Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Vapour-deposited perovskite light-emitting diodes

Abstract

Perovskite light-emitting diodes (PeLEDs) have garnered worldwide attention as a promising technology for the next generation of display devices. Although initial reports focused on laboratory-scale spin-coating techniques, rapid advances have prompted researchers to explore pathways for their scaled manufacture. Drawing inspiration from the success of organic LEDs, the community has begun to look at vapour deposition to build reliable PeLED displays. This Perspective article examines the development of vapour-deposited PeLEDs, particularly emphasizing the underlying factors that limit their performance compared with their solution-processed counterparts. We offer routes to improve device performance, including optimizing film quality and engineering device architecture, and summarize potential applications for vapour-deposited PeLEDs. Finally, we outline development opportunities in this evolving field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current status of PeLED, emphasizing the vapour-deposition technique.
Fig. 2: Schematic illustrating the vapour-deposition process.
Fig. 3: Strategies to enhance radiative recombination.
Fig. 4: Strategies used to suppress trap-assisted non-radiative recombination.
Fig. 5: Device engineering of vapour-deposited PeLEDs.
Fig. 6: Prototype applications of vapour-deposited PeLEDs.

Similar content being viewed by others

References

  1. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014). To our knowledge, this study demonstrates the first room-temperature PeLEDs.

    Article  CAS  PubMed  Google Scholar 

  2. Kim, Y.-H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, L. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 8, 15640 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article  CAS  Google Scholar 

  6. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  CAS  Google Scholar 

  9. Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022). This study achieves the current most stable PeLEDs in the green region.

    Article  CAS  PubMed  Google Scholar 

  11. Chu, Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv. Mater. 33, 2007169 (2021).

    Article  CAS  Google Scholar 

  12. Jiang, J. et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations. Adv. Mater. 34, 2204460 (2022).

    Article  CAS  Google Scholar 

  13. Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).

    Article  CAS  Google Scholar 

  14. Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Chu, Z. et al. Blue light-emitting diodes based on quasi-two-dimensional perovskite with efficient charge injection and optimized phase distribution via an alkali metal salt. Nat. Electron. 6, 360–369 (2023).

    Article  CAS  Google Scholar 

  16. Guo, Y. et al. Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters. Nat. Commun. 12, 644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsai, H. et al. Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal–organic frameworks. Nat. Photon. 15, 843–849 (2021).

    Article  Google Scholar 

  18. Wang, K. et al. Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat. Commun. 14, 397 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  CAS  Google Scholar 

  22. Van Slyke, S. A., Chen, C. H. & Tang, C. W. Organic electroluminescent devices with improved stability. Appl. Phys. Lett. 69, 2160–2162 (1996).

    Article  Google Scholar 

  23. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  CAS  Google Scholar 

  25. Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022). This study achieves the current most stable PeLEDs in the near-infrared region.

    Article  CAS  Google Scholar 

  28. Han, T.-H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7, 757–777 (2022). This review outlines a road map for the commercialization of perovskite light emitters.

    Article  Google Scholar 

  29. Woo, S.-J., Kim, J. S. & Lee, T.-W. Characterization of stability and challenges to improve lifetime in perovskite LEDs. Nat. Photon. 15, 630–634 (2021).

    Article  CAS  Google Scholar 

  30. Albrecht, S. & Rech, B. Perovskite solar cells: on top of commercial photovoltaics. Nat. Energy 2, 16196 (2017).

    Article  Google Scholar 

  31. Li, J. et al. Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photon. 17, 435–441 (2023). This study achieves the current most efficient vapour-deposited PeLEDs and the first perovskite active-matrix displays, to our knowledge.

    Article  CAS  Google Scholar 

  32. Du, P. et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12, 4751 (2021). This study achieves efficient vapour-deposited PeLEDs using Cs4PbBr6/CsPbBr3 composites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dänekamp, B. et al. Efficient photo- and electroluminescence by trap states passivation in vacuum-deposited hybrid perovskite thin films. ACS Appl. Mater. Inter. 10, 36187–36193 (2018).

    Article  Google Scholar 

  34. Yuan, F. et al. All-inorganic hetero-structured cesium tin halide perovskite LEDs. Phys. Status Sol. Rapid Res. Lett. 12, 1870315 (2018).

    Article  Google Scholar 

  35. Hu, Y. et al. Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. J. Mater. Chem. C 5, 8144–8149 (2017).

    Article  CAS  Google Scholar 

  36. Lian, X. et al. Light emitting diodes based on inorganic composite halide perovskites. Adv. Funct. Mater. 29, 1807345 (2019).

    Article  Google Scholar 

  37. Tan, Y. et al. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Adv. Funct. Mater. 29, 1900730 (2019).

    Article  Google Scholar 

  38. Du, P. et al. Vacuum-deposited blue inorganic perovskite light-emitting diodes. ACS Appl. Mater. Inter. 11, 47083–47090 (2019).

    Article  CAS  Google Scholar 

  39. Fu, Y. et al. Scalable all-evaporation fabrication of efficient light-emitting diodes with hybrid 2D–3D perovskite nanostructures. Adv. Funct. Mater. 30, 2002913 (2020). This study demonstrates efficient vapour-deposited PeLEDs based on quasi-2D perovskite emitters.

    Article  CAS  Google Scholar 

  40. Li, J. et al. All-vacuum fabrication of yellow perovskite light-emitting diodes. Sci. Bull. 67, 178–185 (2022). This study presents the impact of evaporation speed on vapour-deposited perovskite films.

    Article  CAS  Google Scholar 

  41. Gil-Escrig, L., Miquel-Sempere, A., Sessolo, M. & Bolink, H. J. Mixed iodide–bromide methylammonium lead perovskite-based diodes for light emission and photovoltaics. J. Phys. Chem. Lett. 6, 3743–3748 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Jia, K. et al. Improved performance for thermally evaporated perovskite light-emitting devices via defect passivation and carrier regulation. ACS Appl. Mater. Inter. 12, 15928–15933 (2020).

    Article  CAS  Google Scholar 

  43. Chiang, K.-M. et al. Vacuum-deposited organometallic halide perovskite light-emitting devices. ACS Appl. Mater. Inter. 9, 40516–40522 (2017).

    Article  CAS  Google Scholar 

  44. Kim, N. et al. Highly efficient vacuum-evaporated CsPbBr3 perovskite light-emitting diodes with an electrical conductivity enhanced polymer-assisted passivation layer. ACS Appl. Mater. Inter. 13, 37323–37330 (2021).

    Article  CAS  Google Scholar 

  45. Xu, H. et al. Vacuum-deposited perovskite LED by interface defect passivation with better color stability. IEEE Photon. Tech. Lett. 35, 120–123 (2023).

    Article  CAS  Google Scholar 

  46. Qiu, C., Dumont, A., Li, P. & Lu, Z.-H. Thermally stable charge transport materials for vapor-phase fabrication of perovskite devices. Adv. Photon. Res. 2, 2000140 (2021). This work demonstrates substrate engineering for optimizing vapour-deposited perovskite films.

    Article  CAS  Google Scholar 

  47. Wang, L. et al. Effect of post-annealing on thermally evaporated reduced-dimensional perovskite LEDs. Appl. Phys. Lett. 120, 081107 (2022).

    Article  CAS  Google Scholar 

  48. Song, L. et al. Efficient thermally evaporated perovskite light-emitting devices via a bilateral interface engineering strategy. J. Phys. Chem. Lett. 12, 6165–6173 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, C. et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett. 20, 4673–4680 (2020). This work achieves efficient vapour-deposited PeLEDs by post-annealing.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, D. et al. Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat. Photon. 16, 284–290 (2022). This work achieves large-scale planar and spherical LEDs based on arrays of perovskite quantum wires.

    Article  CAS  Google Scholar 

  51. Hsieh, C.-A. et al. Vacuum-deposited inorganic perovskite light-emitting diodes with external quantum efficiency exceeding 10% via composition and crystallinity manipulation of emission layer under high vacuum. Adv. Sci. 10, 2206076 (2023).

    Article  CAS  Google Scholar 

  52. Liu, C., Cheng, Y.-B. & Ge, Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49, 1653–1687 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, B.-S., Gil-Escrig, L., Sessolo, M. & Bolink, H. J. Deposition kinetics and compositional control of vacuum-processed CH3NH3PbI3 perovskite. J. Phys. Chem. Lett. 11, 6852–6859 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Sanders, S. et al. Showerhead-assisted chemical vapor deposition of CsPbBr3 films for LED applications. J. Mater. Res. 36, 1813–1823 (2021).

    Article  CAS  Google Scholar 

  56. Juarez-Perez, E. J., Hawash, Z., Raga, S. R., Ono, L. K. & Qi, Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 9, 3406–3410 (2016).

    Article  CAS  Google Scholar 

  57. Ávila, J., Momblona, C., Boix, P. P., Sessolo, M. & Bolink, H. J. Vapor-deposited perovskites: the route to high-performance solar cell production? Joule 1, 431–442 (2017).

    Article  Google Scholar 

  58. Du, P. et al. Thermal evaporation for halide perovskite optoelectronics: fundamentals, progress, and outlook. Adv. Opt. Mater. 10, 2101770 (2022).

    Article  CAS  Google Scholar 

  59. Kosasih, F. U., Erdenebileg, E., Mathews, N., Mhaisalkar, S. G. & Bruno, A. Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule 6, 2692–2734 (2022).

    Article  CAS  Google Scholar 

  60. Chen, W. et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30, 1800855 (2018).

    Article  Google Scholar 

  61. Ohring, M. Materials Science of Thin Films: Deposition and Structure (Elsevier, 2001).

  62. Wang, Y.-K. et al. Self-assembled monolayer-based blue perovskite LEDs. Sci. Adv. 9, eadh2140 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fang, Z., Yan, N. & Liu, S. Modulating preferred crystal orientation for efficient and stable perovskite solar cells — from progress to perspectives. InfoMat 4, e12369 (2022).

    Article  CAS  Google Scholar 

  64. Gong, X. et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photon. 10, 253–257 (2016).

    Article  CAS  Google Scholar 

  65. Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, X.-K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021). This review summarizes the fundamental technical approaches for efficient and stable PeLEDs.

    Article  CAS  PubMed  Google Scholar 

  67. Chen, Z. et al. Recombination dynamics study on nanostructured perovskite light-emitting devices. Adv. Mater. 30, 1801370 (2018).

    Article  Google Scholar 

  68. Qin, F., Tian, H., Yan, M., Fang, Y. & Yang, D. Cesium–lead–bromide perovskites with balanced stoichiometry enabled by sodium-bromide doping for all-vacuum deposited silicon-based light-emitting diodes. J. Mater. Chem. C 9, 2016–2023 (2021).

    Article  CAS  Google Scholar 

  69. Qiu, L., He, S., Ono, L. K. & Qi, Y. Progress of surface science studies on ABX3-based metal halide perovskite solar cells. Adv. Energy Mater. 10, 1902726 (2020).

    Article  CAS  Google Scholar 

  70. Shin, M. et al. Modulation of growth kinetics of vacuum-deposited CsPbBr3 films for efficient light-emitting diodes. ACS Appl. Mater. Inter. 12, 1944–1952 (2020).

    Article  CAS  Google Scholar 

  71. Zhang, Z. & Lagally, M. G. Atomistic processes in the early stages of thin-film growth. Science 276, 377–383 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Quan, L. N. et al. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv. Mater. 29, 1605945 (2017).

    Article  Google Scholar 

  73. Jiang, Y. et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Lee, S. et al. Versatile defect passivation methods for metal halide perovskite materials and their application to light-emitting devices. Adv. Mater. 31, 1805244 (2019).

    Article  Google Scholar 

  76. Dumont, A. et al. Restructuring and reshaping of CsPbX3 perovskites by lithium salts. Adv. Mater. Interfaces 9, 2201296 (2022).

    Article  CAS  Google Scholar 

  77. Stelmakh, A., Aebli, M., Baumketner, A. & Kovalenko, M. V. On the mechanism of alkylammonium ligands binding to the surface of CsPbBr3 nanocrystals. Chem. Mater. 33, 5962–5973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee, S., Kim, H. & Kim, Y. Progress in organic semiconducting materials with high thermal stability for organic light-emitting devices. InfoMat 3, 61–81 (2021).

    Article  CAS  Google Scholar 

  79. Schmidbauer, S., Hohenleutner, A. & König, B. Chemical degradation in organic light-emitting devices: mechanisms and implications for the design of new materials. Adv. Mater. 25, 2114–2129 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Zheng, D. G. & Kim, D. H. Degradation mechanisms of perovskite light-emitting diodes under electrical bias. Nanophotonics 12, 451–476 (2023).

    Article  CAS  Google Scholar 

  81. Zhao, L. et al. Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32, 2000752 (2020).

    Article  CAS  Google Scholar 

  82. Zhou, H. et al. Novel hole transport materials based on triphenylvinyl substituted triarylamine with excellent thermal stability for green OLEDs. Dye Pigm. 195, 109641 (2021).

    Article  CAS  Google Scholar 

  83. Yin, X., Song, Z., Li, Z. & Tang, W. Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells. Energy Environ. Sci. 13, 4057–4086 (2020).

    Article  CAS  Google Scholar 

  84. Kang, M. G. & Guo, L. J. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv. Mater. 19, 1391–1396 (2007).

    Article  CAS  Google Scholar 

  85. Zhang, Q. et al. Light out-coupling management in perovskite LEDs — what can we learn from the past? Adv. Funct. Mater. 30, 2002570 (2020).

    Article  CAS  Google Scholar 

  86. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, Z. et al. Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%. Joule 5, 456–466 (2021).

    Article  CAS  Google Scholar 

  88. Zhao, B. et al. Light management for perovskite light-emitting diodes. Nat. Nanotechnol. 18, 981–992 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Yantara, N. et al. Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 6, 4360–4364 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Kuang, C. et al. Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule 5, 618–630 (2021).

    Article  CAS  Google Scholar 

  91. Vashishtha, P. & Halpert, J. E. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 29, 5965–5973 (2017).

    Article  CAS  Google Scholar 

  92. Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Li, Z. et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat. Commun. 10, 1027 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Xing, J. et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9, 3541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022). This work demonstrates ligand engineering for pure blue(red) PeLEDs based on a single halogen.

    Article  CAS  PubMed  Google Scholar 

  96. Luo, J. et al. Efficient blue light emitting diodes based on europium halide perovskites. Adv. Mater. 33, 2101903 (2021).

    Article  CAS  Google Scholar 

  97. Wang, L. et al. Exploration of nontoxic Cs3CeBr6 for violet light-emitting diodes. ACS Energy Lett. 6, 4245–4254 (2021).

    Article  CAS  Google Scholar 

  98. Guo, Q. et al. Spectra stable deep-blue light-emitting diodes based on cryolite-like cerium(III) halides with nanosecond d–f emission. Sci. Adv. 8, eabq2148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Luo, J. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541–545 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Seo, G. et al. Lead-free halide light-emitting diodes with external quantum efficiency exceeding 7% using host–dopant strategy. ACS Energy Lett. 6, 2584–2593 (2021). This work demonstrates a host–dopant strategy for achieving high-efficiency lead-free PeLEDs.

    Article  CAS  Google Scholar 

  101. Chen, H. et al. Efficient and bright warm-white electroluminescence from lead-free metal halides. Nat. Commun. 12, 1421 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tatarinov, D. A. et al. High-quality CsPbBr3 perovskite films with modal gain above 10,000 cm−1 at room temperature. Adv. Opt. Mater. 11, 2202407 (2023).

    Article  CAS  Google Scholar 

  103. Tian, H. et al. Vacuum-vapor-deposited 0D/3D all-inorganic perovskite composite films toward low-threshold amplified spontaneous emission and lasing. Small 18, 2204752 (2022).

    Article  CAS  Google Scholar 

  104. Huang, S. et al. Water-resistant subwavelength perovskite lasing from transparent silica-based nanocavity. Adv. Mater. 35, 2306102 (2023).

    Article  CAS  Google Scholar 

  105. Dunlap-Shohl, W. A., Zhou, Y., Padture, N. P. & Mitzi, D. B. Synthetic approaches for halide perovskite thin films. Chem. Rev. 119, 3193–3295 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (62322505, 62374069, 62250003, 62104077), the National Key Research and Development Program of China (2021YFB3501800) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number NRF-2022R1I1A1A01061848).

Author information

Authors and Affiliations

Authors

Contributions

J.L., A.R. and J.T. conceived and wrote the first draft. All authors contributed to the manuscript discussion and revisions.

Corresponding authors

Correspondence to Jiajun Luo, Abd. Rashid bin Mohd Yusoff or Jiang Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Byungha Shin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Li, J., Grater, L. et al. Vapour-deposited perovskite light-emitting diodes. Nat Rev Mater 9, 282–294 (2024). https://doi.org/10.1038/s41578-024-00651-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00651-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing