Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Splicing regulation through biomolecular condensates and membraneless organelles

Abstract

Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid–liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamentals of splicing regulation.
Fig. 2: Splicing regulation through phase separation and its physiological relevance.
Fig. 3: Regulation of condensate formation and properties through alternative splicing.
Fig. 4: Spatial regulation of splicing through nuclear membraneless organelles.
Fig. 5: Condensate-mediated splicing regulation in health and disease.

Similar content being viewed by others

References

  1. Berget, S. M., Moore, C. & Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl Acad. Sci. USA 74, 3171–3175 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chow, L. T., Gelinas, R. E., Broker, T. R. & Roberts, R. J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vargas, D. Y. et al. Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147, 1054–1065 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fiszbein, A. et al. Alternative slicing of G9a regulates neuronal differentiation. Cell Rep. 14, 2797–2808 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Kornblihtt, A. R. et al. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 14, 153–165 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neugebauer, K. M. On the importance of being co-transcriptional. J. Cell Sci. 115, 3865–3871 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Ip, J. Y. et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res. 21, 390–401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perales, R. & Bentley, D. “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Hyman, A. A., Weber, C. A. & Julicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  16. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bergeron-Sandoval, L. P., Safaee, N. & Michnick, S. W. Mechanisms and consequences of macromolecular phase separation. Cell 165, 1067–1079 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Choi, J. M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alberti, S. & Dormann, D. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 53, 171–194 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Snead, W. T. & Gladfelter, A. S. The control centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation. Mol. Cell 76, 295–305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uversky, V. N. Protein intrinsic disorder-based liquid–liquid phase transitions in biological systems: complex coacervates and membrane-less organelles. Adv. Colloid Interface Sci. 239, 97–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Mitrea, D. M. & Kriwacki, R. W. Phase separation in biology; functional organization of a higher order. Cell Commun. Signal. 14, 1 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Woodruff, J. B., Hyman, A. A. & Boke, E. Organization and function of non-dynamic biomolecular condensates. Trends Biochem. Sci. 43, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes. Dev. 33, 1619–1634 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, W. & Jiang, H. Nuclear protein condensates and their properties in regulation of gene expression. J. Mol. Biol. 434, 167151 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shrinivas, K. et al. Enhancer features that drive formation of transcriptional condensates. Mol. Cell 75, 549–561.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhat, P. et al. 3D genome organization around nuclear speckles drives mRNA splicing efficiency. Preprint at bioRxiv https://doi.org/10.1101/2023.01.04.522632 (2023).

  37. Li, C. H. et al. MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature 586, 440–444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646–659.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Ries, R. J. et al. m6A enhances the phase separation potential of mRNA. Nature 571, 424–428 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, J. H. et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell 81, 3368–3385.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strickfaden, H. et al. Condensed chromatin behaves like a solid on the mesoscale in vitro and in living cells. Cell 183, 1772–1784.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Bhat, P., Honson, D. & Guttman, M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat. Rev. Mol. Cell Biol. 22, 653–670 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Michelitsch, M. D. & Weissman, J. S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl Acad. Sci. USA 97, 11910–11915 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wiedner, H. J. & Giudice, J. It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat. Struct. Mol. Biol. 28, 465–473 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Calabretta, S. & Richard, S. Emerging roles of disordered sequences in RNA-binding proteins. Trends Biochem. Sci. 40, 662–672 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Aumiller, W. M. Jr., Pir Cakmak, F., Davis, B. W. & Keating, C. D. RNA-based coacervates as a model for membraneless organelles: formation, properties, and interfacial liposome assembly. Langmuir : ACS J. Surf. Colloids 32, 10042–10053 (2016).

    Article  CAS  Google Scholar 

  49. Van Treeck, B. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bevilacqua, P. C., Williams, A. M., Chou, H. L. & Assmann, S. M. RNA multimerization as an organizing force for liquid–liquid phase separation. RNA 28, 16–26 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Putnam, A., Thomas, L. & Seydoux, G. RNA granules: functional compartments or incidental condensates? Genes. Dev. 37, 354–376 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma, W., Zhen, G., Xie, W. & Mayr, C. In vivo reconstitution finds multivalent RNA–RNA interactions as drivers of mesh-like condensates. eLife 10, e64252 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wallace, E. W. et al. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162, 1286–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Courchaine, E. M., Lu, A. & Neugebauer, K. M. Droplet organelles? EMBO J. 35, 1603–1612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kroschwald, S. et al. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 4, e06807 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gueroussov, S. et al. Regulatory expansion in mammals of multivalent hnRNP assemblies that globally control alternative splicing. Cell 170, 324–339.e23 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Ying, Y. et al. Splicing activation by Rbfox requires self-aggregation through its tyrosine-rich domain. Cell 170, 312–323.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, G. H. & Kwon, I. Distinct roles of hnRNPH1 low-complexity domains in splicing and transcription. Proc. Natl Acad. Sci. USA 118, e2109668118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Geuens, T., Bouhy, D. & Timmerman, V. The hnRNP family: insights into their role in health and disease. Hum. Genet. 135, 851–867 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xiang, S. et al. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163, 829–839 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, Y., Protter, D. S., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kato, M. & McKnight, S. L. A solid-state conceptualization of information transfer from gene to message to protein. Annu. Rev. Biochem. 87, 351–390 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Lu, J. et al. CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid. Nat. Commun. 11, 4090 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, Y. et al. The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM structure. Nat. Commun. 11, 6349 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Conboy, J. G. Developmental regulation of RNA processing by Rbfox proteins. Wiley Interdiscip. Rev. RNA 8, e1398 (2017).

    Article  Google Scholar 

  67. Damianov, A. et al. Rbfox proteins regulate splicing as part of a large multiprotein complex LASR. Cell 165, 606–619 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu, J. et al. AKAP95 regulates splicing through scaffolding RNAs and RNA processing factors. Nat. Commun. 7, 13347 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jiang, H. et al. Regulation of transcription by the MLL2 complex and MLL complex-associated AKAP95. Nat. Struct. Mol. Biol. 20, 1156–1163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, W. et al. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat. Cell Biol. 22, 960–972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat. Rev. Mol. Cell Biol. 25, 187–211 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Van Roey, K. et al. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114, 6733–6778 (2014).

    Article  PubMed  Google Scholar 

  74. Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F. & Jones, D. T. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Xue, B., Dunker, A. K. & Uversky, V. N. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30, 137–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Barbosa-Morais, N. L. et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Buljan, M. et al. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell 46, 871–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein–protein interaction networks. Mol. Cell 46, 884–892 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Romero, P. R. et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl Acad. Sci. USA 103, 8390–8395 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Batlle, C. et al. hnRNPDL phase separation is regulated by alternative splicing and disease-causing mutations accelerate its aggregation. Cell Rep. 30, 1117–1128.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Akagi, T. et al. Molecular characterization of a mouse heterogeneous nuclear ribonucleoprotein D-like protein JKTBP and its tissue-specific expression. Gene 245, 267–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Kamei, D., Tsuchiya, N., Yamazaki, M., Meguro, H. & Yamada, M. Two forms of expression and genomic structure of the human heterogeneous nuclear ribonucleoprotein D-like JKTBP gene (HNRPDL). Gene 228, 13–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Kawamura, H. et al. Identification of the nucleocytoplasmic shuttling sequence of heterogeneous nuclear ribonucleoprotein D-like protein JKTBP and its interaction with mRNA. J. Biol. Chem. 277, 2732–2739 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Garcia-Pardo, J. et al. Cryo-EM structure of hnRNPDL-2 fibrils, a functional amyloid associated with limb-girdle muscular dystrophy D3. Nat. Commun. 14, 239 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vieira, N. M. et al. A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G). Hum. Mol. Genet. 23, 4103–4110 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Starling, A., Kok, F., Passos-Bueno, M. R., Vainzof, M. & Zatz, M. A new form of autosomal dominant limb-girdle muscular dystrophy (LGMD1G) with progressive fingers and toes flexion limitation maps to chromosome 4p21. Eur. J. Hum. Genet. 12, 1033–1040 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Sun, Y. et al. Limb girdle muscular dystrophy D3 HNRNPDL related in a Chinese family with distal muscle weakness caused by a mutation in the prion-like domain. J. Neurol. 266, 498–506 (2019).

    Article  PubMed  Google Scholar 

  88. Weskamp, K. et al. Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS. J. Clin. Invest. 130, 1139–1155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Parras, A. et al. Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing. Nature 560, 441–446 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ollà, I. et al. Pathogenic mis-splicing of CPEB4 in schizophrenia. Biol. Psychiatry 94, 341–351 (2023).

    Article  PubMed  Google Scholar 

  91. Garcia-Cabau, C. et al. Kinetic stabilization of translation-repression condensates by a neuron-specific microexon. Preprint at bioRxiv https://doi.org/10.1101/2023.03.19.532587 (2023).

  92. Bowler, E. et al. Hypoxia leads to significant changes in alternative splicing and elevated expression of CLK splice factor kinases in PC3 prostate cancer cells. BMC Cancer 18, 355 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. de Oliveira Freitas Machado, C. et al. Poison cassette exon splicing of SRSF6 regulates nuclear speckle dispersal and the response to hypoxia. Nucleic Acids Res. 51, 870–890 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hochberg-Laufer, H. et al. Availability of splicing factors in the nucleoplasm can regulate the release of mRNA from the gene after transcription. PLoS Genet. 15, e1008459 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jakubauskiene, E., Vilys, L., Makino, Y., Poellinger, L. & Kanopka, A. Increased serine-arginine (SR) protein phosphorylation changes pre-mRNA splicing in hypoxia. J. Biol. Chem. 290, 18079–18089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jakubauskienė, E., Vilys, L., Pečiulienė, I. & Kanopka, A. The role of hypoxia on Alzheimer’s disease-related APP and Tau mRNA formation. Gene 766, 145146 (2021).

    Article  PubMed  Google Scholar 

  97. Tari, M. et al. U2AF65 assemblies drive sequence-specific splice site recognition. EMBO Rep. 20, e47604 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ilik İ, A. et al. SON and SRRM2 are essential for nuclear speckle formation. eLife 9, e60579 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Xu, S. et al. SRRM2 organizes splicing condensates to regulate alternative splicing. Nucleic Acids Res. 50, 8599–8614 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hallegger, M. et al. TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 184, 4680–4696.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Langdon, E. M. et al. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922–927 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schmidt, H. B., Barreau, A. & Rohatgi, R. Phase separation-deficient TDP43 remains functional in splicing. Nat. Commun. 10, 4890 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ling, J. P., Pletnikova, O., Troncoso, J. C. & Wong, P. C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349, 650–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Palomba, F. et al. Fluorescence methods for the biophysical characterization of protein phase separated condensates. Biophys. J. 121, 280a (2022).

    Article  Google Scholar 

  105. Cui, H. et al. Arg-tRNA synthetase links inflammatory metabolism to RNA splicing and nuclear trafficking via SRRM2. Nat. Cell Biol. 25, 592–603 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Greig, J. A. et al. Arginine-enriched mixed-charge domains provide cohesion for nuclear speckle condensation. Mol. Cell 77, 1237–1250.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shi, B. et al. UTX condensation underlies its tumour-suppressive activity. Nature 597, 726–731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Basu, S. et al. Unblending of transcriptional condensates in human repeat expansion disease. Cell 181, 1062–1079.e30 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fare, C. M., Villani, A., Drake, L. E. & Shorter, J. Higher-order organization of biomolecular condensates. Open. Biol. 11, 210137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ye, S. et al. Micropolarity governs the structural organization of biomolecular condensates. Nat. Chem. Biol. 20, 443–451 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Fei, J. et al. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J. Cell Sci. 130, 4180–4192 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Fakan, S. & van Driel, R. The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding. Semin. Cell Dev. Biol. 18, 676–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Brown, J. M. et al. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell Biol. 182, 1083–1097 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hall, L. L., Smith, K. P., Byron, M. & Lawrence, J. B. Molecular anatomy of a speckle. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 664–675 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Han, J., Xiong, J., Wang, D. & Fu, X. D. Pre-mRNA splicing: where and when in the nucleus. Trends Cell Biol. 21, 336–343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hu, Y., Plutz, M. & Belmont, A. S. Hsp70 gene association with nuclear speckles is Hsp70 promoter specific. J. Cell Biol. 191, 711–719 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shopland, L. S., Johnson, C. V. & Lawrence, J. B. Evidence that all SC-35 domains contain mRNAs and that transcripts can be structurally constrained within these domains. J. Struct. Biol. 140, 131–139 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Smith, K. P., Moen, P. T., Wydner, K. L., Coleman, J. R. & Lawrence, J. B. Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific. J. Cell Biol. 144, 617–629 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gordon, J. M., Phizicky, D. V. & Neugebauer, K. M. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr. Opin. Genet. Dev. 67, 67–76 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Faber, G. P., Nadav-Eliyahu, S. & Shav-Tal, Y. Nuclear speckles—a driving force in gene expression. J. Cell Sci. 135, jcs259594 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Misteli, T., Caceres, J. F. & Spector, D. L. The dynamics of a pre-mRNA splicing factor in living cells. Nature 387, 523–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Kim, J., Han, K. Y., Khanna, N., Ha, T. & Belmont, A. S. Nuclear speckle fusion via long-range directional motion regulates speckle morphology after transcriptional inhibition. J. Cell Sci. 132, jcs226563 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Monneron, A. & Bernhard, W. Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrastruct. Res. 27, 266–288 (1969).

    Article  CAS  PubMed  Google Scholar 

  126. Lamond, A. I. & Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4, 605–612 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Boronenkov, I. V., Loijens, J. C., Umeda, M. & Anderson, R. A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell 9, 3547–3560 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ishihama, Y., Tadakuma, H., Tani, T. & Funatsu, T. The dynamics of pre-mRNAs and poly(A)+ RNA at speckles in living cells revealed by iFRAP studies. Exp. Cell Res. 314, 748–762 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Politz, J. C. et al. Rapid, diffusional shuttling of poly(A) RNA between nuclear speckles and the nucleoplasm. Mol. Biol. Cell 17, 1239–1249 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tripathi, V. et al. SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles. Mol. Biol. Cell 23, 3694–3706 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mintz, P. J., Patterson, S. D., Neuwald, A. F., Spahr, C. S. & Spector, D. L. Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 18, 4308–4320 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dopie, J., Sweredoski, M. J., Moradian, A. & Belmont, A. S. Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. J. Cell Biol. 219, e201910207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Saitoh, N. et al. Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell 15, 3876–3890 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Erkelenz, S. et al. Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA 19, 96–102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fairbrother, W. G., Yeh, R. F., Sharp, P. A. & Burge, C. B. Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Martinez-Contreras, R. et al. hnRNP proteins and splicing control. Adv. Exp. Med. Biol. 623, 123–147 (2007).

    Article  PubMed  Google Scholar 

  137. Slišković, I., Eich, H. & Müller-McNicoll, M. Exploring the multifunctionality of SR proteins. Biochem. Soc. Trans. 50, 187–198 (2022).

    Article  PubMed  Google Scholar 

  138. Liao, S. E. & Regev, O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res. 49, 636–645 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Rosenberg, A. B., Patwardhan, R. P., Shendure, J. & Seelig, G. Learning the sequence determinants of alternative splicing from millions of random sequences. Cell 163, 698–711 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Paul, S. et al. RNA molecules display distinctive organization at nuclear speckles. iScience 27, 109603 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Potashkin, J. A., Derby, R. J. & Spector, D. L. Differential distribution of factors involved in pre-mRNA processing in the yeast cell nucleus. Mol. Cell. Biol. 10, 3524–3534 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Girard, C. et al. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat. Commun. 3, 994 (2012).

    Article  PubMed  Google Scholar 

  143. Makeyev, E. V. & Huang, S. The perinucleolar compartment: structure, function, and utility in anti-cancer drug development. Nucleus 15, 2306777 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yap, K. et al. A short tandem repeat-enriched RNA assembles a nuclear compartment to control alternative splicing and promote cell survival. Mol. Cell 72, 525–540.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Biamonti, G. & Vourc’h, C. Nuclear stress bodies. Cold Spring Harb. Perspect. Biol. 2, a000695 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ninomiya, K. et al. lncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J. 39, e102729 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Ninomiya, K. et al. m6A modification of HSATIII lncRNAs regulates temperature-dependent splicing. EMBO J. 40, e107976 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nakagawa, S., Yamazaki, T. & Hirose, T. Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu. Open Biol. 8, 180150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Reddy, D. et al. Paraspeckles interact with SWI/SNF subunit ARID1B to regulate transcription and splicing. EMBO Rep. 24, e55345 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Shav-Tal, Y. et al. Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol. Biol. Cell 16, 2395–2413 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Carrocci, T. J. & Neugebauer, K. M. Pre-mRNA splicing in the nuclear landscape. Cold Spring Harb. Symp. Quant. Biol. 84, 11–20 (2019).

    Article  PubMed  Google Scholar 

  152. Ding, F. & Elowitz, M. B. Constitutive splicing and economies of scale in gene expression. Nat. Struct. Mol. Biol. 26, 424–432 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Boutz, P. L., Bhutkar, A. & Sharp, P. A. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes. Dev. 29, 63–80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Fu, X. D. Exploiting the hidden treasure of detained introns. Cancer Cell 32, 393–395 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Guo, C. et al. ENL initiates multivalent phase separation of the super elongation complex (SEC) in controlling rapid transcriptional activation. Sci. Adv. 6, eaay4858 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yuan, B. et al. Wiskott–Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing. Nat. Commun. 13, 3646 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nedelsky, N. B. & Taylor, J. P. Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat. Rev. Neurol. 15, 272–286 (2019).

    Article  PubMed  Google Scholar 

  159. Taylor, J. P., Brown, R. H. Jr & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Conlon, E. G. & Manley, J. L. RNA-binding proteins in neurodegeneration: mechanisms in aggregate. Genes. Dev. 31, 1509–1528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mathieu, C., Pappu, R. V. & Taylor, J. P. Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science 370, 56–60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Brown, A. L. et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 603, 131–137 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Amador-Ortiz, C. et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann. Neurol. 61, 435–445 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Garcia Morato, J. et al. Sirtuin-1 sensitive lysine-136 acetylation drives phase separation and pathological aggregation of TDP-43. Nat. Commun. 13, 1223 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Higashi, S. et al. Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res. 1184, 284–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Nakashima-Yasuda, H. et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 114, 221–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Schwab, C., Arai, T., Hasegawa, M., Yu, S. & McGeer, P. L. Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J. Neuropathol. Exp. Neurol. 67, 1159–1165 (2008).

    Article  PubMed  Google Scholar 

  169. Guenther, E. L. et al. Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nat. Struct. Mol. Biol. 25, 463–471 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jiang, Y. et al. Rett syndrome linked to defects in forming the MeCP2/Rbfox/LASR complex in mouse models. Nat. Commun. 12, 5767 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Maunakea, A. K., Chepelev, I., Cui, K. & Zhao, K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 23, 1256–1269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wong, J. J. et al. Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nat. Commun. 8, 15134 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Liu, S. et al. USP42 drives nuclear speckle mRNA splicing via directing dynamic phase separation to promote tumorigenesis. Cell Death Differ. 28, 2482–2498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Peng, Q. et al. Epstein–Barr virus EBNA2 phase separation regulates cancer-associated alternative RNA splicing patterns. Clin. Transl. Med. 11, e504 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, Y. & Wang, Z. Targeting dysregulated splicing factor in cancer: lessons learned from RBM10 deficiency. J. Mol. Cell Biol. 15, mjad063 (2023).

    Article  PubMed Central  Google Scholar 

  176. Damianov, A. et al. The splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin. Mol. Cell 18, 1496–1511 (2024).

    Article  Google Scholar 

  177. Zhao, J. et al. Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing. Sci. Rep. 7, 40488 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bao, Y. et al. RBM10 loss promotes EGFR-driven lung cancer and confers sensitivity to spliceosome inhibition. Cancer Res. 83, 1490–1502 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Bechara, E. G., Sebestyén, E., Bernardis, I., Eyras, E. & Valcárcel, J. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol. Cell 52, 720–733 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Inoue, A. RBM10: structure, functions, and associated diseases. Gene 783, 145463 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hernández, J. et al. Tumor suppressor properties of the splicing regulatory factor RBM10. RNA Biol. 13, 466–472 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Banani, S. F. et al. Genetic variation associated with condensate dysregulation in disease. Dev. Cell 57, 1776–1788.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Loiselle, J. J. & Sutherland, L. C. RBM10: harmful or helpful—many factors to consider. J. Cell. Biochem. 119, 3809–3818 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bertero, A. et al. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat. Commun. 10, 1538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Koelemen, J., Gotthardt, M., Steinmetz, L. M. & Meder, B. RBM20-related cardiomyopathy: current understanding and future options. J. Clin. Med. 10, 4101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Schneider, J. W. et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat. Med. 26, 1788–1800 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang, C. et al. RBM20S639G mutation is a high genetic risk factor for premature death through RNA–protein condensates. J. Mol. Cell. Cardiol. 165, 115–129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Regan-Fendt, K. E. & Izumi, K. Nuclear speckleopathies: developmental disorders caused by variants in genes encoding nuclear speckle proteins. Hum. Genet. 143, 529–544 (2023).

    Article  PubMed  Google Scholar 

  189. Kim, J. H. et al. De novo mutations in SON disrupt RNA splicing of genes essential for brain development and metabolism, causing an intellectual-disability syndrome. Am. J. Hum. Genet. 99, 711–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Fiordaliso, S. K. et al. Missense mutations in NKAP cause a disorder of transcriptional regulation characterized by marfanoid habitus and cognitive impairment. Am. J. Hum. Genet. 105, 987–995 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Burgute, B. D. et al. NKAP is a novel RS-related protein that interacts with RNA and RNA binding proteins. Nucleic Acids Res. 42, 3177–3193 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Johnston, J. J. et al. Massively parallel sequencing of exons on the X chromosome identifies RBM10 as the gene that causes a syndromic form of cleft palate. Am. J. Hum. Genet. 86, 743–748 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Imagawa, E. et al. Functional insight into a neurodevelopmental disorder caused by missense variants in an RNA-binding protein, RBM10. J. Hum. Genet. 68, 643–648 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Li, W. & Jiang, H. Analysis of phase-separated biomolecular condensates in cancer. Methods Mol. Biol. 2660, 345–356 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Banerjee, P. R. et al. Dissecting the biophysics and biology of intrinsically disordered proteins. Trends Biochem. Sci. 49, 101–104 (2023).

    Article  PubMed  Google Scholar 

  196. Miyagi, T. et al. The patterning and proportion of charged residues in the arginine-rich mixed-charge domain determine the membrane-less organelle targeted by the protein. Int. J. Mol. Sci. 23, 7658 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bracha, D., Walls, M. T. & Brangwynne, C. P. Probing and engineering liquid-phase organelles. Nat. Biotechnol. 37, 1435–1445 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Nakamura, H., DeRose, R. & Inoue, T. Harnessing biomolecular condensates in living cells. J. Biochem. 166, 13–27 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ang, Y. S. et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell 167, 1734–1749.e22 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Conti, B. A. & Oppikofer, M. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends Pharmacol. Sci. 43, 820–837 (2022).

    Article  CAS  PubMed  Google Scholar 

  202. Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Patel, A. et al. Principles and functions of condensate modifying drugs. Front. Mol. Biosci. 9, 1007744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Enders, L. et al. Pharmacological perturbation of the phase-separating protein SMNDC1. Nat. Commun. 14, 4504 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Vernon, R. M. et al. Pi–pi contacts are an overlooked protein feature relevant to phase separation. eLife 7, e31486 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Fuxreiter, M. Fuzzy protein theory for disordered proteins. Biochem. Soc. Trans. 48, 2557–2564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Schuster, B. S. et al. Biomolecular condensates: sequence determinants of phase separation, microstructural organization, enzymatic activity, and material properties. J. Phys. Chem. B 125, 3441–3451 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Li, D. & Liu, C. Spatiotemporal dynamic regulation of membraneless organelles by chaperone networks. Trends Cell Biol. 32, 1–3 (2022).

    Article  PubMed  Google Scholar 

  210. Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ditlev, J. A., Case, L. B. & Rosen, M. K. Who’s in and who’s out—compositional control of biomolecular condensates. J. Mol. Biol. 430, 4666–4684 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324.e28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lyons, H. et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345.e28 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Mir, M., Bickmore, W., Furlong, E. E. M. & Narlikar, G. Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase? Development 146, dev182766 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work by H.J. on AKAP95 condensates was supported by the Department of Defense Breast Cancer Research Program (Breakthrough Award BC190343). J.G. is supported by The University of North Carolina at Chapel Hill (start-up funds and Jefferson Pilot Award), the National Institutes of Health (NIH) (R01-GM130866) and the National Science Foundation (NSF) (CAREER award 2239056).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jimena Giudice or Hao Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Amyloid aggregates

Fibrillar protein aggregates typically 7–13 nm in diameter and a β-sheet secondary structure.

Limb-girdle muscular dystrophy

A large group of genetic diseases characterized by muscle weakness and wasting.

Nuclear speckles

Dynamic, membraneless subnuclear compartments that are enriched in splicing factors and other proteins involved in transcription, RNA processing and reversible protein phosphorylation.

Scaffold and client

In the context of condensates, scaffold molecules (proteins or long non-coding RNAs (lncRNAs)) are required for and drive condensate formation; client molecules are not essential for condensate formation, but partition into the condensates through their interactions with the scaffold or other client molecules.

Stress granules

Biomolecular condensates of mRNAs stalled in translation and RNA-binding proteins (RBPs), which form in the cytoplasm following physical, mechanical or chemical stress.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giudice, J., Jiang, H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00739-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00739-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing