Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Designing organic mixed conductors for electrochemical transistor applications

Abstract

The organic electrochemical transistor (OECT) has emerged as the core component of specialized bioelectronic technologies, such as neural interfaces and sensors of disease biomarkers. At the heart of the OECT is its channel, made of an organic mixed ionic–electronic conductor (OMIEC). The chemical structure of the OMIEC governs the electronic, optical and mechanical traits of OECT, with even subtle structural tweaks leading to sizeable functional disparities. In this Review, we summarize the recent progress in OECT device development while underscoring the critical role of OMIEC selection in steering diverse applications. Our narrative charts the milestones in materials exploration, tracing the evolution of the field in parallel with polymer chemistry breakthroughs. We emphasize how materials design has enabled new device operation mechanisms by adding features such as biocompatibility, stretchability, stimuli response and memory retention to OMIECs. We also highlight the obstacles that must be surmounted to translate OECT-based devices from laboratory instruments into tangible real-world technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Operation and history of OECTs.
Fig. 2: Chemical structures of representative OMIECs.
Fig. 3: Timeline of OMIEC designs.
Fig. 4: Strategies for controlling the electrical and mechanical properties of OECTs.
Fig. 5: Strategies towards multi-functional OMIECs and application examples of stimuli-responsive OECTs.

Similar content being viewed by others

References

  1. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. https://doi.org/10.1038/natrevmats.2017.86 (2018).

  2. Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic-electronic conductors. Nat. Mater. 19, 13–26 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Rivnay, J. et al. Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 25, 7010–7014 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Ohayon, D. & Inal, S. Organic bioelectronics: from functional materials to next-generation devices and power sources. Adv. Mater. 32, e2001439 (2020).

    Article  PubMed  Google Scholar 

  5. Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).

    Article  PubMed  Google Scholar 

  6. Gentile, F. et al. A biomimetic, biocompatible OECT sensor for the real-time measurement of concentration and saturation of ions in plant sap. Adv. Electron. Mater. 8, 2200092 (2022).

    Article  CAS  Google Scholar 

  7. Deng, Y. et al. A flexible and highly sensitive organic electrochemical transistor-based biosensor for continuous and wireless nitric oxide detection. Proc. Natl Acad. Sci. USA 119, e2208060119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spyropoulos, G. D., Gelinas, J. N. & Khodagholy, D. Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics. Sci. Adv. 5, 9 (2019). A study that introduces an OECT design with ions pre-trapped inside the channel, which allows the device to switch on and off rapidly.

    Article  Google Scholar 

  9. Ji, X. et al. Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat. Commun. 12, 2480 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gkoupidenis, P., Schaefer, N., Garlan, B. & Malliaras, G. G. Neuromorphic functions in PEDOT:PSS organic electrochemical transistors. Adv. Mater. 27, 7176–7180 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, H.-Y. et al. Stable organic electrochemical neurons based on p-type and n-type ladder polymers. Mater. Horiz. https://doi.org/10.1039/D3MH00858D (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sarkar, T. et al. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022).

    Article  Google Scholar 

  13. Harikesh, P. C. et al. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 13, 901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harikesh, P. C. et al. Ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater. 22, 242–248 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inal, S. et al. Conducting polymer scaffolds for hosting and monitoring 3D cell culture. Adv. Biosyst. 1, 1700052 (2017).

    Article  Google Scholar 

  16. Kim, Y. et al. Organic electrochemical transistor-based channel dimension-independent single-strand wearable sweat sensors. NPG Asia Mater. 10, 1086–1095 (2018).

    Article  Google Scholar 

  17. Massetti, M. et al. Fully 3D-printed organic electrochemical transistors. npj Flex. Electron. https://doi.org/10.1038/s41528-023-00245-4 (2023).

  18. Strakosas, X. et al. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics. Science 379, 795–802 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Zabihipour, M. et al. High yield manufacturing of fully screen-printed organic electrochemical transistors. npj Flex. Electron. 4, 15 (2020).

    Article  CAS  Google Scholar 

  20. Zokaei, S. et al. Tuning of the elastic modulus of a soft polythiophene through molecular doping. Mater. Horiz. 9, 433–443 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Moro, S. et al. The effect of glycol side chains on the assembly and microstructure of conjugated polymers. ACS Nano 16, 21303–21314 (2022). A study with scanning tunnelling microscopy images showing the molecular organization of conjugated polymer chains with oligoether side chains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai, Y. et al. Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors. Adv. Mater. 34, 2201178 (2022).

    Article  CAS  Google Scholar 

  23. Lee, H. et al. Ultrathin organic electrochemical transistor with nonvolatile and thin gel electrolyte for long-term electrophysiological monitoring. Adv. Funct. Mater. 29, 1906982 (2019).

    Article  CAS  Google Scholar 

  24. Druet, V. et al. A single n-type semiconducting polymer-based photo-electrochemical transistor. Nat. Commun. 14, 5481 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bonafè, F., Decataldo, F., Fraboni, B. & Cramer, T. Charge carrier mobility in organic mixed ionic–electronic conductors by the electrolyte‐gated Van der Pauw method. Adv. Electron. Mater. https://doi.org/10.1002/aelm.202100086 (2021).

  26. Inal, S., Malliaras, G. G. & Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 8, 1767 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ohayon, D., Druet, V. & Inal, S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem. Soc. Rev. 52, 1001–1023 (2023). A paper that provides a tutorial on OECT characterization.

    Article  CAS  PubMed  Google Scholar 

  28. Tropp, J., Meli, D. & Rivnay, J. Organic mixed conductors for electrochemical transistors. Matter https://doi.org/10.1016/j.matt.2023.05.001 (2023). A paper that provides a comprehensive review of OECT materials, design guidelines, and µC* comparison.

    Article  Google Scholar 

  29. Huang, W. et al. Vertical organic electrochemical transistors for complementary circuits. Nature 613, 496–502 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, S. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023).

    Article  CAS  Google Scholar 

  31. White, H. S., Kittlesen, G. P. & Wrighton, M. S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Chem. Soc. 106, 3 (1984).

    Article  Google Scholar 

  32. Paul, E. W., Ricco, A. J. & Wrighton, M. S. Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J. Phys. Chem. 89, 7 (1985).

    Article  Google Scholar 

  33. Friedrich Jonas, A., Gerhard Heywang, B. G., Werner Schmidtberg, L., Heinze, J. & Dietrich, D. Polythiophenes, process for their preparation and their use. US patent 4,987,042 (1991).

  34. Donahue, M. J. et al. Tailoring PEDOT properties for applications in bioelectronics. Mater. Sci. Eng. R Rep. https://doi.org/10.1016/j.mser.2020.100546 (2020).

  35. Alcácer, L. in Electronic Structure of Organic Semiconductors Ch. 9 (IOP Publishing, 2018).

  36. Elschner, A., Kirchmeyer, S., Lovenich, W., Merker, U. & Reuter, K. PEDOT, Principles and Applications of an Intrinsically Conductive Polymer 1st edn (CRC, 2010).

  37. Nilsson, D. et al. Bi‐stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14, 51–54 (2002).

    Article  CAS  Google Scholar 

  38. Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Inal, S. et al. A high transconductance accumulation mode electrochemical transistor. Adv. Mater. 26, 7450–7455 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Giovannitti, A. et al. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl Acad. Sci. USA 113, 12017–12022 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun, H. et al. Complementary logic circuits based on high-performance n-type organic electrochemical transistors. Adv. Mater. https://doi.org/10.1002/adma.201704916 (2018).

  42. Surgailis, J. et al. Mixed conduction in an n‐type organic semiconductor in the absence of hydrophilic side‐chains. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202010165 (2021). A research paper that compares side-chain-bearing and side-chain-free n-type backbones using the same device geometry and methods.

  43. Kukhta, N. A., Marks, A. & Luscombe, C. K. Molecular design strategies toward improvement of charge injection and ionic conduction in organic mixed ionic-electronic conductors for organic electrochemical transistors. Chem. Rev. 122, 4325–4355 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Lei, Y., Li, P., Zheng, Y. & Lei, T. Materials design and applications of n-type and ambipolar organic electrochemical transistors. Mater. Chem. Front. https://doi.org/10.1039/d3qm00828b (2023).

    Article  Google Scholar 

  45. Yu, S., Kousseff, C. J. & Nielsen, C. B. n-Type semiconductors for organic electrochemical transistor applications. Synth. Met. https://doi.org/10.1016/j.synthmet.2023.117295 (2023).

  46. Wang, Y. & Liu, Y. Insight into conjugated polymers for organic electrochemical transistors. Trends Chem. 5, 279–294 (2023).

    Article  CAS  Google Scholar 

  47. Bischak, C. G., Flagg, L. Q., Yan, K., Li, C. Z. & Ginger, D. S. Fullerene active layers for n-type organic electrochemical transistors. ACS Appl. Mater. Interfaces 11, 28138–28144 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Liao, H. et al. Efficient n-type small-molecule mixed ion-electron conductors and application in hydrogen peroxide sensors. ACS Appl. Mater. Interfaces 14, 16477–16486 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Duan, J. et al. Highly efficient mixed conduction in n‐type fused small molecule semiconductors. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202203937 (2022).

  50. Duan, J. et al. Electron-deficient polycyclic molecules via ring fusion for n-type organic electrochemical transistors. Angew. Chem. Int. Ed. 62, e202213737 (2023).

    Article  CAS  Google Scholar 

  51. Duan, J. et al. Highly efficient mixed conduction in a fused oligomer n-type organic semiconductor enabled by 3D transport pathways. Adv. Mater. 35, e2300252 (2023).

    Article  PubMed  Google Scholar 

  52. Parr, Z. S. et al. Semiconducting small molecules as active materials for p‐type accumulation mode organic electrochemical transistors. Adv. Electron. Mater. https://doi.org/10.1002/aelm.202000215 (2020).

  53. Kan, J., Chen, Y., Qi, D., Liu, Y. & Jiang, J. High-performance air-stable ambipolar organic field-effect transistor based on tris(phthalocyaninato) europium(III). Adv. Mater. 24, 1755–1758 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Ohayon, D. et al. Influence of side chains on the n-type organic electrochemical transistor performance. ACS Appl. Mater. Interfaces 13, 4253–4266 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Samuel, J. J. et al. Single‐component CMOS‐like logic using diketopyrrolopyrrole‐based ambipolar organic electrochemical transistors. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202102903 (2021).

  56. Zhang, Y. et al. High‐performance organic electrochemical transistors and neuromorphic devices comprising naphthalenediimide‐dialkoxybithiazole copolymers bearing glycol ether pendant groups. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202201593 (2022).

  57. Stein, E. et al. Ambipolar blend-based organic electrochemical transistors and inverters. Nat. Commun. 13, 5548 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, X. et al. All-polymer bulk-heterojunction organic electrochemical transistors with balanced ionic and electronic transport. Adv. Mater. 34, e2206118 (2022).

    Article  PubMed  Google Scholar 

  59. Savva, A. et al. Balancing ionic and electronic conduction for high‐performance organic electrochemical transistors. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201907657 (2020).

  60. Giovannitti, A. et al. The role of the side chain on the performance of n-type conjugated polymers in aqueous electrolytes. Chem. Mater. 30, 2945–2953 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moser, M. et al. Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability. Adv. Mater. 32, e2002748 (2020).

    Article  PubMed  Google Scholar 

  62. Schmode, P. et al. High-performance organic electrochemical transistors based on conjugated polyelectrolyte copolymers. Chem. Mater. 31, 5286–5295 (2019).

    Article  CAS  Google Scholar 

  63. Szumska, A. A. et al. Reversible electrochemical charging of n-type conjugated polymer electrodes in aqueous electrolytes. J. Am. Chem. Soc. 143, 14795–14805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, X. et al. n-Type rigid semiconducting polymers bearing oligo(ethylene glycol) side chains for high-performance organic electrochemical transistors. Angew. Chem. Int. Ed. 60, 9368–9373 (2021).

    Article  CAS  Google Scholar 

  65. Wang, Y. et al. Hybrid alkyl–ethylene glycol side chains enhance substrate adhesion and operational stability in accumulation mode organic electrochemical transistors. Chem. Mater. 31, 9797–9806 (2019).

    Article  CAS  Google Scholar 

  66. Maria, I. P. et al. The effect of alkyl spacers on the mixed ionic‐electronic conduction properties of n‐type polymers. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202008718 (2021).

  67. Tan, E. et al. The role of long-alkyl-group spacers in glycolated copolymers for high-performance organic electrochemical transistors. Adv. Mater. 34, e2202574 (2022).

    Article  PubMed  Google Scholar 

  68. Moser, M. et al. Propylene and butylene glycol: new alternatives to ethylene glycol in conjugated polymers for bioelectronic applications. Mater. Horiz. 9, 973–980 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Onorato, J. W. et al. Side chain engineering control of mixed conduction in oligoethylene glycol-substituted polythiophenes. J. Mater. Chem. A 9, 21410–21423 (2021).

    Article  CAS  Google Scholar 

  70. Zhao, Y. et al. Side chain engineering enhances the high-temperature resilience and ambient stability of organic synaptic transistors for neuromorphic applications. Nano Energy https://doi.org/10.1016/j.nanoen.2022.107985 (2022).

  71. Roncali, J. Molecular engineering of the band gap of π-conjugated systems: facing technological applications. Macromol. Rapid Commun. 28, 1761–1775 (2007).

    Article  CAS  Google Scholar 

  72. Leeuw, D. M. D., Simenon, M. M. J., Brown, A. R. & Einerhand, R. E. F. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87, 7 (1997).

    Article  Google Scholar 

  73. Savagian, L. R. et al. Balancing charge storage and mobility in an oligo(ether) functionalized dioxythiophene copolymer for organic- and aqueous-based electrochemical devices and transistors. Adv. Mater. 30, e1804647 (2018).

    Article  PubMed  Google Scholar 

  74. Jones, A. L. et al. Branched oligo(ether) side chains: a path to enhanced processability and elevated conductivity for polymeric semiconductors. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202102688 (2021).

  75. DiTullio, B. T. et al. Effects of side-chain length and functionality on polar poly(dioxythiophene)s for saline-based organic electrochemical transistors. J. Am. Chem. Soc. 145, 122–134 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Nielsen, C. B. et al. Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 138, 10252–10259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hallani, R. K. et al. Regiochemistry-driven organic electrochemical transistor performance enhancement in ethylene glycol-functionalized polythiophenes. J. Am. Chem. Soc. 143, 11007–11018 (2021). 

    Article  CAS  PubMed  Google Scholar 

  78. Moser, M. et al. Polaron delocalization in donor-acceptor polymers and its impact on organic electrochemical transistor performance. Angew. Chem. Int. Ed. 60, 7777–7785 (2021).

    Article  CAS  Google Scholar 

  79. Wang, Y. et al. The effect of the donor moiety of DPP based polymers on the performance of organic electrochemical transistors. J. Mater. Chem. C 9, 13338–13346 (2021).

    Article  CAS  Google Scholar 

  80. Giovannitti, A. et al. Energetic control of redox-active polymers toward safe organic bioelectronic materials. Adv. Mater. 32, e1908047 (2020).

    Article  PubMed  Google Scholar 

  81. Griggs, S. et al. The effect of residual palladium on the performance of organic electrochemical transistors. Nat. Commun. 13, 7964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Usta, H. et al. Design, synthesis, and characterization of ladder-type molecules and polymers. air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. J. Am. Chem. Soc. 1311, 23 (2008).

    Google Scholar 

  83. Paterson, A. F. et al. Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat. Commun. 11, 3004 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, J. et al. Backbone coplanarity manipulation via hydrogen bonding to boost the n-type performance of polymeric mixed conductors operating in aqueous electrolyte. Mater. Horiz. 10, 607–618 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Cong, S. et al. Donor functionalization tuning the n‐type performance of donor–acceptor copolymers for aqueous‐based electrochemical devices. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202201821 (2022).

  86. Koklu, A. et al. Organic bioelectronic devices for metabolite sensing. Chem. Rev. 122, 4581–4635 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Xie, Z. et al. All‐solid‐state vertical three‐terminal n‐type organic synaptic devices for neuromorphic computing. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202107314 (2022).

  88. Zhang, Y. et al. Adaptive biosensing and neuromorphic classification based on an ambipolar organic mixed ionic-electronic conductor. Adv. Mater. 34, e2200393 (2022).

    Article  PubMed  Google Scholar 

  89. Ding, L. et al. Polymer semiconductors: synthesis, processing, and applications. Chem. Rev. 123, 7421–7497 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Feng, K. et al. Fused bithiophene imide dimer-based n-type polymers for high-performance organic electrochemical transistors. Angew. Chem. Int. Ed. 60, 24198–24205 (2021).

    Article  CAS  Google Scholar 

  91. Feng, K. et al. Cyano-functionalized n-type polymer with high electron mobility for high-performance organic electrochemical transistors. Adv. Mater. 34, e2201340 (2022).

    Article  PubMed  Google Scholar 

  92. Shi, J. et al. Revealing the role of polaron distribution on the performance of n-type organic electrochemical transistors. Chem. Mater. 34, 864–872 (2022).

    Article  CAS  Google Scholar 

  93. Li, P., Shi, J., Lei, Y., Huang, Z. & Lei, T. Switching p-type to high-performance n-type organic electrochemical transistors via doped state engineering. Nat. Commun. 13, 5970 (2022). A study that develops a high-performance n-type OECT material based on a p-type backbone.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Parr, Z. S. et al. From p- to n-type mixed conduction in isoindigo-based polymers through molecular design. Adv. Mater. 34, e2107829 (2022).

    Article  PubMed  Google Scholar 

  95. Wang, Y. et al. n-Type organic electrochemical transistors with high transconductance and stability. Chem. Mater. 35, 405–415 (2023).

    Article  CAS  Google Scholar 

  96. Wang, Y. et al. The chemistry and applications of heteroisoindigo units as enabling links for semiconducting materials. Acc. Chem. Res. 53, 2855–2868 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Marks, A. et al. Synthetic nuances to maximize n-type organic electrochemical transistor and thermoelectric performance in fused lactam polymers. J. Am. Chem. Soc. 144, 4642–4656 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, Y. et al. Green synthesis of lactone‐based conjugated polymers for n‐type organic electrochemical transistors. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202111439 (2022).

  99. Wang, Y. et al. Acceptor functionalization via green chemistry enables high-performance n-type organic electrochemical transistors for biosensing, memory applications. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202304103 (2023).

  100. Tessler, N., Preezant, Y., Rappaport, N. & Roichman, Y. Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review. Adv. Mater. 21, 2741–2761 (2009).

    Article  CAS  Google Scholar 

  101. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Inal, S., Malliaras, G. G. & Rivnay, J. Optical study of electrochromic moving fronts for the investigation of ion transport in conducting polymers. J. Mater. Chem. C 4, 3942–3947 (2016).

    Article  CAS  Google Scholar 

  103. Keene, S. T. et al. Hole-limited electrochemical doping in conjugated polymers. Nat. Mater. 4, 1121–1127 (2023).

    Article  Google Scholar 

  104. Melianas, A. et al. Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv. 6, eabb2958 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu, X. et al. High performing solid-state organic electrochemical transistors enabled by glycolated polythiophene and ion-gel electrolyte with a wide operation temperature range from −50 to 110 °C. Adv. Funct. Mater. 33, 2209354 (2023).

    Article  CAS  Google Scholar 

  106. Zhong, Y. et al. An organic electrochemical transistor integrated photodetector for high quality photoplethysmogram signal acquisition. Adv. Funct. Mater. 33, 2211479 (2023).

    Article  CAS  Google Scholar 

  107. Wu, H. Y. et al. Influence of molecular weight on the organic electrochemical transistor performance of ladder-type conjugated polymers. Adv. Mater. 34, e2106235 (2022).

    Article  PubMed  Google Scholar 

  108. Yang, C.-Y. et al. Low-power/high-gain flexible complementary circuits based on printed organic electrochemical transistors. Adv. Electron. Mater. 8, 2100907 (2022).

    Article  CAS  Google Scholar 

  109. Venkatraman, V. et al. Subthreshold operation of organic electrochemical transistors for biosignal amplification. Adv. Sci. 5, 1800453 (2018).

    Article  Google Scholar 

  110. Guo, K. et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng. 5, 666–677 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Koklu, A. et al. Microfluidic integrated organic electrochemical transistor with a nanoporous membrane for amyloid-β detection. ACS Nano 15, 8130–8141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liang, Y. et al. Highly sensitive detection of malaria biomarker through matching channel and gate capacitance of integrated organic electrochemical transistors. Biosens. Bioelectron. 242, 115712 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Nissa, J., Janson, P., Berggren, M. & Simon, D. T. The role of relative capacitances in impedance sensing with organic electrochemical transistors. Adv. Electron. Mater. 7, 2001173 (2021).

    Article  CAS  Google Scholar 

  114. Koklu, A. et al. Convection driven ultrarapid protein detection via nanobody-functionalized organic electrochemical transistors. Adv. Mater. 34, 2202972 (2022).

    Article  CAS  Google Scholar 

  115. Zhao, Y. et al. Donor engineering tuning the analog switching range and operational stability of organic synaptic transistors for neuromorphic systems. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202205744 (2022).

  116. Gumyusenge, A., Melianas, A., Keene, S. T. & Salleo, A. Materials strategies for organic neuromorphic devices. Annu. Rev. Mater. Res. 51, 47–71 (2021). A paper that outlines guidelines for how to design conjugated polymers with memory behavior.

    Article  CAS  Google Scholar 

  117. Go, G.-T. et al. Achieving microstructure-controlled synaptic plasticity and long-term retention in ion-gel-gated organic synaptic transistors. Adv. Intell. Syst. 2, 2000012 (2020).

    Article  Google Scholar 

  118. Druet, V. et al. Operation mechanism of n-type organic electronic metabolite sensors. Adv. Electron. Mater. 8, 2200065 (2022).

    Article  CAS  Google Scholar 

  119. Xu, K. et al. On the origin of Seebeck coefficient inversion in highly doped conducting polymers. Adv. Funct. Mater. 32, 2112276 (2022).

    Article  CAS  Google Scholar 

  120. Bai, J., Liu, D., Tian, X. & Zhang, S. Tissue-like organic electrochemical transistors. J. Mater. Chem. C 10, 13303–13311 (2022). A paper that reviews the advances of OECTs for cutaneous applications.

    Article  CAS  Google Scholar 

  121. Feig, V. R., Tran, H., Lee, M. & Bao, Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9, 2740 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Keate, R. L., Tropp, J., Serna, C. & Rivnay, J. A collagen-conducting polymer composite with enhanced chondrogenic potential. Cell. Mol. Bioeng. 14, 501–512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Onorato, J., Pakhnyuk, V. & Luscombe, C. K. Structure and design of polymers for durable, stretchable organic electronics. Polym. J. 49, 41–60 (2017).

    Article  CAS  Google Scholar 

  124. Pitsalidis, C. et al. Transistor in a tube: a route to three-dimensional bioelectronics. Sci. Adv. 4, eaat4253 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, S. & Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 5, 562–583 (2020).

    Article  CAS  Google Scholar 

  126. Li, Y., Zhou, X., Sarkar, B., Gagnon-Lafrenais, N. & Cicoira, F. Recent progress on self-healable conducting polymers. Adv. Mater. 34, 2108932 (2022). A paper that provides a review of self-healing conducting polymers and their OECTs.

    Article  CAS  Google Scholar 

  127. Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Voorhaar, L. et al. Self-healing polythiophene phenylenes for stretchable electronics. Eur. Polym. J. 105, 331–338 (2018).

    Article  CAS  Google Scholar 

  129. Su, X. et al. A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater. 34, 2200682 (2022).

    Article  CAS  Google Scholar 

  130. Ko, J., Wu, X., Surendran, A., Muhammad, B. T. & Leong, W. L. Self-healable organic electrochemical transistor with high transconductance, fast response, and long-term stability. ACS Appl. Mater. Interfaces 12, 33979–33988 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, S. et al. Patterning of stretchable organic electrochemical transistors. Chem. Mater. 29, 3126–3132 (2017).

    Article  CAS  Google Scholar 

  132. Jo, Y. J. et al. Biocompatible and biodegradable organic transistors using a solid-state electrolyte incorporated with choline-based ionic liquid and polysaccharide. Adv. Funct. Mater. 30, 1909707 (2020).

    Article  CAS  Google Scholar 

  133. Marchiori, B., Delattre, R., Hannah, S., Blayac, S. & Ramuz, M. Laser-patterned metallic interconnections for all stretchable organic electrochemical transistors. Sci. Rep. 8, 8477 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Matsuhisa, N. et al. High-transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv. Electron. Mater. 5, 1900347 (2019).

    Article  Google Scholar 

  135. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Li, P., Sun, K. & Ouyang, J. Stretchable and conductive polymer films prepared by solution blending. ACS Appl. Mater. Interfaces 7, 18415–18423 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Tseng, Y.-T. et al. Morphology and properties of PEDOT:PSS/soft polymer blends through hydrogen bonding interaction and their pressure sensor application. J. Mater. Chem. C 8, 6013–6024 (2020).

    Article  CAS  Google Scholar 

  138. Xu, J. et al. Tuning conjugated polymer chain packing for stretchable semiconductors. Adv. Mater. 34, 2104747 (2022).

    Article  CAS  Google Scholar 

  139. Li, Y., Zhang, S., Li, X., Unnava, V. R. N. & Cicoira, F. Highly stretchable PEDOT:PSS organic electrochemical transistors achieved via polyethylene glycol addition. Flex. Print. Electron. 4, 044004 (2019).

    Article  CAS  Google Scholar 

  140. Zheng, Y., Zhang, S., Tok, J. B. H. & Bao, Z. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022). A paper that provides a comprehensive review outlining polymer design guidelines for stretchable electronics.

    Article  CAS  PubMed  Google Scholar 

  141. Chen, J. et al. Highly stretchable organic electrochemical transistors with strain-resistant performance. Nat. Mater. 21, 564–571 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Li, N. et al. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces. Science 381, 686–693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhu, B. et al. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat. Commun. 5, 4523 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Povlich, L. K. et al. Synthesis, copolymerization and peptide-modification of carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) for neural electrode interfaces. Biochim. Biophys. Acta Gen. Subj. 1830, 4288–4293 (2013).

    Article  CAS  Google Scholar 

  145. Du, W. et al. Improving the compatibility of diketopyrrolopyrrole semiconducting polymers for biological interfacing by lysine attachment. Chem. Mater. 30, 6164–6172 (2018).

    Article  CAS  Google Scholar 

  146. Pappa, A. M. et al. Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Sci. Adv. 4, eaat0911 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zhang, Y. et al. Visualizing the solid–liquid interface of conjugated copolymer films using fluorescent liposomes. ACS Appl. Bio Mater. 1, 1348–1354 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Kawan, M. et al. Monitoring supported lipid bilayers with n-type organic electrochemical transistors. Mater. Horiz. 7, 2348–2358 (2020).

    Article  CAS  Google Scholar 

  149. Ohayon, D. et al. Interactions of catalytic enzymes with n-type polymers for high-performance metabolite sensors. ACS Appl. Mater. Interfaces 15, 9726–9739 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wustoni, S. et al. In situ electrochemical synthesis of a conducting polymer composite for multimetabolite sensing. Adv. Mater. Technol. 5, 1900943 (2020).

    Article  CAS  Google Scholar 

  151. Ouyang, L. et al. Enhanced PEDOT adhesion on solid substrates with electrografted P(EDOT-NH2). Sci. Adv. 3, e1600448 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Hai, W. et al. Specific recognition of human influenza virus with PEDOT bearing sialic acid-terminated trisaccharides. ACS Appl. Mater. Interfaces 9, 14162–14170 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Wustoni, S. et al. Membrane-free detection of metal cations with an organic electrochemical transistor. Adv. Funct. Mater. 29, 1904403 (2019).

    Article  CAS  Google Scholar 

  154. Fenoy, G. E. et al. “Clickable” organic electrochemical transistors. JACS Au 2, 2778–2790 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Song, Y., Wagner, J. & Katz, H. E. The behavior of carboxylated and hydroxylated polythiophene as bioreceptor layer: anti-human IgG and human IgG interaction detection based on organic electrochemical transistors. Electrochem. Sci. Adv. 2, e2100166 (2022).

    Article  CAS  Google Scholar 

  156. Mariani, F., Gualandi, I., Tessarolo, M., Fraboni, B. & Scavetta, E. PEDOT: dye-based, flexible organic electrochemical transistor for highly sensitive pH monitoring. ACS Appl. Mater. Interfaces 10, 22474–22484 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Kindaichi, S., Matsubara, R., Kubono, A., Yamamoto, S. & Mitsuishi, M. Preparation of resilient organic electrochemical transistors based on blend films with flexible crosslinkers. Preprint at https://doi.org/10.26434/chemrxiv-2023-zztqm (2023).

  158. Turetta, N. et al. A photo-responsive organic electrochemical transistor. J. Mater. Chem. C 11, 7982–7988 (2023).

    Article  CAS  Google Scholar 

  159. Dijk, G., Rutz, A. L. & Malliaras, G. G. Stability of PEDOT:PSS‐coated gold electrodes in cell culture conditions. Adv. Mater. Technol. https://doi.org/10.1002/admt.201900662 (2019).

  160. Inal, S. Turning tissues into conducting matter. Science 379, 758–759 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Wang, M. et al. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nat. Mater. 22, 880–887 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5, 83 (2019).

    Article  Google Scholar 

  163. Wu, R., Matta, M., Paulsen, B. D. & Rivnay, J. Operando characterization of organic mixed ionic/electronic conducting materials. Chem. Rev. 122, 4493–4551 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Lyu, D. et al. Operando NMR electrochemical gating studies of ion dynamics in PEDOT:PSS. Nat. Mater. 22, 746–753 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This publication is based upon work supported by KAUST Research Funding (KRF) under award numbers ORA-2021-CRG10-4650 and ORA-2021-CRG10-4668, and KAUST Smart Health Initiative under award number REI/1/5130-01-01.

Author information

Authors and Affiliations

Authors

Contributions

S.I. conceived the project and outlined the manuscript. S.I., Y.W. and S.W. wrote the manuscript and prepared the figures with contributions from Y.Z., J.S. and A.K. All authors reviewed and/or edited the manuscript and figures before submission.

Corresponding author

Correspondence to Sahika Inal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Howard Katz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wustoni, S., Surgailis, J. et al. Designing organic mixed conductors for electrochemical transistor applications. Nat Rev Mater 9, 249–265 (2024). https://doi.org/10.1038/s41578-024-00652-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00652-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing