Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

GLOMERULAR DISEASE

A step forward in understanding glomerular filtration

The mechanism underlying glomerular filtration barrier selectivity has not been resolved. A new study that reports an inverse correlation between slit diaphragm density and proteinuria in a genetic mouse model of focal segmental glomerulosclerosis suggests that podocytes function to compress the glomerular basement membrane (GBM) and that failure of this process results in GBM stretching and increased permeability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms coupling slit diaphragm density and proteinuria.

References

  1. Butt, L. et al. A molecular mechanism explaining albuminuria in kidney disease. Nat. Metab. 2, 461–474 (2020).

    Article  Google Scholar 

  2. Fissell, W. H. & Miner, J. H. What is the glomerular ultrafiltration barrier? J. Am. Soc. Nephrol. 29, 2262–2264 (2018).

    Article  Google Scholar 

  3. Haraldsson, B., Nystrom, J. & Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451–487 (2008).

    Article  CAS  Google Scholar 

  4. Russo, P. A. & Bendayan, M. Distribution of endogenous albumin in the glomerular wall of proteinuric patients. Am. J. Pathol. 137, 1481–1490 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fujigaki, Y. et al. Intra-GBM site of the functional filtration barrier for endogenous proteins in rats. Kidney Int. 43, 567–574 (1993).

    Article  CAS  Google Scholar 

  6. Smithies, O. Why the kidney glomerulus does not clog: a gel permeation/diffusion hypothesis of renal function. Proc. Natl Acad. Sci. USA 100, 4108–4113 (2003).

    Article  CAS  Google Scholar 

  7. Hausmann, R. et al. Electrical forces determine glomerular permeability. J. Am. Soc. Nephrol. 21, 2053–2058 (2010).

    Article  CAS  Google Scholar 

  8. Moeller, M. J. & Tenten, V. Renal albumin filtration: alternative models to the standard physical barriers. Nat. Rev. Nephrol. 9, 266–277 (2013).

    Article  Google Scholar 

  9. Saritas, T., Kuppe, C. & Moeller, M. J. Progress and controversies in unraveling the glomerular filtration mechanism. Curr. Opin. Nephrol. Hypertens. 24, 208–216 (2015).

    PubMed  Google Scholar 

  10. Ferrell, N. et al. Effects of pressure and electrical charge on macromolecular transport across bovine lens basement membrane. Biophys. J. 104, 1476–1484 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus J. Moeller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeller, M.J., Chia-Gil, A. A step forward in understanding glomerular filtration. Nat Rev Nephrol 16, 431–432 (2020). https://doi.org/10.1038/s41581-020-0313-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0313-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing