Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reactions in single-molecule junctions

Abstract

Developing new materials is a long-standing goal that extends across the fields of synthesis, catalysis, nanotechnology and materials science. Transforming one compound or material into another involves the gaining, losing and sharing of electrons at a molecular level. Investigating single-molecule reactions — and understanding how they provide information about or differ from reactions in the bulk — will deepen our understanding of chemical reactions and establish new frameworks in materials science. In this Review, we survey state-of-the-art chemical reactions occurring in single-molecule junctions. We explore the advantages of real-time testbeds that deliver detailed information about reaction dynamics, intermediates, transition states and solvent effects. We provide a quantitative perspective of the charge transport phenomena associated with chemical reactions at molecular tunnelling junctions, and we compare the behaviour of single-molecule reactions and those taking place in ensemble states. Finally, we explore the possibility of leveraging single-molecule catalysis for large-scale production of materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Four reaction scenarios in single-molecule junctions.
Fig. 2: Real-time data-analysis methods.
Fig. 3: Revealing new reaction pathways from dynamic analysis of single-molecule reactions.
Fig. 4: Environmentally induced reactions.
Fig. 5: Single-molecule electron catalysis.
Fig. 6: Single-molecule electric field catalysis.

Similar content being viewed by others

References

  1. Chen, P. et al. Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 39, 4560–4570 (2010).

    Article  CAS  Google Scholar 

  2. Vogt, E. T. C. & Weckhuysen, B. M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015).

    Article  CAS  Google Scholar 

  3. Wang, B. et al. From the molecule to the mole: improving heterogeneous copper catalyzed click chemistry using single molecule spectroscopy. Chem. Commun. 53, 328–331 (2017).

    Article  CAS  Google Scholar 

  4. Chen, T. et al. Optical super-resolution imaging of surface reactions. Chem. Rev. 117, 7510–7537 (2017).

    Article  CAS  Google Scholar 

  5. Wang, W. Imaging the chemical activity of single nanoparticles with optical microscopy. Chem. Soc. Rev. 47, 2485–2508 (2018).

    Article  CAS  Google Scholar 

  6. Dong, B., Mansour, N., Huang, T.-X., Huang, W. & Fang, N. Single molecule fluorescence imaging of nanoconfinement in porous materials. Chem. Soc. Rev. 50, 6483–6506 (2021).

    Article  CAS  Google Scholar 

  7. Eivgi, O. & Blum, S. A. Exploring chemistry with single-molecule and -particle fluorescence microscopy. Trends Chem. 4, 5–14 (2022).

    Article  CAS  Google Scholar 

  8. Cordes, T. & Blum, S. A. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat. Chem. 5, 993–999 (2013).

    Article  CAS  Google Scholar 

  9. Scaiano, J. C. & Lanterna, A. E. Is single-molecule fluorescence spectroscopy ready to join the organic chemistry toolkit? A test case involving click chemistry. J. Org. Chem. 82, 5011–5019 (2017).

    Article  CAS  Google Scholar 

  10. Shaik, S., Mandal, D. & Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016).

    Article  CAS  Google Scholar 

  11. Shaik, S., Danovich, D., Joy, J., Wang, Z. & Stuyver, T. Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 142, 12551–12562 (2020).

    Article  CAS  Google Scholar 

  12. Huang, X. & Li, T. Recent progress in the development of molecular-scale electronics based on photoswitchable molecules. J. Mater. Chem. C 8, 821–848 (2020).

    Article  CAS  Google Scholar 

  13. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  14. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  Google Scholar 

  15. Rutledge, H. L. & Tezcan, F. A. Electron transfer in nitrogenase. Chem. Rev. 120, 5158–5193 (2020).

    Article  CAS  Google Scholar 

  16. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  CAS  Google Scholar 

  17. Flood, A. H., Stoddart, J. F., Steuerman, D. W. & Heath, J. R. Whence molecular electronics? Science 306, 2055–2056 (2004).

    Article  CAS  Google Scholar 

  18. Joachim, C. & Ratner, M. A. Molecular electronics: some views on transport junctions and beyond. Proc. Natl Acad. Sci. USA 102, 8801–8808 (2005).

    Article  CAS  Google Scholar 

  19. Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).

    Article  CAS  Google Scholar 

  20. Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    Article  Google Scholar 

  21. Meng, L. et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat. Commun. 10, 1450 (2019).

    Article  Google Scholar 

  22. Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).

    Article  Google Scholar 

  23. Chen, H. et al. Single-molecule charge transport through positively charged electrostatic anchors. J. Am. Chem. Soc. 143, 2886–2895 (2021).

    Article  CAS  Google Scholar 

  24. Li, X. et al. Supramolecular systems and chemical reactions in single-molecule break junctions. Top. Curr. Chem. 375, 42 (2017).

    Article  Google Scholar 

  25. Stone, I. et al. A single-molecule blueprint for synthesis. Nat. Rev. Chem. 5, 695–710 (2021).

    Article  Google Scholar 

  26. Xie, X. et al. Single-molecule junction: a reliable platform for monitoring molecular physical and chemical processes. ACS Nano 16, 3476–3505 (2022).

    Article  CAS  Google Scholar 

  27. Li, Y., Yang, C. & Guo, X. Single-molecule electrical detection: a promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 53, 159–169 (2020).

    Article  CAS  Google Scholar 

  28. Cheng, Z. L. et al. In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6, 353–357 (2011).

    Article  CAS  Google Scholar 

  29. Chen, W. et al. Highly conducting π-conjugated molecular junctions covalently bonded to gold electrodes. J. Am. Chem. Soc. 133, 17160–17163 (2011).

    Article  CAS  Google Scholar 

  30. Hines, T. et al. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups. J. Am. Chem. Soc. 135, 3319–3322 (2013).

    Article  CAS  Google Scholar 

  31. Starr, R. L. et al. Gold–carbon contacts from oxidative addition of aryl iodides. J. Am. Chem. Soc. 142, 7128–7133 (2020).

    Article  CAS  Google Scholar 

  32. Doud, E. A. et al. In situ formation of N-heterocyclic carbene-bound single-molecule junctions. J. Am. Chem. Soc. 140, 8944–8949 (2018).

    Article  CAS  Google Scholar 

  33. Zang, Y. et al. Electronically transparent Au–N bonds for molecular junctions. J. Am. Chem. Soc. 139, 14845–14848 (2017).

    Article  CAS  Google Scholar 

  34. Lamberti, C., Zecchina, A., Groppo, E. & Bordiga, S. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39, 4951–5001 (2010).

    Article  CAS  Google Scholar 

  35. Blasco, T. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chem. Soc. Rev. 39, 4685–4702 (2010).

    Article  CAS  Google Scholar 

  36. Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 92, 435–461 (1992).

    Article  CAS  Google Scholar 

  37. Xu, W., Kong, J. S., Yeh, Y.-T. E. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7, 992–996 (2008).

    Article  CAS  Google Scholar 

  38. Xiao, Y. et al. Revealing kinetics of two-electron oxygen reduction reaction at single-molecule level. J. Am. Chem. Soc. 142, 13201–13209 (2020).

    Article  CAS  Google Scholar 

  39. Zhou, X., Xu, W., Liu, G., Panda, D. & Chen, P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule Level. J. Am. Chem. Soc. 132, 138–146 (2010).

    Article  CAS  Google Scholar 

  40. Liu, X. et al. Revealing the catalytic kinetics and dynamics of individual Pt atoms at the single-molecule level. Proc. Natl Acad. Sci. USA 119, e2114639119 (2022).

    Article  CAS  Google Scholar 

  41. Rybina, A. et al. Distinguishing alternative reaction pathways by single-molecule fluorescence spectroscopy. Angew. Chem. Int. Ed. 52, 6322–6325 (2013).

    Article  CAS  Google Scholar 

  42. Kim, D., Zhang, Z. & Xu, K. Spectrally resolved super-resolution microscopy unveils multipath reaction pathways of single spiropyran molecules. J. Am. Chem. Soc. 139, 9447–9450 (2017).

    Article  CAS  Google Scholar 

  43. Ramsay, W. J., Bell, N. A. W., Qing, Y. & Bayley, H. Single-molecule observation of the intermediates in a catalytic cycle. J. Am. Chem. Soc. 140, 17538–17546 (2018).

    Article  CAS  Google Scholar 

  44. Zaera, F. Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112, 2920–2986 (2012).

    Article  CAS  Google Scholar 

  45. Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    Article  CAS  Google Scholar 

  46. van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).

    Article  Google Scholar 

  47. Choi, H.-K. et al. Single-molecule surface-enhanced Raman scattering as a probe of single-molecule surface reactions: promises and current challenges. Acc. Chem. Res. 52, 3008–3017 (2019).

    Article  CAS  Google Scholar 

  48. Zhan, C. et al. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2, 216–230 (2018).

    Article  Google Scholar 

  49. Zhan, C., Chen, X.-J., Huang, Y.-F., Wu, D.-Y. & Tian, Z.-Q. Plasmon-mediated chemical reactions on nanostructures unveiled by surface-enhanced Raman spectroscopy. Acc. Chem. Res. 52, 2784–2792 (2019).

    Article  CAS  Google Scholar 

  50. Zhan, C., Moskovits, M. & Tian, Z.-Q. Recent progress and prospects in plasmon-mediated chemical reaction. Matter 3, 42–56 (2020).

    Article  Google Scholar 

  51. Guan, J. et al. Direct single-molecule dynamic detection of chemical reactions. Sci. Adv. 4, eaar2177 (2018).

    Article  Google Scholar 

  52. Nicolai, C. & Sachs, F. Solving ion channel kinetics with the QuB software. Biophys. Rev. Lett. 08, 191–211 (2013).

    Article  Google Scholar 

  53. Gu, C. et al. Label-free dynamic detection of single-molecule nucleophilic-substitution reactions. Nano Lett. 18, 4156–4162 (2018).

    Article  CAS  Google Scholar 

  54. Yang, C. et al. Single-molecule electrical spectroscopy of organocatalysis. Matter 4, 2874–2885 (2021).

    Article  CAS  Google Scholar 

  55. Yang, C. et al. Electric field–catalyzed single-molecule Diels–Alder reaction dynamics. Sci. Adv. 7, eabf0689 (2021).

    Article  CAS  Google Scholar 

  56. Yang, C. et al. Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021).

    Article  CAS  Google Scholar 

  57. Xu, B. & Tao, N. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  Google Scholar 

  58. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    Article  CAS  Google Scholar 

  59. Huang, C. et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun. 8, 15436 (2017).

    Article  CAS  Google Scholar 

  60. Xiang, L. et al. Gate-controlled conductance switching in DNA. Nat. Commun. 8, 14471 (2017).

    Article  CAS  Google Scholar 

  61. Huang, X. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 5, eaaw3072 (2019).

    Article  CAS  Google Scholar 

  62. Zang, Y. et al. In situ coupling of single molecules driven by gold-catalyzed electrooxidation. Angew. Chem. Int. Ed. 58, 16008–16012 (2019).

    Article  CAS  Google Scholar 

  63. Tang, C. et al. Identifying the conformational isomers of single-molecule cyclohexane at room temperature. Chem 6, 2770–2781 (2020).

    Article  CAS  Google Scholar 

  64. Albrecht, T., Slabaugh, G., Alonso, E. & Al-Arif, S. M. M. R. Deep learning for single-molecule science. Nanotechnology 28, 423001 (2017).

    Article  Google Scholar 

  65. Lemmer, M., Inkpen, M. S., Kornysheva, K., Long, N. J. & Albrecht, T. Unsupervised vector-based classification of single-molecule charge transport data. Nat. Commun. 7, 12922 (2016).

    Article  CAS  Google Scholar 

  66. Hamill, J. M., Zhao, X. T., Mészáros, G., Bryce, M. R. & Arenz, M. Fast data sorting with modified principal component analysis to distinguish unique single molecular break junction trajectories. Phys. Rev. Lett. 120, 016601 (2018).

    Article  CAS  Google Scholar 

  67. Lauritzen, K. P., Magyarkuti, A., Balogh, Z., Halbritter, A. & Solomon, G. C. Classification of conductance traces with recurrent neural networks. J. Chem. Phys. 148, 084111 (2018).

    Article  Google Scholar 

  68. Cabosart, D. et al. A reference-free clustering method for the analysis of molecular break-junction measurements. Appl. Phys. Lett. 114, 143102 (2019).

    Article  Google Scholar 

  69. Huang, F. et al. Automatic classification of single-molecule charge transport data with an unsupervised machine-learning algorithm. Phys. Chem. Chem. Phys. 22, 1674–1681 (2020).

    Article  CAS  Google Scholar 

  70. Fu, T., Zang, Y., Zou, Q., Nuckolls, C. & Venkataraman, L. Using deep learning to identify molecular junction characteristics. Nano Lett. 20, 3320–3325 (2020).

    Article  CAS  Google Scholar 

  71. Huang, B., Li, Z. & Li, J. An artificial intelligence atomic force microscope enabled by machine learning. Nanoscale 10, 21320–21326 (2018).

    Article  CAS  Google Scholar 

  72. Rashidi, M. & Wolkow, R. A. Autonomous scanning probe microscopy in situ tip conditioning through machine learning. ACS Nano 12, 5185–5189 (2018).

    Article  CAS  Google Scholar 

  73. Krull, A., Hirsch, P., Rother, C., Schiffrin, A. & Krull, C. Artificial-intelligence-driven scanning probe microscopy. Commun. Phys. 3, 54 (2020).

    Article  Google Scholar 

  74. de Almeida, A. F., Moreira, R. & Rodrigues, T. Synthetic organic chemistry driven by artificial intelligence. Nat. Rev. Chem. 3, 589–604 (2019).

    Article  Google Scholar 

  75. Jorner, K., Brinck, T., Norrby, P.-O. & Buttar, D. Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies. Chem. Sci. 12, 1163–1175 (2021).

    Article  CAS  Google Scholar 

  76. Jorner, K., Tomberg, A., Bauer, C., Sköld, C. & Norrby, P.-O. Organic reactivity from mechanism to machine learning. Nat. Rev. Chem. 5, 240–255 (2021).

    Article  CAS  Google Scholar 

  77. Zhang, J. L. et al. Towards single molecule switches. Chem. Soc. Rev. 44, 2998–3022 (2015).

    Article  CAS  Google Scholar 

  78. Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    Article  CAS  Google Scholar 

  79. Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

    Article  CAS  Google Scholar 

  80. Robertson, J. C., Coote, M. L. & Bissember, A. C. Synthetic applications of light, electricity, mechanical force and flow. Nat. Rev. Chem. 3, 290–304 (2019).

    Article  Google Scholar 

  81. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article  CAS  Google Scholar 

  82. Anelli, P. L. et al. Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order. J. Am. Chem. Soc. 114, 193–218 (1992).

    Article  CAS  Google Scholar 

  83. Jeppesen, J. O., Perkins, J., Becher, J. & Stoddart, J. F. Slow shuttling in an amphiphilic bistable [2]rotaxane incorporating a tetrathiafulvalene unit. Angew. Chem. Int. Ed. 40, 1216–1221 (2001).

    Article  CAS  Google Scholar 

  84. Heath, J. R. Molecular electronics. Annu. Rev. Mater. 39, 1–23 (2009).

    Article  CAS  Google Scholar 

  85. Coskun, A. et al. High hopes: can molecular electronics realise its potential? Chem. Soc. Rev. 41, 4827–4859 (2012).

    Article  CAS  Google Scholar 

  86. Chen, H. & Fraser Stoddart, J. From molecular to supramolecular electronics. Nat. Rev. Mater. 6, 804–828 (2021).

    Article  CAS  Google Scholar 

  87. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).

  88. Zhou, C. et al. Revealing charge- and temperature-dependent movement dynamics and mechanism of individual molecular machines. Small Methods 3, 1900464 (2019).

    Article  CAS  Google Scholar 

  89. Chen, S. et al. Real-time observation of the dynamics of an individual rotaxane molecular shuttle using a single-molecule junction. Chem 8, 243–252 (2022).

    Article  CAS  Google Scholar 

  90. Yang, G. et al. Protonation tuning of quantum interference in azulene-type single-molecule junctions. Chem. Sci. 8, 7505–7509 (2017).

    Article  CAS  Google Scholar 

  91. Zhang, Y.-P. et al. Distinguishing diketopyrrolopyrrole isomers in single-molecule junctions via reversible stimuli-responsive quantum interference. J. Am. Chem. Soc. 140, 6531–6535 (2018).

    Article  CAS  Google Scholar 

  92. Cai, S. et al. Light-driven reversible intermolecular proton transfer at single-molecule junctions. Angew. Chem. Int. Ed. 58, 3829–3833 (2019).

    Article  CAS  Google Scholar 

  93. Li, J. et al. Direct measurement of single-molecule adenosine triphosphatase hydrolysis dynamics. ACS Nano 11, 12789–12795 (2017).

    Article  CAS  Google Scholar 

  94. Yang, Z. et al. Revealing conformational transition dynamics of photosynthetic proteins in single-molecule electrical circuits. J. Phys. Chem. Lett. 12, 3853–3859 (2021).

    Article  CAS  Google Scholar 

  95. He, G., Li, J., Ci, H., Qi, C. & Guo, X. Direct measurement of single-molecule DNA hybridization dynamics with single-base resolution. Angew. Chem. Int. Ed. 55, 9036–9040 (2016).

    Article  CAS  Google Scholar 

  96. He, G., Li, J., Qi, C. & Guo, X. Single nucleotide polymorphism genotyping in single-molecule electronic circuits. Adv. Sci. 4, 1700158 (2017).

    Article  Google Scholar 

  97. Marcus, R. A. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964).

    Article  CAS  Google Scholar 

  98. Skourtis, S. S., Waldeck, D. H. & Beratan, D. N. Fluctuations in biological and bioinspired electron-transfer reactions. Annu. Rev. Phys. Chem. 61, 461–485 (2010).

    Article  CAS  Google Scholar 

  99. Li, Y. et al. Mechanical stretching-induced electron-transfer reactions and conductance switching in single molecules. J. Am. Chem. Soc. 139, 14699–14706 (2017).

    Article  CAS  Google Scholar 

  100. Frisenda, R. et al. Stretching-induced conductance increase in a spin-crossover molecule. Nano Lett. 16, 4733–4737 (2016).

    Article  CAS  Google Scholar 

  101. Su, T. A., Li, H., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Stereoelectronic switching in single-molecule junctions. Nat. Chem. 7, 215–220 (2015).

    Article  CAS  Google Scholar 

  102. Garcia-Manyes, S. & Beedle, A. E. M. Steering chemical reactions with force. Nat. Rev. Chem. 1, 0083 (2017).

    Article  CAS  Google Scholar 

  103. Walkey, M. C. et al. Chemically and mechanically controlled single-molecule switches using spiropyrans. ACS Appl. Mater. Interfaces 11, 36886–36894 (2019).

    Article  CAS  Google Scholar 

  104. Tamaki, T. et al. Mechanical switching of current–voltage characteristics in spiropyran single-molecule junctions. Nanoscale 12, 7527–7531 (2020).

    Article  CAS  Google Scholar 

  105. Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399–410 (2013).

    Article  CAS  Google Scholar 

  106. Mejía, L. & Franco, I. Force–conductance spectroscopy of a single-molecule reaction. Chem. Sci. 10, 3249–3256 (2019).

    Article  Google Scholar 

  107. Chen, H. et al. Interface engineering in organic field-effect transistors: principles, applications, and perspectives. Chem. Rev. 120, 2879–2949 (2020).

    Article  CAS  Google Scholar 

  108. Zhao, Y., Gobbi, M., Hueso, L. E. & Samorì, P. Molecular approach to engineer two-dimensional devices for CMOS and beyond-CMOS applications. Chem. Rev. 122, 50–131 (2022).

    Article  CAS  Google Scholar 

  109. Dulic, D. et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

    Article  Google Scholar 

  110. Whalley, A. C., Steigerwald, M. L., Guo, X. & Nuckolls, C. Reversible switching in molecular electronic devices. J. Am. Chem. Soc. 129, 12590–12591 (2007).

    Article  CAS  Google Scholar 

  111. Katsonis, N. et al. Reversible conductance switching of single diarylethenes on a gold surface. Adv. Mater. 18, 1397–1400 (2006).

    Article  CAS  Google Scholar 

  112. Jia, C. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016).

    Article  CAS  Google Scholar 

  113. Jia, C. et al. Conductance switching and mechanisms in single-molecule junctions. Angew. Chem. Int. Ed. 52, 8666–8670 (2013).

    Article  CAS  Google Scholar 

  114. Chen, H. et al. Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors. ACS Nano 10, 436–445 (2016).

    Article  CAS  Google Scholar 

  115. Kim, Y. et al. Charge transport in azobenzene-based single-molecule junctions. Phys. Rev. Lett. 109, 226801 (2012).

    Article  Google Scholar 

  116. Cao, Y., Dong, S., Liu, S., Liu, Z. & Guo, X. Toward functional molecular devices based on graphene–molecule junctions. Angew. Chem. Int. Ed. 52, 3906–3910 (2013).

    Article  CAS  Google Scholar 

  117. Henzl, J., Mehlhorn, M., Gawronski, H., Rieder, K.-H. & Morgenstern, K. Reversible cis–trans isomerization of a single azobenzene molecule. Angew. Chem. Int. Ed. 45, 603–606 (2006).

    Article  CAS  Google Scholar 

  118. Choi, B.-Y. et al. Conformational molecular switch of the azobenzene molecule: a scanning tunneling microscopy study. Phys. Rev. Lett. 96, 156106 (2006).

    Article  Google Scholar 

  119. Alemani, M. et al. Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 128, 14446–14447 (2006).

    Article  CAS  Google Scholar 

  120. Meng, L. et al. Atomic force microscopy for molecular structure elucidation. Angew. Chem. Int. Ed. 60, 12274–12278 (2021).

    Article  CAS  Google Scholar 

  121. Li, H. B., Tebikachew, B. E., Wiberg, C., Moth-Poulsen, K. & Hihath, J. A memristive element based on an electrically controlled single-molecule reaction. Angew. Chem. Int. Ed. 59, 11641–11646 (2020).

    Article  CAS  Google Scholar 

  122. Fatayer, S. et al. Molecular structure elucidation with charge-state control. Science 365, 142–145 (2019).

    Article  CAS  Google Scholar 

  123. Dri, C., Peters, M. V., Schwarz, J., Hecht, S. & Grill, L. Spatial periodicity in molecular switching. Nat. Nanotechnol. 3, 649–653 (2008).

    Article  CAS  Google Scholar 

  124. Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018).

    Article  CAS  Google Scholar 

  125. Zhang, Q. et al. Photothermal effect, local field dependence, and charge carrier relaying species in plasmon-driven photocatalysis: a case study of aerobic nitrothiophenol coupling reaction. J. Phys. Chem. C 123, 26695–26704 (2019).

    Article  CAS  Google Scholar 

  126. Kazuma, E. & Kim, Y. Mechanistic studies of plasmon chemistry on metal catalysts. Angew. Chem. Int. Ed. 58, 4800–4808 (2019).

    Article  CAS  Google Scholar 

  127. Kazuma, E., Lee, M., Jung, J., Trenary, M. & Kim, Y. Single-molecule study of a plasmon-induced reaction for a strongly chemisorbed molecule. Angew. Chem. Int. Ed. 59, 7960–7966 (2020).

    Article  CAS  Google Scholar 

  128. Studer, A. & Curran, D. P. The electron is a catalyst. Nat. Chem. 6, 765–773 (2014).

    Article  CAS  Google Scholar 

  129. Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    Article  CAS  Google Scholar 

  130. Shaik, S., Ramanan, R., Danovich, D. & Mandal, D. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev. 47, 5125–5145 (2018).

    Article  CAS  Google Scholar 

  131. Ciampi, S., Darwish, N., Aitken, H. M., Díez-Pérez, I. & Coote, M. L. Harnessing electrostatic catalysis in single molecule, electrochemical and chemical systems: a rapidly growing experimental tool box. Chem. Soc. Rev. 47, 5146–5164 (2018).

    Article  CAS  Google Scholar 

  132. Fahrenbach, A. C. et al. Solution-phase mechanistic study and solid-state structure of a tris(bipyridinium radical cation) inclusion complex. J. Am. Chem. Soc. 134, 3061–3072 (2012).

    Article  CAS  Google Scholar 

  133. Rempala, P., Kroulík, J. & King, B. T. A slippery slope: mechanistic analysis of the intramolecular Scholl reaction of hexaphenylbenzene. J. Am. Chem. Soc. 126, 15002–15003 (2004).

    Article  CAS  Google Scholar 

  134. Kim, Y., Komeda, T. & Kawai, M. Single-molecule reaction and characterization by vibrational excitation. Phys. Rev. Lett. 89, 126104 (2002).

    Article  Google Scholar 

  135. Stipe, B. C. et al. Single-molecule dissociation by tunneling electrons. Phys. Rev. Lett. 78, 4410–4413 (1997).

    Article  CAS  Google Scholar 

  136. Pan, S. et al. Design and control of electron transport properties of single molecules. Proc. Natl Acad. Sci. USA 106, 15259–15263 (2009).

    Article  CAS  Google Scholar 

  137. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  Google Scholar 

  138. Dujardin, G., Walkup, R. E. & Avouris, P. Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope. Science 255, 1232–1235 (1992).

    Article  CAS  Google Scholar 

  139. Martel, R., Avouris, P. & Lyo, I.-W. Molecularly adsorbed oxygen species on Si(111)-(7×7): STM-induced dissociative attachment studies. Science 272, 385–388 (1996).

    Article  CAS  Google Scholar 

  140. Shi, S.-H., Liang, Y. & Jiao, N. Electrochemical oxidation induced selective C–C bond cleavage. Chem. Rev. 121, 485–505 (2021).

    Article  CAS  Google Scholar 

  141. Sperry, J. B. & Wright, D. L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem. Soc. Rev. 35, 605–621 (2006).

    Article  CAS  Google Scholar 

  142. Yoshida, J., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    Article  CAS  Google Scholar 

  143. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  Google Scholar 

  144. Moth-Poulsen, K. & Bjørnholm, T. Molecular electronics with single molecules in solid-state devices. Nat. Nanotechnol. 4, 551–556 (2009).

    Article  CAS  Google Scholar 

  145. Hromadova, M. & Vavrek, F. Electrochemical electron transfer and its relation to charge transport in single molecule junctions. Curr. Opin. Electrochem. 19, 63–70 (2020).

    Article  CAS  Google Scholar 

  146. Nichols, R. J. Molecular electronics at electrode–electrolyte interfaces. Curr. Opin. Electrochem. 25, 100650 (2021).

    Article  CAS  Google Scholar 

  147. Perrin, M. L., Burzurí, E. & van der Zant, H. S. J. Single-molecule transistors. Chem. Soc. Rev. 44, 902–919 (2015).

    Article  CAS  Google Scholar 

  148. Bai, J., Li, X., Zhu, Z., Zheng, Y. & Hong, W. Single-molecule electrochemical transistors. Adv. Mater. 33, 2005883 (2021).

    Article  CAS  Google Scholar 

  149. Xu, B., Xiao, X., Yang, X., Zang, L. & Tao, N. Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 127, 2386–2387 (2005).

    Article  CAS  Google Scholar 

  150. Díez-Pérez, I. et al. Ambipolar transport in an electrochemically gated single-molecule field-effect transistor. ACS Nano 6, 7044–7052 (2012).

    Article  Google Scholar 

  151. Li, Y. et al. Three-state single-molecule naphthalenediimide switch: integration of a pendant redox unit for conductance tuning. Angew. Chem. Int. Ed. 54, 13586–13589 (2015).

    Article  CAS  Google Scholar 

  152. Darwish, N. et al. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012).

    Article  CAS  Google Scholar 

  153. Baghernejad, M. et al. Electrochemical control of single-molecule conductance by Fermi-level tuning and conjugation switching. J. Am. Chem. Soc. 136, 17922–17925 (2014).

    Article  CAS  Google Scholar 

  154. Haiss, W. et al. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125, 15294–15295 (2003).

    Article  CAS  Google Scholar 

  155. Pobelov, I. V., Li, Z. & Wandlowski, T. Electrolyte gating in redox-active tunneling junctions — an electrochemical STM approach. J. Am. Chem. Soc. 130, 16045–16054 (2008).

    Article  CAS  Google Scholar 

  156. Osorio, H. M. et al. Electrochemical single-molecule transistors with optimized gate coupling. J. Am. Chem. Soc. 137, 14319–14328 (2015).

    Article  CAS  Google Scholar 

  157. Leary, E. et al. Structure−property relationships in redox-gated single molecule junctions — a comparison of pyrrolo-tetrathiafulvalene and viologen redox groups. J. Am. Chem. Soc. 130, 12204–12205 (2008).

    Article  CAS  Google Scholar 

  158. Kay, N. J. et al. Single-molecule electrochemical gating in ionic liquids. J. Am. Chem. Soc. 134, 16817–16826 (2012).

    Article  CAS  Google Scholar 

  159. Li, Z. et al. Regulating a benzodifuran single molecule redox switch via electrochemical gating and optimization of molecule/electrode coupling. J. Am. Chem. Soc. 136, 8867–8870 (2014).

    Article  CAS  Google Scholar 

  160. Yin, X. et al. A reversible single-molecule switch based on activated antiaromaticity. Sci. Adv. 3, eaao2615 (2017).

    Article  Google Scholar 

  161. Ricci, A. M., Calvo, E. J., Martin, S. & Nichols, R. J. Electrochemical scanning tunneling spectroscopy of redox-active molecules bound by Au−C bonds. J. Am. Chem. Soc. 132, 2494–2495 (2010).

    Article  CAS  Google Scholar 

  162. Zhou, X.-S. et al. Do molecular conductances correlate with electrochemical rate constants? Experimental insights. J. Am. Chem. Soc. 133, 7509–7516 (2011).

    Article  CAS  Google Scholar 

  163. Lovat, G. et al. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 12, 1050–1054 (2017).

    Article  CAS  Google Scholar 

  164. Dickinson, E. J. F. & Wain, A. J. The Butler–Volmer equation in electrochemical theory: origins, value, and practical application. J. Electroanal. Chem. 872, 114145 (2020).

    Article  CAS  Google Scholar 

  165. Li, Y. et al. Transition from stochastic events to deterministic ensemble average in electron transfer reactions revealed by single-molecule conductance measurement. Proc. Natl Acad. Sci. USA 116, 3407–3412 (2019).

    Article  CAS  Google Scholar 

  166. Zhang, J. et al. Single-molecule electron transfer in electrochemical environments. Chem. Rev. 108, 2737–2791 (2008).

    Article  CAS  Google Scholar 

  167. Darwish, N. et al. Single molecular switches: electrochemical gating of a single anthraquinone-based norbornylogous bridge molecule. J. Phys. Chem. C 116, 21093–21097 (2012).

    Article  CAS  Google Scholar 

  168. Gross, L. et al. Atomic force microscopy for molecular structure elucidation. Angew. Chem. Int. Ed. 57, 3888–3908 (2018).

    Article  CAS  Google Scholar 

  169. Fatayer, S. et al. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nat. Nanotechnol. 13, 376–380 (2018).

    Article  CAS  Google Scholar 

  170. Pavliček, N. et al. Synthesis and characterization of triangulene. Nat. Nanotechnol. 12, 308–311 (2017).

    Article  Google Scholar 

  171. Tan, S. et al. CO2 dissociation activated through electron attachment on the reduced rutile TiO2(110)-1 × 1 surface. Phys. Rev. B 84, 155418 (2011).

    Article  Google Scholar 

  172. Ulmer, U. et al. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019).

    Article  Google Scholar 

  173. Tan, S. et al. Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2(110)-1×1 surface. J. Am. Chem. Soc. 134, 9978–9985 (2012).

    Article  CAS  Google Scholar 

  174. Zhu, X. et al. Vibration-assisted charge transport through positively charged dimer junctions. Angew. Chem. Int. Ed. 61, e202210939 (2022).

    Article  CAS  Google Scholar 

  175. Chen, H. et al. Electron-catalyzed dehydrogenation in a single-molecule junction. J. Am. Chem. Soc. 143, 8476–8487 (2021).

    Article  CAS  Google Scholar 

  176. Saveant, J. M. Catalysis of chemical reactions by electrodes. Acc. Chem. Res. 13, 323–329 (1980).

    Article  CAS  Google Scholar 

  177. Shaik, S. & Stuyver, T. Effects of Electric Fields on Structure and Reactivity: New Horizons in Chemistry (RSC Publishing, 2021).

  178. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    Article  CAS  Google Scholar 

  179. Fried, S. D., Bagchi, S. & Boxer, S. G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 346, 1510–1514 (2014).

    Article  CAS  Google Scholar 

  180. Welborn, V. V. & Head-Gordon, T. Fluctuations of electric fields in the active site of the enzyme ketosteroid isomerase. J. Am. Chem. Soc. 141, 12487–12492 (2019).

    Article  CAS  Google Scholar 

  181. Welborn, V. V., Ruiz Pestana, L. & Head-Gordon, T. Computational optimization of electric fields for better catalysis design. Nat. Catal. 1, 649–655 (2018).

    Article  Google Scholar 

  182. Liu, W. & Stoddart, J. F. Emergent behavior in nanoconfined molecular containers. Chem 7, 919–947 (2021).

    Article  CAS  Google Scholar 

  183. Morimoto, M. et al. Advances in supramolecular host-mediated reactivity. Nat. Catal. 3, 969–984 (2020).

    Article  CAS  Google Scholar 

  184. Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    Article  CAS  Google Scholar 

  185. Kaphan, D. M., Toste, F. D., Bergman, R. G. & Raymond, K. N. Enabling new modes of reactivity via constrictive binding in a supramolecular-assembly-catalyzed aza-Prins cyclization. J. Am. Chem. Soc. 137, 9202–9205 (2015).

    Article  CAS  Google Scholar 

  186. Levin, M. D. et al. Scope and mechanism of cooperativity at the intersection of organometallic and supramolecular catalysis. J. Am. Chem. Soc. 138, 9682–9693 (2016).

    Article  CAS  Google Scholar 

  187. Zhang, L. et al. Electrochemical and electrostatic cleavage of alkoxyamines. J. Am. Chem. Soc. 140, 766–774 (2018).

    Article  CAS  Google Scholar 

  188. Gorin, C. F., Beh, E. S. & Kanan, M. W. An electric field–induced change in the selectivity of a metal oxide-catalyzed epoxide rearrangement. J. Am. Chem. Soc. 134, 186–189 (2012).

    Article  CAS  Google Scholar 

  189. Gorin, C. F., Beh, E. S., Bui, Q. M., Dick, G. R. & Kanan, M. W. Interfacial electric field effects on a carbene reaction catalyzed by Rh porphyrins. J. Am. Chem. Soc. 135, 11257–11265 (2013).

    Article  CAS  Google Scholar 

  190. Zang, Y. et al. Directing isomerization reactions of cumulenes with electric fields. Nat. Commun. 10, 4482 (2019).

    Article  Google Scholar 

  191. Stone, I. B. et al. Interfacial electric fields catalyze Ullmann coupling reactions on gold surfaces. Chem. Sci. 13, 10798–10805 (2022).

    Article  CAS  Google Scholar 

  192. Zhang, J., Coote, M. L. & Ciampi, S. Electrostatics and electrochemistry: mechanism and scope of charge-transfer reactions on the surface of tribocharged insulators. J. Am. Chem. Soc. 143, 3019–3032 (2021).

    Article  CAS  Google Scholar 

  193. Allen J. B. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd Edn (Wiley, 2000).

  194. Darwish, N. et al. Probing the effect of the solution environment around redox-active moieties using rigid anthraquinone terminated molecular rulers. J. Am. Chem. Soc. 134, 18401–18409 (2012).

    Article  CAS  Google Scholar 

  195. Eggers, P. K., Darwish, N., Paddon-Row, M. N. & Gooding, J. J. Surface-bound molecular rulers for probing the electrical double layer. J. Am. Chem. Soc. 134, 7539–7544 (2012).

    Article  CAS  Google Scholar 

  196. Wen, B.-Y. et al. Probing electric field distributions in the double layer of a single-crystal electrode with Angstrom spatial resolution using Raman spectroscopy. J. Am. Chem. Soc. 142, 11698–11702 (2020).

    Article  CAS  Google Scholar 

  197. Bhattacharyya, D. et al. Sub-nanometer mapping of the interfacial electric field profile using a vibrational stark shift ruler. J. Am. Chem. Soc. 144, 14330–14338 (2022).

    Article  CAS  Google Scholar 

  198. Zhang, L. et al. TEMPO monolayers on Si(100) electrodes: electrostatic effects by the electrolyte and semiconductor space-charge on the electroactivity of a persistent radical. J. Am. Chem. Soc. 138, 9611–9619 (2016).

    Article  CAS  Google Scholar 

  199. Capozzi, B. et al. Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015).

    Article  CAS  Google Scholar 

  200. Hammett, L. P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 59, 96–103 (1937).

    Article  CAS  Google Scholar 

  201. LeBlond, C. R., Andrews, A. T., Sun, Y. & Sowa, J. R. Activation of aryl chlorides for Suzuki cross-coupling by ligandless, heterogeneous palladium. Org. Lett. 3, 1555–1557 (2001).

    Article  CAS  Google Scholar 

  202. Heo, J. et al. Electro-inductive effect: electrodes as functional groups with tunable electronic properties. Science 370, 214–219 (2020).

    Article  CAS  Google Scholar 

  203. Sarkar, S., Patrow, J. G., Voegtle, M. J., Pennathur, A. K. & Dawlaty, J. M. Electrodes as polarizing functional groups: correlation between Hammett parameters and electrochemical polarization. J. Phys. Chem. C 123, 4926–4937 (2019).

    Article  CAS  Google Scholar 

  204. Vladyka, A. et al. In-situ formation of one-dimensional coordination polymers in molecular junctions. Nat. Commun. 10, 262 (2019).

    Article  Google Scholar 

  205. Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).

    Article  Google Scholar 

  206. Marquardt, C. W. et al. Electroluminescence from a single nanotube–molecule–nanotube junction. Nat. Nanotechnol. 5, 863–867 (2010).

    Article  CAS  Google Scholar 

  207. Zhang, L. et al. Precise electrical gating of the single-molecule Mizoroki–Heck reaction. Nat. Commun. 13, 4552 (2022).

    Article  CAS  Google Scholar 

  208. Domulevicz, L., Jeong, H., Paul, N. K., Gomez-Diaz, J. S. & Hihath, J. Multidimensional characterization of single-molecule dynamics in a plasmonic nanocavity. Angew. Chem. Int. Ed. 60, 16436–16441 (2021).

    Article  CAS  Google Scholar 

  209. Ruggeri, F. S., Mannini, B., Schmid, R., Vendruscolo, M. & Knowles, T. P. J. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat. Commun. 11, 2945 (2020).

    Article  CAS  Google Scholar 

  210. Du, S., Yoshida, K., Zhang, Y., Hamada, I. & Hirakawa, K. Terahertz dynamics of electron–vibron coupling in single molecules with tunable electrostatic potential. Nat. Photon. 12, 608–612 (2018).

    Article  CAS  Google Scholar 

  211. Zhan, C. et al. Single-molecule plasmonic optical trapping. Matter 3, 1350–1360 (2020).

    Article  Google Scholar 

  212. Aragonès, A. C. & Domke, K. F. Nearfield trapping increases lifetime of single-molecule junction by one order of magnitude. Cell Rep. Phys. Sci. 2, 100389 (2021).

    Article  Google Scholar 

  213. Paulus, B. C., Adelman, S. L., Jamula, Lindsey, L. & McCusker, J. K. Leveraging excited-state coherence for synthetic control of ultrafast dynamics. Nature 582, 214–218 (2020).

    Article  CAS  Google Scholar 

  214. Pavliček, N. & Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 1, 0005 (2017).

    Article  Google Scholar 

  215. Atobe, M., Tateno, H. & Matsumura, Y. Applications of flow microreactors in electrosynthetic processes. Chem. Rev. 118, 4541–4572 (2018).

    Article  CAS  Google Scholar 

  216. Pletcher, D., Green, R. A. & Brown, R. C. D. Flow electrolysis cells for the synthetic organic chemistry laboratory. Chem. Rev. 118, 4573–4591 (2018).

    Article  CAS  Google Scholar 

  217. Quek, S. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4, 230–234 (2009).

    Article  CAS  Google Scholar 

  218. Green, J. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    Article  CAS  Google Scholar 

  219. Zhang, Y., Song, P., Fu, Q., Ruan, M. & Xu, W. Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics. Nat. Commun. 5, 4238 (2014).

    Article  CAS  Google Scholar 

  220. Li, C.-Y. et al. Real-time detection of single-molecule reaction by plasmon-enhanced spectroscopy. Sci. Adv. 6, eaba6012 (2020).

    Article  CAS  Google Scholar 

  221. Treier, M. et al. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 3, 61–67 (2011).

    Article  CAS  Google Scholar 

  222. Mishra, S. et al. On-surface synthesis of a nitrogen-embedded buckybowl with inverse Stone–Thrower–Wales topology. Nat. Commun. 9, 1714 (2018).

    Article  Google Scholar 

  223. Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Direct pathway to molecular photodissociation on metal surfaces using visible light. J. Am. Chem. Soc. 139, 3115–3121 (2017).

    Article  CAS  Google Scholar 

  224. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  225. Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Article  CAS  Google Scholar 

  226. Wang, C., Chi, L., Ciesielski, A. & Samorì, P. Chemical synthesis at surfaces with atomic precision: taming complexity and perfection. Angew. Chem. Int. Ed. 58, 18758–18775 (2019).

    Article  CAS  Google Scholar 

  227. Goldsmith, B. R., Coroneus, J. G., Kane, A. A., Weiss, G. A. & Collins, P. G. Monitoring single-molecule reactivity on a carbon nanotube. Nano Lett. 8, 189–194 (2008).

    Article  CAS  Google Scholar 

  228. Choi, Y. et al. Single-molecule lysozyme dynamics monitored by an electronic circuit. Science 335, 319–324 (2012).

    Article  CAS  Google Scholar 

  229. Quílez-Pardo, J. Do the equilibrium constants have units? A discussion on how general chemistry textbooks calculate and report the equilibrium constants. Int. J. Phys. Chem. Educ. 11, 73–83 (2019).

    Google Scholar 

  230. Sorgenfrei, S. et al. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 6, 126–132 (2011).

    Article  CAS  Google Scholar 

  231. Dutta Dubey, K., Stuyver, T., Kalita, S. & Shaik, S. Solvent organization and rate regulation of a Menshutkin reaction by oriented external electric fields are revealed by combined MD and QM/MM calculations. J. Am. Chem. Soc. 142, 9955–9965 (2020).

    Article  CAS  Google Scholar 

  232. Xu, L., Izgorodina, E. I., Coote, M. L. Ordered solvents and ionic liquids can be harnessed for electrostatic catalysis. J. Am. Chem. Soc. 142, 12826–12833 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Northwestern University for its continued support of this research. The research at Zhejiang University was supported by the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (grant number SN-ZJU-SIAS-006) and the National Natural Science Foundation of China (grant number 22273085). The research at Peking University was supported by the National Key R&D Program of China (grant numbers 2017YFA0204901, 2021YFA1200101 and 2021YFA1200102) and the National Natural Science Foundation of China (grant numbers 21727806, 21933001 and 22150013). X.G. acknowledges the Tencent Foundation through the XPLORER PRIZE and Frontiers Science Center for New Organic Matter at Nankai University (grant number 63181206). The authors also thank Shanghai ShengSheng Logistics for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content, writing and editing of the manuscript prior to submission.

Corresponding authors

Correspondence to Hongliang Chen, Xuefeng Guo or J. Fraser Stoddart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Thorben Cordes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Jia, C., Zhu, X. et al. Reactions in single-molecule junctions. Nat Rev Mater 8, 165–185 (2023). https://doi.org/10.1038/s41578-022-00506-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00506-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing