg. 42, 149–155 (1991).

    CAS  PubMed  Google Scholar 

  71. Urakami, T. et al. Is trimethoprim/sulfamethoxazole-associated increase in serum creatinine a pseudo-elevation or true nephrotoxicity? J. Infect. Chemother. 27, 1193–1197 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Miano, T. A. et al. Association of vancomycin plus piperacillin–tazobactam with early changes in creatinine versus cystatin C in critically ill adults: a prospective cohort study. Intensive Care Med. 48, 1144–1155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Teaford, H. R. et al. Patterns of cystatin C uptake and use across and within hospitals. Mayo Clin. Proc. 95, 1649–1659 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Brown, C. S., Kashani, K. B., Clain, J. M. & Frazee, E. N. Cystatin C falsely underestimated GFR in a critically ill patient with a new diagnosis of AIDS. Case Rep. Nephrol. 2016, 9349280 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. Sangla, F. et al. Measured and estimated glomerular filtration rate in the ICU: a prospective study. Crit. Care Med. 48, e1232–e1241 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Claudel, S. E., Gandhi, M., Patel, A. B. & Verma, A. Estimating kidney function in patients with cancer: a narrative review. Acta Physiol. 238, e13977 (2023).

    Article  CAS  Google Scholar 

  77. Casal, M. A., Nolin, T. D. & Beumer, J. H. Estimation of kidney function in oncology: implications for anticancer drug selection and dosing. Clin. J. Am. Soc. Nephrol. 14, 587–595 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Porta, C. et al. KDIGO controversies conference on onco-nephrology: understanding kidney impairment and solid-organ malignancies, and managing kidney cancer. Kidney Int. 98, 1108–1119 (2020).

    Article  PubMed  Google Scholar 

  79. Sandhu, G. et al. International consensus guideline for anticancer drug dosing in kidney dysfunction (ADDIKD): a standardized approach to assessing kidney function in cancer patients and its application to anticancer drug dosing. J. Clin. Oncol. 40, e13518–e13518 (2022).

    Article  Google Scholar 

  80. Barreto, J. N. et al. Prospective evaluation of high-dose methotrexate pharmacokinetics in adult patients with lymphoma using novel determinants of kidney function. Clin. Transl. Sci. 15, 105–117 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Costa, E. S. V. T. et al. A prospective cross-sectional study estimated glomerular filtration rate from creatinine and cystatin C in adults with solid tumors. Kidney Int. 101, 607–614 (2022).

    Article  Google Scholar 

  82. Kutzke, J. L. et al. Relationship of iothalamate clearance and NRM in patients receiving fludarabine and melphalan reduced-intensity conditioning. Blood Adv. 6, 3844–3849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wiles, K. et al. Clinical practice guideline on pregnancy and renal disease. BMC Nephrol. 20, 401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Coca, S. G., Singanamala, S. & Parikh, C. R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448 (2012).

    Article  PubMed  Google Scholar 

  85. Perazella, M. A. Pharmacology behind common drug nephrotoxicities. Clin. J. Am. Soc. Nephrol. 13, 1897–1908 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blair, M. et al. Nephrotoxicity from vancomycin combined with piperacillin-tazobactam: a comprehensive review. Am. J. Nephrol. 52, 85–97 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Kim, J. Y., Yee, J., Yoon, H. Y., Han, J. M. & Gwak, H. S. Risk factors for vancomycin-associated acute kidney injury: a systematic review and meta-analysis. Br. J. Clin. Pharmacol. 88, 3977–3989 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Perazella, M. A. & Rosner, M. H. Drug-induced acute kidney injury. Clin. J. Am. Soc. Nephrol. 17, 1220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wagner, L.-A., Tata, A. L. & Fink, J. C. Patient safety issues in CKD: core curriculum 2015. Am. J. Kidney Dis. 66, 159–169 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Davison, S. N. et al. Analgesic use in patients with advanced chronic kidney disease: a systematic review and meta-analysis. Can. J. Kidney Health Dis. 7, 2054358120910329 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Armstrong, M. J., Zhang, K., Ye, F., Klarenbach, S. W. & Pannu, N. I. Population-based analysis of nonsteroidal anti-inflammatory drug prescription in subjects with chronic kidney disease. Can. J. Kidney Health Dis. 10, 20543581221149621 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nast, C. C. Medication-induced interstitial nephritis in the 21st century. Adv. Chronic Kidney Dis. 24, 72–79 (2017).

    Article  PubMed  Google Scholar 

  93. Klatte, D. C. F. et al. Association between proton pump inhibitor use and risk of progression of chronic kidney disease. Gastroenterology 153, 702–710 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Rossing, P. et al. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 102, S1–S127 (2022).

    Article  Google Scholar 

  95. Clifford, K. M. et al. The risk and clinical implications of antibiotic-associated acute kidney injury: a review of the clinical data for agents with signals from the Food and Drug Administration’s Adverse Event Reporting System (FAERS) Database. Antibiotics 11, 1367 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bosi, A. et al. Quality of laboratory biomarker monitoring during treatment with lithium in patients with bipolar disorder. Bipolar Disord. 25, 499–506 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Bosi, A. et al. Absolute and relative risks of kidney outcomes associated with lithium vs valproate use in Sweden. JAMA Netw. Open. 6, e2322056 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Szummer, K. et al. Time in therapeutic range and outcomes after warfarin initiation in newly diagnosed atrial fibrillation patients with renal dysfunction. J. Am. Heart Assoc. 6, e004925 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Laliberte, M. C. et al. Use of over-the-counter medications and natural products in patients with moderate and severe chronic renal insufficiency. Am. J. Kidney Dis. 49, 245–256 (2007).

    Article  PubMed  Google Scholar 

  100. Akyol, A. D., Yildirim, Y., Toker, E. & Yavuz, B. The use of complementary and alternative medicine among chronic renal failure patients. J. Clin. Nurs. 20, 1035–1043 (2011).

    Article  PubMed  Google Scholar 

  101. Gabardi, S., Munz, K. & Ulbricht, C. A review of dietary supplement-induced renal dysfunction. Clin. J. Am. Soc. Nephrol. 2, 757–765 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Sriperumbuduri, S. & Hiremath, S. The case for cautious consumption: NSAIDs in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 28, 163–170 (2019).

    Article  PubMed  Google Scholar 

  103. Arfè, A. et al. Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. BMJ 354, i4857 (2016).

    Article  PubMed  Google Scholar 

  104. Gooch, K. et al. NSAID use and progression of chronic kidney disease. Am. J. Med. 120, 280 e281–280 e287 (2007).

    Article  Google Scholar 

  105. Nelson, D. A., Marks, E. S., Deuster, P. A., O’Connor, F. G. & Kurina, L. M. Association of nonsteroidal anti-inflammatory drug prescriptions with kidney disease among active young and middle-aged adults. JAMA Netw. Open. 2, e187896 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Perneger, T. V., Whelton, P. K. & Klag, M. J. Risk of kidney failure associated with the use of acetaminophen, aspirin, and nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 331, 1675–1679 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Sandler, D. P., Burr, F. R. & Weinberg, C. R. Nonsteroidal anti-inflammatory drugs and the risk for chronic renal disease. Ann. Intern. Med. 115, 165–172 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Novick, T. K. et al. Associations of opioid prescriptions with death and hospitalization across the spectrum of estimated GFR. Clin. J. Am. Soc. Nephrol. 14, 1581–1589 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhan, M. et al. Association of opioids and nonsteroidal anti-inflammatory drugs with outcomes in CKD: findings from the CRIC (Chronic Renal Insufficiency Cohort) study. Am. J. Kidney Dis. 76, 184–193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Luyckx, V. A. Nephrotoxicity of alternative medicine practice. Adv. Chronic Kidney Dis. 19, 129–141 (2012).

    Article  PubMed  Google Scholar 

  111. Yang, B. et al. Nephrotoxicity and Chinese herbal medicine. Clin. J. Am. Soc. Nephrol. 13, 1605–1611 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kilis-Pstrusinska, K. & Wiela-Hojenska, A. Nephrotoxicity of herbal products in Europe — a review of an underestimated problem. Int. J. Mol. Sci. 22, 4132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Steenkamp, V. & Stewart, M. J. Nephrotoxicity associated with exposure to plant toxins, with particular reference to Africa. Ther. Drug. Monit. 27, 270–277 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Koshy, K. M., Griswold, E. & Schneeberger, E. E. Interstitial nephritis in a patient taking creatine. N. Engl. J. Med. 340, 814–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Thorsteinsdottir, B., Grande, J. P. & Garovic, V. D. Acute renal failure in a young weight lifter taking multiple food supplements, including creatine monohydrate. J. Ren. Nutr. 16, 341–345 (2006).

    Article  PubMed  Google Scholar 

  116. Xuan, B. H. et al. Ichthyotoxic ARF after fish gallbladder ingestion: a large case series from Vietnam. Am. J. Kidney Dis. 41, 220–224 (2003).

    Article  PubMed  Google Scholar 

  117. Hsu, P. P. Natural medicines comprehensive database. J. Med. Libr. Assoc. 90, 114 (2002).

    PubMed Central  Google Scholar 

  118. Song, Y.-K. et al. Effectiveness of clinical pharmacist service on drug-related problems and patient outcomes for hospitalized patients with chronic kidney disease: a randomized controlled trial. J. Clin. Med. 10, 1788 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tesfaye, W. H. et al. Effect of pharmacist‐led medication review on medication appropriateness in older adults with chronic kidney disease. J. Pharm. Pract. Res. 49, 471–476 (2019).

    Article  Google Scholar 

  120. Patel, H. R., Pruchnicki, M. C. & Hall, L. E. Assessment for chronic kidney disease service in high-risk patients at community health clinics. Ann. Pharmacother. 39, 22–27 (2005).

    Article  PubMed  Google Scholar 

  121. SHPA Committee of Specialty Practice in Clinical Pharmacy Medication Reconciliation. Chapter 1: medication reconciliation. J. Pharm. Pract. Res. 43, S6–S12 (2013).

    Google Scholar 

  122. St Peter, W. L. Improving medication safety in chronic kidney disease patients on dialysis through medication reconciliation. Adv. Chronic Kidney Dis. 17, 413–419 (2010).

    Article  Google Scholar 

  123. Mason, N. A. & Bakus, J. L. Strategies for reducing polypharmacy and other medication-related problems in chronic kidney disease. Semin. Dial. 23, 55–61 (2010).

    Article  PubMed  Google Scholar 

  124. St Peter, W. L., Wazny, L. D. & Patel, U. D. New models of CKD care including pharmacists: improving medication reconciliation and medication management. Curr. Opin. Nephrol. Hypertension 22, 656 (2013).

    Article  Google Scholar 

  125. McCarthy, L. M., Visentin, J. D. & Rochon, P. A. Assessing the scope and appropriateness of prescribing cascades. J. Am. Geriatr. Soc. 67, 1023–1026 (2019).

    Article  PubMed  Google Scholar 

  126. Gurwitz, J. H. et al. Thiazide diuretics and the initiation of anti-gout therapy. J. Clin. Epidemiol. 50, 953–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Bradley, J. D., Brandt, K. D., Katz, B. P., Kalasinski, L. A. & Ryan, S. I. Comparison of an antiinflammatory dose of ibuprofen, an analgesic dose of ibuprofen, and acetaminophen in the treatment of patients with osteoarthritis of the knee. N. Engl. J. Med. 325, 87–91 (1991).

    Article  CAS  PubMed  Google Scholar 

  128. McCarthy, L. M. et al. ThinkCascades: a tool for identifying clinically important prescribing cascades affecting older people. Drugs Aging 39, 829–840 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Agarwal, R. et al. Chlorthalidone for hypertension in advanced chronic kidney disease. N. Engl. J. Med. 385, 2507–2519 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, G. H., Morris, E. J., Smith, S. M., Hallas, J. & Vouri, S. M. Continued potassium supplementation use following loop diuretic discontinuation in older adults: an evaluation of a prescribing cascade relic. J. Am. Geriatr. Soc. 71, 505–515 (2023).

    Article  PubMed  Google Scholar 

  131. Rochon, P. A. & Gurwitz, J. H. Optimising drug treatment for elderly people: the prescribing cascade. BMJ 315, 1096–1099 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Savage, R. D. et al. Evaluation of a common prescribing cascade of calcium channel blockers and diuretics in older adults with hypertension. JAMA Intern. Med. 180, 643–651 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rochon, P. A. & Gurwitz, J. H. The prescribing cascade revisited. Lancet 389, 1778–1780 (2017).

    Article  PubMed  Google Scholar 

  134. Morris, E. J., Brown, J. D., Manini, T. M. & Vouri, S. M. Differences in health-related quality of life among adults with a potential dihydropyridine calcium channel blocker–loop diuretic prescribing cascade. Drugs Aging 38, 625–632 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Brath, H. et al. What is known about preventing, detecting, and reversing prescribing cascades: a scoping review. J. Am. Geriatrics Soc. 66, 2079–2085 (2018).

    Article  Google Scholar 

  136. Thompson, W. & Farrell, B. Deprescribing: what is it and what does the evidence tell us? Can. J. Hosp. Pharm. 66, 201 (2013).

    PubMed  PubMed Central  Google Scholar 

  137. Ibrahim, K. et al. A systematic review of the evidence for deprescribing interventions among older people living with frailty. BMC Geriatr. 21, 258 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hall, R. K. et al. Stakeholder perspectives on factors related to deprescribing potentially inappropriate medications in older adults receiving dialysis. Clin. J. Am. Soc. Nephrol. 18, 1310–1320 (2023).

    Article  PubMed  Google Scholar 

  139. Mangin, D. et al. Legacy drug-prescribing patterns in primary care. Ann. Fam. Med. 16, 515–520 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  140. Hall, R. K. et al. Risk of potentially inappropriate medications in adults with CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Am. J. Kidney Dis. 78, 837–845.e1 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kimura, H., Yoshida, S., Takeuchi, M. & Kawakami, K. Impact of potentially inappropriate medications on kidney function in chronic kidney disease: retrospective cohort study. Nephron 147, 177–184 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. O’Mahony, D. et al. STOPP/START criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing 44, 213–218 (2015).

    Article  PubMed  Google Scholar 

  143. By the American Geriatrics Society Beers Criteria Update Expert, P. American Geriatrics Society 2023 updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. J. Am. Geriatr. Soc. 71, 2052–2081 (2023).

    Article  Google Scholar 

  144. Nawaz, S., Cleveland, T., Gaines, P. A. & Chan, P. Clinical risk associated with contrast angiography in metformin treated patients: a clinical review. Clin. Radiol. 53, 342–344 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Thiruvenkatarajan, V., Meyer, E. J., Nanjappa, N., Van Wijk, R. M. & Jesudason, D. Perioperative diabetic ketoacidosis associated with sodium-glucose co-transporter-2 inhibitors: a systematic review. Br. J. Anaesth. 123, 27–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Whiting, P. et al. What are the risks and benefits of temporarily discontinuing medications to prevent acute kidney injury? A systematic review and meta-analysis. BMJ Open. 7, e012674 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Rudnick, M. R. et al. The controversy of contrast-induced nephropathy with intravenous contrast: what is the risk? Am. J. Kidney Dis. 75, 105–113 (2020).

    Article  PubMed  Google Scholar 

  148. The Royal College of Radiologists. Joint Advisory Statement between The Royal College of Radiologists & Royal College Emergency Medicine Regarding Emergency Computed Tomography Scans and the Use of Intravenous Iodinated Contrast Agents https://www.rcr.ac.uk/news-policy/latest-updates/joint-advisory-statement-between-the-royal-college-of-radiologists-royal-college-emergency-medicine-regarding-emergency-computed-tomography-scans-and-the-use-of-intravenous-iodinated-contrast-agents/ (2023).

  149. Hollmann, C., Fernandes, N. L. & Biccard, B. M. A systematic review of outcomes associated with withholding or continuing angiotensin-converting enzyme inhibitors and angiotensin receptor blockers before noncardiac surgery. Anesth. Analg. 127, 678–687 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Coca, S. G. et al. Preoperative angiotensin-converting enzyme inhibitors and angiotensin receptor blocker use and acute kidney injury in patients undergoing cardiac surgery. Nephrol. Dial. Transpl. 28, 2787–2799 (2013).

    Article  CAS  Google Scholar 

  151. Bamgboye, A. O., Oni, I. O. & Collier, A. Predisposing factors for the development of diabetic ketoacidosis with lower than anticipated glucose levels in type 2 diabetes patients on SGLT2-inhibitors: a review. Eur. J. Clin. Pharmacol. 77, 651–657 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Humphrey, T. J., James, G., Wittbrodt, E. T., Zarzuela, D. & Hiemstra, T. F. Adverse clinical outcomes associated with RAAS inhibitor discontinuation: analysis of over 400 000 patients from the UK Clinical Practice Research Datalink (CPRD). Clin. Kidney J. 14, 2203–2212 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Martinez, Y. V., Benett, I., Lewington, A. J. P., Wierzbicki, A. S. & Guideline, C. Chronic kidney disease: summary of updated NICE guidance. BMJ 374, n1992 (2021).

    Article  PubMed  Google Scholar 

  154. Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. J. Am. Coll. Cardiol. 79, 1757–1780 (2022).

    Article  PubMed  Google Scholar 

  155. Trevisan, M. et al. Incidence, predictors and clinical management of hyperkalaemia in new users of mineralocorticoid receptor antagonists. Eur. J. Heart Fail. 20, 1217–1226 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Bidulka, P. et al. Stopping renin-angiotensin system blockers after acute kidney injury and risk of adverse outcomes: parallel population-based cohort studies in English and Swedish routine care. BMC Med. 18, 195 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Leon, S. J. et al. Hyperkalemia-related discontinuation of renin-angiotensin-aldosterone system inhibitors and clinical outcomes in CKD: a population-based cohort study. Am. J. Kidney Dis. 80, 164–173 e161 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Trevisan, M. et al. Stopping mineralocorticoid receptor antagonists after hyperkalaemia: trial emulation in data from routine care. Eur. J. Heart Fail. 23, 1698–1707 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Xu, Y. et al. Stopping renin-angiotensin system inhibitors after hyperkalemia and risk of adverse outcomes. Am. Heart J. 243, 177–186 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Janse, R. J. et al. Stopping versus continuing renin–angiotensin–system inhibitors after acute kidney injury and adverse clinical outcomes: an observational study from routine care data. Clin. Kidney J. 15, 1109–1119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hassan, Y., Al-Ramahi, R. J., Aziz, N. A. & Ghazali, R. Adverse drug events in hospitalized patients with chronic kidney disease. Int. J. Clin. Pharmacol. Ther. 48, 571–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Novick, T. K. et al. Prevalence of opioid, gabapentinoid, and NSAID use in patients with CKD. Clin. J. Am. Soc. Nephrol. 13, 1886–1888 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Long, B., Lentz, S., Koyfman, A. & Gottlieb, M. Euglycemic diabetic ketoacidosis: etiologies, evaluation, and management. Am. J. Emerg. Med. 44, 157–160 (2021).

    Article  PubMed  Google Scholar 

  164. Tully, A. P., Hammond, D. A., Li, C., Jarrell, A. S. & Kruer, R. M. Evaluation of medication errors at the transition of care from an ICU to non-ICU location. Crit. Care Med. 47, 543–549 (2019).

    Article  PubMed  Google Scholar 

  165. Gray, M. P. et al. Consensus obtained for the nephrotoxic potential of 167 drugs in adult critically Ill patients using a modified Delphi method. Drug. Saf. 45, 389–398 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Jones, D. C. & Hayslett, J. P. Outcome of pregnancy in women with moderate or severe renal insufficiency. N. Engl. J. Med. 335, 226–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  167. Cooper, W. O. et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N. Engl. J. Med. 354, 2443–2451 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Framarino-dei-Malatesta, M. et al. Impact of mTOR-I on fertility and pregnancy: state of the art and review of the literature. Expert. Rev. Clin. Immunol. 9, 781–789 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Tangren, J. et al. Pre-pregnancy eGFR and the risk of adverse maternal and fetal outcomes: a population-based study. J. Am. Soc. Nephrol. 34, 656–667 (2023).

    Article  PubMed  Google Scholar 

  170. Dao, K. H. & Bermas, B. L. Systemic lupus erythematosus management in pregnancy. Int. J. Womens Health 14, 199–211 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gotestam Skorpen, C. et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann. Rheum. Dis. 75, 795–810 (2016).

    Article  PubMed  Google Scholar 

  172. Naderi, S. H., Bestwick, J. P. & Wald, D. S. Adherence to drugs that prevent cardiovascular disease: meta-analysis on 376,162 patients. Am. J. Med. 125, 882–887 (2012).

    Article  PubMed  Google Scholar 

  173. McDonald, H. P., Garg, A. X. & Haynes, R. B. Interventions to enhance patient adherence to medication prescriptions: scientific review. JAMA 288, 2868–2879 (2002).

    Article  PubMed  Google Scholar 

  174. Sontakke, S., Budania, R., Bajait, C., Jaiswal, K. & Pimpalkhute, S. Evaluation of adherence to therapy in patients of chronic kidney disease. Indian. J. Pharmacol. 47, 668–671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tuot, D. S. et al. Usability testing of the kidney score platform to enhance communication about kidney disease in primary care settings: qualitative think-aloud study. JMIR Form. Res. 6, e40001 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Justad, H., Askfors, Y., Shemeikka, T., Andersson, M. L. & Hammar, T. Patients’ use and perceptions of a drug-drug interaction database: a survey of Janusmed interactions. Pharmacy 9, 23 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Bowman, C. et al. A patient safety educational tool for patients with chronic kidney disease: development and usability study. JMIR Form. Res. 4, e16137 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Michel, G., Levy, B., Chauvet, M. T., Chauvet, J. & Acher, R. Non-mammalian “big” neurophysins-complete amino acid sequence of a two-domain MSEL-neurophysin from goose. Int. J. Pept. Protein Res. 36, 302–307 (1990).

    Article  CAS  PubMed  Google Scholar 

  179. Lopez-Vargas, P. A., Tong, A., Howell, M. & Craig, J. C. Educational interventions for patients with CKD: a systematic review. Am. J. Kidney Dis. 68, 353–370 (2016).

    Article  PubMed  Google Scholar 

  180. Watson, K. E. et al. Sick day medication guidance for people with diabetes, kidney disease, or cardiovascular disease: a systematic scoping review. Kidney Med. 4, 100491 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Duong, H. et al. Sick day management in people with chronic kidney disease: a scoping review. J. Nephrol. 36, 1293–1306 (2023).

    Article  PubMed  Google Scholar 

  182. Watson, K. E. et al. Consensus recommendations for sick day medication guidance for people with diabetes, kidney, or cardiovascular disease: a modified Delphi process. Am. J. Kidney Dis. 81, 564–574 (2023).

    Article  PubMed  Google Scholar 

  183. Fink, J. C. et al. Medication holds in CKD during acute volume-depleting illnesses: a randomized controlled trial of a “Sick-Day” protocol. Kidney Med. 4, 100527 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Humphrey, T. J. L., James, G., Wittbrodt, E. T., Zarzuela, D. & Hiemstra, T. F. Adverse clinical outcomes associated with RAAS inhibitor discontinuation: analysis of over 400 000 patients from the UK Clinical Practice Research Datalink (CPRD). Clin. Kidney J. 14, 2203–2212 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Morris, R. L. et al. Preventing acute kidney injury: a qualitative study exploring ‘sick day rules’ implementation in primary care. BMC Fam. Pract. 17, 91 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Martindale, A. M. et al. Understanding the implementation of ‘sick day guidance’ to prevent acute kidney injury across a primary care setting in England: a qualitative evaluation. BMJ Open. 7, e017241 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Al Raiisi, F. et al. Clinical pharmacy practice in the care of Chronic Kidney Disease patients: a systematic review. Int. J. Clin. Pharm. 41, 630–666 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Joy, M. S. et al. Clinical pharmacists as multidisciplinary health care providers in the management of CKD: a joint opinion by the Nephrology and Ambulatory Care Practice and Research Networks of the American College of Clinical Pharmacy. Am. J. Kidney Dis. 45, 1105–1118 (2005).

    Article  PubMed  Google Scholar 

  189. Sonoda, A. et al. In-hospital prescription checking system for hospitalized patients with decreased glomerular filtration rate. Kidney360 3, 1730–1737 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Bhardwaja, B. et al. Improving prescribing safety in patients with renal insufficiency in the ambulatory setting: the Drug Renal Alert Pharmacy (DRAP) program. Pharmacotherapy 31, 346–356 (2011).

    Article  PubMed  Google Scholar 

  191. Awdishu, L. et al. The impact of real-time alerting on appropriate prescribing in kidney disease: a cluster randomized controlled trial. J. Am. Med. Inf. Assoc. 23, 609–616 (2016).

    Article  Google Scholar 

  192. Erler, A. et al. How to improve drug dosing for patients with renal impairment in primary care — a cluster-randomized controlled trial. BMC Fam. Pract. 13, 91 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Such Diaz, A. et al. Drug prescribing in patients with renal impairment optimized by a computer-based, semi-automated system. Int. J. Clin. Pharm. 35, 1170–1177 (2013).

    Article  PubMed  Google Scholar 

  194. Fussell, S. E. et al. Improving the accuracy of discharge medication documentation in people with kidney disease through pharmacist-led partnered prescribing. Intern. Med. J. 53, 2102–2110 (2023).

    Article  PubMed  Google Scholar 

  195. Chertow, G. M. et al. Guided medication dosing for inpatients with renal insufficiency. JAMA 286, 2839–2844 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Goldstein, S. L. et al. A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int. 97, 580–588 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Kashani, K. B. et al. Digital health and acute kidney injury: consensus report of the 27th Acute Disease Quality Initiative workgroup. Nat. Rev. Nephrol. 19, 807–818 (2023).

    Article  PubMed  Google Scholar 

  198. Bodington, R., Kassianides, X. & Bhandari, S. Point-of-care testing technologies for the home in chronic kidney disease: a narrative review. Clin. Kidney J. 14, 2316–2331 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Vanholder, R. et al. Inequities in kidney health and kidney care. Nat. Rev. Nephrol. 19, 694–708 (2023).

    Article  PubMed  Google Scholar 

  200. Francis, A. et al. Barriers to accessing essential medicines for kidney disease in low- and lower middle-income countries|. Kidney Int. 102, 969–973 (2022).

    Article  PubMed  Google Scholar 

  201. Giorgino, F., Vora, J., Fenici, P. & Solini, A. Renoprotection with SGLT2 inhibitors in type 2 diabetes over a spectrum of cardiovascular and renal risk. Cardiovasc. Diabetol. 19, 196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Neuen, B. L. et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 7, 845–854 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Vitale, M., Haxhi, J., Cirrito, T. & Pugliese, G. Renal protection with glucagon-like peptide-1 receptor agonists. Curr. Opin. Pharmacol. 54, 91–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. The EMPA-KIDNEY Collaborative Group et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2022).

  205. Taglione, M. S. & Persaud, N. Assessing variation among the national essential medicines lists of 21 high-income countries: a cross-sectional study. BMJ Open. 11, e045262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Jha, V. & Adu, D. Change and choice: research and evidence-informed policy. Nat. Rev. Nephrol. 17, 9–10 (2021).

    Article  PubMed  Google Scholar 

  207. Nee, R., Yuan, C. M., Narva, A. S., Yan, G. & Norris, K. C. Overcoming barriers to implementing new guideline-directed therapies for chronic kidney disease. Nephrol. Dial. Transpl. 38, 532–541 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

R.K.H. has received funding from the National Institute on Aging of the National Institutes of Health (NIH) under Award Number K76AG059930. S.B.A. has received funding from the Canadian Institutes of Health Research and the Heart and Stroke Foundation of Canada. L.A.I. reports funding from NIH, National Kidney Foundation. E.F.B has received funding from the National Institute of Allergy and Infectious Diseases of the NIH under Award Number K23AI14388 and the Agency for Healthcare Research and Quality. E.L.F. is supported by a Rubicon grant from the Netherlands Organization for Scientific Research. J.J.C. has received funding from the Swedish Research Council, the Swedish Heart and Lung Foundation and NIH 22-B0-00-1005839. We thank Laurie Tomlinson, London School of Hygiene and Tropical Medicine, UK, for her valuable contributions to the section on sick-day rules. Rasheeda Hall, Rümeyza Kazancıoğlu, Teerawat Thanachayanont, Germaine Wong, Dharsh Sabanayagam, Lesley A. Inker, Sofia B. Ahmed and Juan J. Carrero are work group members of the 2024 KDIGO guideline update on screening, detection and management of CKD. This review served to evaluate the evidence behind the drug stewardship chapter for those guidelines.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Juan J. Carrero.

Ethics declarations

Competing interests

R.K. has received honoraria from Baxter. L.A.I. has received funding Omeros, Chinook Therapeutics, R3R and Travere Pharmaceuticals for research and contracts to Tufts Medical Center, and has consulted for Diamerix. E.F.B. has received funding from Numares, and has consulted for Wolters Kluwer. C.M.C. has received consultation, advisory board membership, honoraria or research funding from Sanofi, Pfizer, Leo Pharma, Astellas, Janssen, Amgen, Boehringer-Ingelheim, Baxter and, through the Liv Academy, AstraZeneca. She is editor-in-chief of the Canadian Journal of Kidney Health and Disease. J.J.C. has received support from AstraZeneca, ViforPharma, Novonordisk, Astellas, MSD, GSK, Boehringer Ingelheim and Amgen, outside the scope of this work; he has also received lecture fees from Baxter, Fresenius Kabi, AstraZeneca, Astellas, GSK and Abbott, and has participated in advisory boards for AstraZeneca, Nestle and Bayer. The other authors do not declare any conflicts of interest.

Peer review

Peer review information

Nature Reviews Nephrology thanks Sunil Bhandari, who co-reviewed with Xenophon Kassianides, Marlies Ostermann and Menino Cotta, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, R.K., Kazancıoğlu, R., Thanachayanont, T. et al. Drug stewardship in chronic kidney disease to achieve effective and safe medication use. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00823-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00823-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research