Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electronic defects in metal oxide photocatalysts

Abstract

A deep understanding of defects is essential for the optimization of materials for solar energy conversion. This is particularly true for metal oxide photo(electro)catalysts, which typically feature high concentrations of charged point defects that are electronically active. In photovoltaic materials, except for selected dopants, defects are considered detrimental and should be eliminated to minimize charge recombination. However, photocatalysis is a more complex process in which defects can have an active role, such as in stabilizing charge separation and in mediating rate-limiting catalytic steps. In this Review, we examine the behaviour of electronic defects in metal oxides, paying special attention to the principles that underpin the formation and function of trapped charges in the form of polarons. We focus on how defects alter the electronic structure of metal oxides, statically or transiently upon illumination, and discuss the implications of such changes in light-driven catalytic reactions. Finally, we compare oxide defect chemistry with that of new photocatalysts based on carbon nitrides, polymers and metal halide perovskites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Point defects in a metal oxide.
Fig. 2: Polaron chemistry.
Fig. 3: Fundamental steps in photocatalysis.
Fig. 4: Role of defects in solid–liquid equilibration, light absorption and charge transport.
Fig. 5: Impact of charge localization on defects and polarons.
Fig. 6: Role of defects in surface catalysis.

Similar content being viewed by others

References

  1. Gerischer, H. Electrochemical behavior of semiconductors under illumination. J. Electrochem. Soc. 113, 1174 (1966).

    Article  CAS  Google Scholar 

  2. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  3. Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Article  CAS  Google Scholar 

  4. Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article  CAS  Google Scholar 

  5. Abdi, F. F. et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).

    Article  CAS  Google Scholar 

  6. Pan, L. et al. Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nat. Commun. 11, 318 (2020).

    Article  CAS  Google Scholar 

  7. Kay, A., Cesar, I. & Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006).

    Article  CAS  Google Scholar 

  8. Pihosh, Y. et al. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 5, 11141 (2015).

    Article  Google Scholar 

  9. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  CAS  Google Scholar 

  10. Kim, S., Park, J. S. & Walsh, A. Identification of killer defects in kesterite thin-film solar cells. ACS Energy Lett. 3, 496–500 (2018).

    Article  CAS  Google Scholar 

  11. Zhang, S. X. et al. Niobium doped TiO2: intrinsic transparent metallic anatase versus highly resistive rutile phase. J. Appl. Phys. 102, 013701 (2007).

    Article  CAS  Google Scholar 

  12. Corby, S., Francàs, L., Kafizas, A. & Durrant, J. R. Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO3 for water oxidation. Chem. Sci. 11, 2907–2914 (2020).

    Article  CAS  Google Scholar 

  13. Moss, B. et al. Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nat. Mater. 20, 511–517 (2021).

    Article  CAS  Google Scholar 

  14. Carneiro, L. M. et al. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat. Mater. 16, 819–825 (2017).

    Article  CAS  Google Scholar 

  15. Bandaranayake, S., Hruska, E., Londo, S., Biswas, S. & Baker, L. R. Small polarons and surface defects in metal oxide photocatalysts studied using XUV reflection–absorption spectroscopy. J. Phys. Chem. C 124, 22853–22870 (2020).

    Article  CAS  Google Scholar 

  16. Kumar, A., Kumar, A. & Krishnan, V. Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal. 10, 10253–10315 (2020).

    Article  CAS  Google Scholar 

  17. Liu, Q. et al. Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat. Commun. 5, 5122 (2014).

    Article  CAS  Google Scholar 

  18. Zhu, X. et al. Spinel structural disorder influences solar-water-splitting performance of ZnFe2O4 nanorod photoanodes. Adv. Mater. 30, 1801612 (2018).

    Article  CAS  Google Scholar 

  19. Xu, C., Ravi Anusuyadevi, P., Aymonier, C., Luque, R. & Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 48, 3868–3902 (2019).

    Article  CAS  Google Scholar 

  20. Luo, J. et al. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 16, 1848–1857 (2016).

    Article  CAS  Google Scholar 

  21. Paracchino, A., Laporte, V., Sivula, K., Grätzel, M. & Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456–461 (2011).

    Article  CAS  Google Scholar 

  22. Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35–54 (2008).

    Article  CAS  Google Scholar 

  23. Henning, R. A. et al. Characterization of MFe2O4 (M = Mg, Zn) thin films prepared by pulsed laser deposition for photoelectrochemical applications. J. Phys. Chem. C 123, 18240–18247 (2019).

    Article  CAS  Google Scholar 

  24. Liu, R., Zheng, Z., Spurgeon, J. & Yang, X. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504–2517 (2014).

    Article  CAS  Google Scholar 

  25. Lee, D. K., Lee, D., Lumley, M. A. & Choi, K.-S. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chem. Soc. Rev. 48, 2126–2157 (2019).

    Article  CAS  Google Scholar 

  26. Akiyama, S. et al. Highly efficient water oxidation photoanode made of surface modified LaTiO2N particles. Small 12, 5468–5476 (2016).

    Article  CAS  Google Scholar 

  27. Ulmer, U. et al. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019).

    Article  CAS  Google Scholar 

  28. Zhang, L. et al. Photoelectrocatalytic arene C–H amination. Nat. Catal. 2, 366–373 (2019).

    Article  CAS  Google Scholar 

  29. Lingampalli, S. R., Ayyub, M. M. & Rao, C. N. R. Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2, 2740–2748 (2017).

    Article  CAS  Google Scholar 

  30. Liu, L., Zhao, H., Andino, J. M. & Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2, 1817–1828 (2012).

    Article  CAS  Google Scholar 

  31. Schreck, M. & Niederberger, M. Photocatalytic gas phase reactions. Chem. Mater. 31, 597–618 (2019).

    Article  CAS  Google Scholar 

  32. Jeong, S. et al. Selectivity modulated by surface ligands on Cu2O/TiO2 catalysts for gas-phase photocatalytic reduction of carbon dioxide. J. Phys. Chem. C 123, 29184–29191 (2019).

    Article  CAS  Google Scholar 

  33. Huang, C., Li, Z. & Zou, Z. A perspective on perovskite oxide semiconductor catalysts for gas phase photoreduction of carbon dioxide. MRS Commun. 6, 216–225 (2016).

    Article  CAS  Google Scholar 

  34. Sivula, K., Le Formal, F. & Grätzel, M. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432–449 (2011).

    Article  CAS  Google Scholar 

  35. Cesar, I., Kay, A., Gonzalez Martinez, J. A. & Grätzel, M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 128, 4582–4583 (2006).

    Article  CAS  Google Scholar 

  36. Kim, J. Y. et al. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 2681 (2013).

    Article  Google Scholar 

  37. Grave, D. A., Yatom, N., Ellis, D. S., Toroker, M. C. & Rothschild, A. The “rust” challenge: on the correlations between electronic structure, excited state dynamics, and photoelectrochemical performance of hematite photoanodes for solar water splitting. Adv. Mater. 30, 1706577 (2018).

    Article  CAS  Google Scholar 

  38. Gardecka, A. J. et al. High efficiency water splitting photoanodes composed of nano-structured anatase-rutile TiO2 heterojunctions by pulsed-pressure MOCVD. Appl. Catal. B 224, 904–911 (2018).

    Article  CAS  Google Scholar 

  39. Roy, P. et al. Oxide nanotubes on Ti−Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting. J. Am. Chem. Soc. 133, 5629–5631 (2011).

    Article  CAS  Google Scholar 

  40. Liu, M., de Leon Snapp, N. & Park, H. Water photolysis with a cross-linked titanium dioxidenanowire anode. Chem. Sci. 2, 80–87 (2011).

    Article  CAS  Google Scholar 

  41. Fàbrega, C. et al. Efficient WO3 photoanodes fabricated by pulsed laser deposition for photoelectrochemical water splitting with high Faradaic efficiency. Appl. Catal. B 189, 133–140 (2016).

    Article  CAS  Google Scholar 

  42. Wang, S. et al. Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy 24, 94–102 (2016).

    Article  CAS  Google Scholar 

  43. Brillet, J. et al. Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photon. 6, 824–828 (2012).

    Article  CAS  Google Scholar 

  44. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  CAS  Google Scholar 

  45. Qiu, Y. et al. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci. Adv. 2, e1501764 (2016).

    Article  CAS  Google Scholar 

  46. Wang, S. et al. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 30, 1800486 (2018).

    Article  CAS  Google Scholar 

  47. Hayes W & Stoneham, A. M. Defects and Defect Processes in Nonmetallic Solids (Dover, 2004).

  48. Li, W., Shi, J., Zhang, K. H. L. & MacManus-Driscoll, J. L. Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities. Mater. Horiz. 7, 2832–2859 (2020).

    Article  CAS  Google Scholar 

  49. Biswas, S., Husek, J., Londo, S. & Baker, L. R. Ultrafast electron trapping and defect-mediated recombination in NiO probed by femtosecond extreme ultraviolet reflection–absorption spectroscopy. J. Phys. Chem. Lett. 9, 5047–5054 (2018).

    Article  CAS  Google Scholar 

  50. Wei, Y., Zhou, Z., Fang, W.-H. & Long, R. Grain boundary facilitates photocatalytic reaction in rutile TiO2 despite fast charge recombination: a time-domain ab initio analysis. J. Phys. Chem. Lett. 9, 5884–5889 (2018).

    Article  CAS  Google Scholar 

  51. Bai, S., Zhang, N., Gao, C. & Xiong, Y. Defect engineering in photocatalytic materials. Nano Energy 53, 296–336 (2018).

    Article  CAS  Google Scholar 

  52. Kröger, F. A. The Chemistry of Imperfect Crystals: Preparation, Purification, Crystal Growth and Phase Theory Vol. 1–3 (North-Holland, 1973).

  53. de Groot, F. M. F. et al. Oxygen 1s X-ray-absorption edges of transition-metal oxides. Phys. Rev. B 40, 5715–5723 (1989).

    Article  Google Scholar 

  54. Arima, T., Tokura, Y. & Torrance, J. B. Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B 48, 17006–17009 (1993).

    Article  CAS  Google Scholar 

  55. Lany, S. Semiconducting transition metal oxides. J. Phys. Condens. Matter 27, 283203 (2015).

    Article  CAS  Google Scholar 

  56. Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017).

    Article  CAS  Google Scholar 

  57. Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    Article  CAS  Google Scholar 

  58. Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    Article  CAS  Google Scholar 

  59. Calle-Vallejo, F. et al. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem. Sci. 4, 1245 (2013).

    Article  CAS  Google Scholar 

  60. Nie, X., Wei, S.-H. & Zhang, S. B. First-principles study of transparent p-type conductive SrCu2O2 and related compounds. Phys. Rev. B 65, 075111 (2002).

    Article  CAS  Google Scholar 

  61. Greiner, M. T. & Lu, Z.-H. Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. npg Asia Mater. 5, e55 (2013).

    Article  CAS  Google Scholar 

  62. Zawadzki, P., Jacobsen, K. W. & Rossmeisl, J. Electronic hole localization in rutile and anatase TiO2 — self-interaction correction in Δ-SCF DFT. Chem. Phys. Lett. 506, 42–45 (2011).

    Article  CAS  Google Scholar 

  63. Tuller, H. L. & Bishop, S. R. Point defects in oxides: tailoring materials through defect engineering. Annu. Rev. Mater. Res. 41, 369–398 (2011).

    Article  CAS  Google Scholar 

  64. Park, J. S., Kim, S., Xie, Z. & Walsh, A. Point defect engineering in thin-film solar cells. Nat. Rev. Mater. 3, 194–210 (2018).

    Article  CAS  Google Scholar 

  65. Sai Gautam, G., Senftle, T. P., Alidoust, N. & Carter, E. A. Novel solar cell materials: insights from first-principles. J. Phys. Chem. C 122, 27107–27126 (2018).

    Article  CAS  Google Scholar 

  66. Zhang, S. & Northrup, J. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339–2342 (1991).

    Article  CAS  Google Scholar 

  67. Buckeridge, J. Equilibrium point defect and charge carrier concentrations in a material determined through calculation of the self-consistent Fermi energy. Comput. Phys. Commun. 244, 329–342 (2019).

    Article  CAS  Google Scholar 

  68. Fernández-Climent, R., Giménez, S. & García-Tecedor, M. The role of oxygen vacancies in water splitting photoanodes. Sustain. Energy Fuels 4, 5916–5926 (2020).

    Article  Google Scholar 

  69. Wexler, R. B., Gautam, G. S., Stechel, E. B. & Carter, E. A. Factors governing oxygen vacancy formation in oxide perovskites. J. Am. Chem. Soc. 143, 13212–13227 (2021).

    Article  CAS  Google Scholar 

  70. Muñoz-García, A. B., Ritzmann, A. M., Pavone, M., Keith, J. A. & Carter, E. A. Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. Acc. Chem. Res. 47, 3340–3348 (2014).

    Article  CAS  Google Scholar 

  71. Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors (Springer, 2010).

  72. Lang, D. V. Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023–3032 (1974).

    Article  CAS  Google Scholar 

  73. Walsh, A. & Zunger, A. Instilling defect tolerance in new compounds. Nat. Mater. 16, 964–967 (2017).

    Article  CAS  Google Scholar 

  74. Sachs, M. et al. Effect of oxygen deficiency on the excited state kinetics of WO3 and implications for photocatalysis. Chem. Sci. 10, 5667–5677 (2019).

    Article  CAS  Google Scholar 

  75. Wang, W., Janotti, A. & Van de Walle, C. G. Role of oxygen vacancies in crystalline WO3. J. Mater. Chem. C 4, 6641–6648 (2016).

    Article  CAS  Google Scholar 

  76. Zandi, O., Klahr, B. M. & Hamann, T. W. Highly photoactive Ti-doped α-Fe2O3 thin film electrodes: resurrection of the dead layer. Energy Environ. Sci. 6, 634–642 (2013).

    Article  CAS  Google Scholar 

  77. Zhong, D. K., Choi, S. & Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 133, 18370–18377 (2011).

    Article  CAS  Google Scholar 

  78. Fröhlich, H. Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954).

    Article  Google Scholar 

  79. Shluger, A. L. & Stoneham, A. M. Small polarons in real crystals: concepts and problems. J. Phys. Condens. Matter 5, 3049–3086 (1993).

    Article  CAS  Google Scholar 

  80. Emin, D. Optical properties of large and small polarons and bipolarons. Phys. Rev. B 48, 13691–13702 (1993).

    Article  CAS  Google Scholar 

  81. Rettie, A. J. E., Chemelewski, W. D., Emin, D. & Mullins, C. B. Unravelling small-polaron transport in metal oxide photoelectrodes. J. Phys. Chem. Lett. 7, 471–479 (2016).

    Article  CAS  Google Scholar 

  82. Rousseau, R., Glezakou, V.-A. & Selloni, A. Theoretical insights into the surface physics and chemistry of redox-active oxides. Nat. Rev. Mater. 5, 460–475 (2020).

    Article  CAS  Google Scholar 

  83. Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).

    Article  CAS  Google Scholar 

  84. Wiktor, J., Ambrosio, F. & Pasquarello, A. Role of polarons in water splitting: the case of BiVO4. ACS Energy Lett. 3, 1693–1697 (2018).

    Article  CAS  Google Scholar 

  85. Wang, W. et al. The role of surface oxygen vacancies in BiVO4. Chem. Mater. 32, 2899–2909 (2020).

    Article  CAS  Google Scholar 

  86. Davies, D. W. et al. Descriptors for electron and hole charge carriers in metal oxides. J. Phys. Chem. Lett. 11, 438–444 (2020).

    Article  CAS  Google Scholar 

  87. Meggiolaro, D., Ambrosio, F., Mosconi, E., Mahata, A. & De Angelis, F. Polarons in metal halide perovskites. Adv. Energy Mater. 10, 1902748 (2019).

    Article  CAS  Google Scholar 

  88. Yang, S., Brant, A. T., Giles, N. C. & Halliburton, L. E. Intrinsic small polarons in rutile TiO2. Phys. Rev. B 87, 125201 (2013).

    Article  CAS  Google Scholar 

  89. Moser, S. et al. Tunable polaronic conduction in anatase TiO2. Phys. Rev. Lett. 110, 196403 (2013).

    Article  CAS  Google Scholar 

  90. Moser, S. et al. Electron-phonon coupling in the bulk of anatase TiO2 measured by resonant inelastic X-ray spectroscopy. Phys. Rev. Lett. 115, 096404 (2015).

    Article  CAS  Google Scholar 

  91. Setvin, M. et al. Direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 113, 086402 (2014).

    Article  CAS  Google Scholar 

  92. Gerosa, M., Gygi, F., Govoni, M. & Galli, G. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater. 17, 1122–1127 (2018).

    Article  CAS  Google Scholar 

  93. Kweon, K. E., Hwang, G. S., Kim, J., Kim, S. & Kim, S. Electron small polarons and their transport in bismuth vanadate: a first principles study. Phys. Chem. Chem. Phys. 17, 256–260 (2015).

    Article  CAS  Google Scholar 

  94. Butler, K. T. et al. Ultrafast carrier dynamics in BiVO4 thin film photoanode material: interplay between free carriers, trapped carriers and low-frequency lattice vibrations. J. Mater. Chem. A 4, 18516–18523 (2016).

    Article  CAS  Google Scholar 

  95. Qiu, W. et al. Freeing the polarons to facilitate charge transport in BiVO4 from oxygen vacancies with an oxidative 2D precursor. Angew. Chem. Int. Ed. 58, 19087–19095 (2019).

    Article  CAS  Google Scholar 

  96. Ziwritsch, M. et al. Direct time-resolved observation of carrier trapping and polaron conductivity in BiVO4. ACS Energy Lett. 1, 888–894 (2016).

    Article  CAS  Google Scholar 

  97. Mohamed, M. et al. The electronic structure and the formation of polarons in Mo-doped BiVO4 measured by angle-resolved photoemission spectroscopy. RSC Adv. 9, 15606–15614 (2019).

    Article  CAS  Google Scholar 

  98. Pastor, E. et al. In situ observation of picosecond polaron self-localisation in α-Fe2O3 photoelectrochemical cells. Nat. Commun. 10, 3962 (2019).

    Article  CAS  Google Scholar 

  99. Husek, J., Cirri, A., Biswas, S. & Baker, L. R. Surface electron dynamics in hematite (α-Fe2O3): correlation between ultrafast surface electron trapping and small polaron formation. Chem. Sci. 8, 8170–8178 (2017).

    Article  CAS  Google Scholar 

  100. Zhou, Z., Long, R. & Prezhdo, O. V. Why silicon doping accelerates electron polaron diffusion in hematite. J. Am. Chem. Soc. 141, 20222–20233 (2019).

    Article  CAS  Google Scholar 

  101. Shelton, J. L. & Knowles, K. E. Thermally activated optical absorption into polaronic states in hematite. J. Phys. Chem. Lett. 12, 3343–3351 (2021).

    Article  CAS  Google Scholar 

  102. Smart, T. J., Pham, T. A., Ping, Y. & Ogitsu, T. Optical absorption induced by small polaron formation in transition metal oxides: the case of Co3O4. Phys. Rev. Mater. 3, 102401 (2019).

    Article  CAS  Google Scholar 

  103. Chen, C., Avila, J., Frantzeskakis, E., Levy, A. & Asensio, M. C. Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface. Nat. Commun. 6, 8585 (2015).

    Article  CAS  Google Scholar 

  104. Biswas, S., Husek, J., Londo, S. & Baker, L. R. Highly localized charge transfer excitons in metal oxide semiconductors. Nano Lett. 18, 1228–1233 (2018).

    Article  CAS  Google Scholar 

  105. Pelli Cresi, J. S. et al. Ultrafast formation of small polarons and the optical gap in CeO2. J. Phys. Chem. Lett. 11, 5686–5691 (2020).

    Article  CAS  Google Scholar 

  106. Biswas, S., Wallentine, S., Bandaranayake, S. & Baker, L. R. Controlling polaron formation at hematite surfaces by molecular functionalization probed by XUV reflection-absorption spectroscopy. J. Chem. Phys. 151, 104701 (2019).

    Article  CAS  Google Scholar 

  107. Katz, J. E. et al. Electron small polarons and their mobility in iron (oxyhydr)oxide nanoparticles. Science 337, 1200–1203 (2012).

    Article  CAS  Google Scholar 

  108. Porter, I. J. et al. Photoexcited small polaron formation in goethite (α-FeOOH) nanorods probed by transient extreme ultraviolet spectroscopy. J. Phys. Chem. Lett. 9, 4120–4124 (2018).

    Article  CAS  Google Scholar 

  109. Vura-Weis, J. et al. Femtosecond M2,3-edge spectroscopy of transition-metal oxides: photoinduced oxidation state change in α-Fe2O3. J. Phys. Chem. Lett. 4, 3667–3671 (2013).

    Article  CAS  Google Scholar 

  110. Chen, W. & Xiong, W. Polaron-formation revealed by transient XUV imaginary refractive index changes in different iron compounds. Phys. Chem. Chem. Phys. 23, 4486–4490 (2021).

    Article  CAS  Google Scholar 

  111. Biswas, S., Husek, J. & Baker, L. R. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection–absorption spectroscopy. Chem. Commun. 54, 4216–4230 (2018).

    Article  CAS  Google Scholar 

  112. Santomauro, F. G. et al. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2. Sci. Rep. 5, 14834 (2015).

    Article  CAS  Google Scholar 

  113. Obara, Y. et al. Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL. Struct. Dyn. 4, 044033 (2017).

    Article  CAS  Google Scholar 

  114. Ismail, A. S. M. et al. Direct observation of the electronic states of photoexcited hematite with ultrafast 2p3d X-ray absorption spectroscopy and resonant inelastic X-ray scattering. Phys. Chem. Chem. Phys. 22, 2685–2692 (2020).

    Article  CAS  Google Scholar 

  115. Abdi, F. F., Savenije, T. J., May, M. M., Dam, B. & Van De Krol, R. The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 4, 2752–2757 (2013).

    Article  CAS  Google Scholar 

  116. Frost, J. M. & Walsh, A. What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49, 528–535 (2016).

    Article  CAS  Google Scholar 

  117. Ghosh, D., Welch, E., Neukirch, A. J., Zakhidov, A. & Tretiak, S. Polarons in halide perovskites: a perspective. J. Phys. Chem. Lett. 11, 3271–3286 (2020).

    Article  CAS  Google Scholar 

  118. Li, J. & Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5, 1360–1384 (2015).

    Article  CAS  Google Scholar 

  119. Durrant, J. R. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states. Phil. Trans. R. Soc. A 371, 20120195 (2013).

    Article  CAS  Google Scholar 

  120. Barroso, M., Pendlebury, S. R., Cowan, A. J. & Durrant, J. R. Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4, 2724 (2013).

    Article  CAS  Google Scholar 

  121. Tan, M. X. et al. in Progress in Inorganic Chemistry (ed. Karlin, K. D.) 21–144 (Wiley, 1994).

  122. Yang, Y. et al. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017).

    Article  CAS  Google Scholar 

  123. Borgarello, E., Kiwi, J., Graetzel, M., Pelizzetti, E. & Visca, M. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J. Am. Chem. Soc. 104, 2996–3002 (1982).

    Article  CAS  Google Scholar 

  124. Choi, W., Termin, A. & Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994).

    Article  Google Scholar 

  125. Konta, R., Ishii, T., Kato, H. & Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J. Phys. Chem. B 108, 8992–8995 (2004).

    Article  CAS  Google Scholar 

  126. Asahi, R., Morikawa, T., Irie, H. & Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem. Rev. 114, 9824–9852 (2014).

    Article  CAS  Google Scholar 

  127. Ansari, S. A., Khan, M. M., Ansari, M. O. & Cho, M. H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. N. J. Chem. 40, 3000–3009 (2016).

    Article  CAS  Google Scholar 

  128. Suzuki, H., Tomita, O., Higashi, M. & Abe, R. Design of nitrogen-doped layered tantalates for non-sacrificial and selective hydrogen evolution from water under visible light. J. Mater. Chem. A 4, 14444–14452 (2016).

    Article  CAS  Google Scholar 

  129. Xia, T. et al. Hydrogenated black ZnO nanoparticles with enhanced photocatalytic performance. RSC Adv. 4, 41654–41658 (2014).

    Article  CAS  Google Scholar 

  130. Guo, H.-L. et al. Oxygen deficient ZnO1−x nanosheets with high visible light photocatalytic activity. Nanoscale 7, 7216–7223 (2015).

    Article  CAS  Google Scholar 

  131. Fan, C.-M. et al. Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2−x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity. J. Phys. Chem. C 117, 24157–24166 (2013).

    Article  CAS  Google Scholar 

  132. Chen, X., Liu, L. & Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861–1885 (2015).

    Article  CAS  Google Scholar 

  133. Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    Article  CAS  Google Scholar 

  134. Xu, X. et al. Black BiVO4: size tailored synthesis, rich oxygen vacancies, and sodium storage performance. J. Mater. Chem. A 8, 1636–1645 (2020).

    Article  CAS  Google Scholar 

  135. Kawasaki, S. et al. Elucidation of Rh-induced in-gap states of Rh:SrTiO3 visible-light-driven photocatalyst by soft X-ray spectroscopy and first-principles calculations. J. Phys. Chem. C 116, 24445–24448 (2012).

    Article  CAS  Google Scholar 

  136. Murthy, D. H. K. et al. Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H2 evolution efficiency in doped SrTiO3 photocatalysts. Sustain. Energy Fuels 3, 208–218 (2019).

    Article  CAS  Google Scholar 

  137. Wang, G. et al. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ. Sci. 5, 6180 (2012).

    Article  CAS  Google Scholar 

  138. Ling, M. et al. Correlation of optical properties, electronic structure, and photocatalytic activity in nanostructured tungsten oxide. Adv. Mater. Interfaces 4, 1700064 (2017).

    Article  CAS  Google Scholar 

  139. Deb, S. K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cell 92, 245–258 (2008).

    Article  CAS  Google Scholar 

  140. Powell, A. W., Stavrinadis, A., Christodoulou, S., Quidant, R. & Konstantatos, G. On-demand activation of photochromic nanoheaters for high color purity 3D printing. Nano Lett. 20, 3485–3491 (2020).

    Article  CAS  Google Scholar 

  141. Chatten, R., Chadwick, A. V., Rougier, A. & Lindan, P. J. D. The oxygen vacancy in crystal phases of WO3. J. Phys. Chem. B 109, 3146–3156 (2005).

    Article  CAS  Google Scholar 

  142. Bange, K. Coloration of tungsten oxide films: a model for optically active coatings. Sol. Energy Mater. Sol. Cell 58, 1–131 (1999).

    Article  CAS  Google Scholar 

  143. Dixon, R. A. et al. Electronic states at oxygen deficient WO3(001) surfaces: a study by resonant photoemission. Surf. Sci. 399, 199–211 (1998).

    Article  CAS  Google Scholar 

  144. Zhang, S. B., Wei, S.-H., Zunger, A. & Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642–9656 (1998).

    Article  CAS  Google Scholar 

  145. Grave, D. A. et al. Extraction of mobile charge carrier photogeneration yield spectrum of ultrathin-film metal oxide photoanodes for solar water splitting. Nat. Mater. 20, 833–840 (2021).

    Article  CAS  Google Scholar 

  146. Kennedy, J. H. & Frese, K. W. Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709–714 (1978).

    Article  CAS  Google Scholar 

  147. Huang, Z. et al. In situ probe of photocarrier dynamics in water-splitting hematite (α-Fe2O3) electrodes. Energy Environ. Sci. 5, 8923 (2012).

    Article  CAS  Google Scholar 

  148. Hayes, D. et al. Electronic and nuclear contributions to time-resolved optical and X-ray absorption spectra of hematite and insights into photoelectrochemical performance. Energy Environ. Sci. 9, 3754–3769 (2016).

    Article  CAS  Google Scholar 

  149. Miao, C., Shi, T., Xu, G., Ji, S. & Ye, C. Photocurrent enhancement for Ti-doped Fe2O3 thin film photoanodes by an in situ solid-state reaction method. ACS Appl. Mater. Interfaces 5, 1310–1316 (2013).

    Article  CAS  Google Scholar 

  150. Zhao, B. et al. Electrical transport properties of Ti-doped Fe2O3 (0001) epitaxial films. Phys. Rev. B 84, 245325 (2011).

    Article  CAS  Google Scholar 

  151. Wang, G. et al. Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett. 11, 3503–3509 (2011).

    Article  CAS  Google Scholar 

  152. Smart, T. J. & Ping, Y. Effect of defects on the small polaron formation and transport properties of hematite from first-principles calculations. J. Phys. Condens. Matter 29, 394006 (2017).

    Article  Google Scholar 

  153. Ling, Y., Wang, G., Wheeler, D. A., Zhang, J. Z. & Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11, 2119–2125 (2011).

    Article  CAS  Google Scholar 

  154. Liu, J. et al. Highly oriented Ge-doped hematite nanosheet arrays for photoelectrochemical water oxidation. Nano Energy 9, 282–290 (2014).

    Article  CAS  Google Scholar 

  155. Berglund, S. P., Rettie, A. J. E., Hoang, S. & Mullins, C. B. Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation. Phys. Chem. Chem. Phys. 14, 7065–7075 (2012).

    Article  CAS  Google Scholar 

  156. Luo, W. et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 4, 4046 (2011).

    Article  CAS  Google Scholar 

  157. Zhao, X., Hu, J., Chen, S. & Chen, Z. An investigation on the role of W doping in BiVO4 photoanodes used for solar water splitting. Phys. Chem. Chem. Phys. 20, 13637–13645 (2018).

    Article  CAS  Google Scholar 

  158. Ludwig, G. W. & Watters, R. L. Drift and conductivity mobility in silicon. Phys. Rev. 101, 1699–1701 (1956).

    Article  CAS  Google Scholar 

  159. Cronemeyer, D. C. Hall and drift mobility in high-resistivity single-crystal silicon. Phys. Rev. 105, 522–523 (1957).

    Article  CAS  Google Scholar 

  160. Rosso, K. M., Smith, D. M. A. & Dupuis, M. An ab initio model of electron transport in hematite (α-Fe2O3) basal planes. J. Chem. Phys. 118, 6455–6466 (2003).

    Article  CAS  Google Scholar 

  161. Iordanova, N., Dupuis, M. & Rosso, K. M. Charge transport in metal oxides: a theoretical study of hematite α-Fe2O3. J. Chem. Phys. 122, 144305 (2005).

    Article  CAS  Google Scholar 

  162. Zhang, L. et al. Significantly enhanced photocurrent for water oxidation in monolithic Mo:BiVO4/SnO2/Si by thermally increasing the minority carrier diffusion length. Energy Environ. Sci. 9, 2044–2052 (2016).

    Article  CAS  Google Scholar 

  163. Selim, S. et al. Impact of oxygen vacancy occupancy on charge carrier dynamics in BiVO4 photoanodes. J. Am. Chem. Soc. 141, 18791–18798 (2019).

    Article  CAS  Google Scholar 

  164. Cooper, J. K. et al. Role of hydrogen in defining the n-type character of BiVO4 photoanodes. Chem. Mater. 28, 5761–5771 (2016).

    Article  CAS  Google Scholar 

  165. Seo, H., Ping, Y. & Galli, G. Role of point defects in enhancing the conductivity of BiVO4. Chem. Mater. 30, 7793–7802 (2018).

    Article  CAS  Google Scholar 

  166. Rossell, M. D. et al. Direct evidence of surface reduction in monoclinic BiVO4. Chem. Mater. 27, 3593–3600 (2015).

    Article  CAS  Google Scholar 

  167. Hegner, F. S., Forrer, D., Galán-Mascarós, J. R., López, N. & Selloni, A. Versatile nature of oxygen vacancies in bismuth vanadate bulk and (001) surface. J. Phys. Chem. Lett. 10, 6672–6678 (2019).

    Article  CAS  Google Scholar 

  168. Vequizo, J. J. M. et al. Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders. ACS Catal. 7, 2644–2651 (2017).

    Article  CAS  Google Scholar 

  169. Moss, B. et al. Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO2. Sci. Rep. 7, 2938 (2017).

    Article  CAS  Google Scholar 

  170. Corby, S. et al. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat. Rev. Mater. 6, 1136–1155 (2021).

    Article  CAS  Google Scholar 

  171. Corby, S. et al. Charge separation, band-bending, and recombination in WO3 photoanodes. J. Phys. Chem. Lett. 10, 5395–5401 (2019).

    Article  CAS  Google Scholar 

  172. Lohaus, C., Klein, A. & Jaegermann, W. Limitation of Fermi level shifts by polaron defect states in hematite photoelectrodes. Nat. Commun. 9, 4309 (2018).

    Article  CAS  Google Scholar 

  173. Guijarro, N. et al. Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: prospects and limitations. Sustain. Energy Fuels 2, 103–117 (2018).

    Article  CAS  Google Scholar 

  174. Kato, M., Zhang, J. Z., Paul, N. & Reisner, E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem. Soc. Rev. 43, 6485–6497 (2014).

    Article  CAS  Google Scholar 

  175. Cowan, A. J. & Durrant, J. R. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem. Soc. Rev. 42, 2281–2293 (2013).

    Article  CAS  Google Scholar 

  176. Kato, Y., Nagao, R. & Noguchi, T. Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation. Proc. Natl Acad. Sci. USA 113, 620–625 (2016).

    Article  CAS  Google Scholar 

  177. Kalinin, S. V. & Spaldin, N. A. Functional ion defects in transition metal oxides. Science 341, 858–859 (2013).

    Article  CAS  Google Scholar 

  178. Wu, F. & Ping, Y. Combining Landau–Zener theory and kinetic Monte Carlo sampling for small polaron mobility of doped BiVO4 from first-principles. J. Mater. Chem. A 6, 20025–20036 (2018).

    Article  CAS  Google Scholar 

  179. Pastor, E. et al. Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface. Nat. Commun. 8, 14280 (2017).

    Article  CAS  Google Scholar 

  180. Pendlebury, S. R. et al. Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ. Sci. 5, 6304–6312 (2012).

    Article  CAS  Google Scholar 

  181. Le Formal, F. et al. Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 137, 6629–6637 (2015).

    Article  CAS  Google Scholar 

  182. Li, J. et al. Reaction kinetics and interplay of two different surface states on hematite photoanodes for water oxidation. Nat. Commun. 12, 255 (2021).

    Article  CAS  Google Scholar 

  183. Meirer, F. & Weckhuysen, B. M. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat. Rev. Mater. 3, 324–340 (2018).

    Article  Google Scholar 

  184. Eichhorn, J., Jiang, C.-M., Cooper, J. K., Sharp, I. D. & Toma, F. M. Nanoscale heterogeneities and composition–reactivity relationships in copper vanadate photoanodes. ACS Appl. Mater. Interfaces 13, 23575–23583 (2021).

    Article  CAS  Google Scholar 

  185. Ambrosio, F., Wiktor, J. & Pasquarello, A. pH-Dependent catalytic reaction pathway for water splitting at the BiVO4–water interface from the band alignment. ACS Energy Lett. 3, 829–834 (2018).

    Article  CAS  Google Scholar 

  186. Govind Rajan, A., Martirez, J. M. P. & Carter, E. A. Why do we use the materials and operating conditions we use for heterogeneous (photo)electrochemical water splitting? ACS Catal. 10, 11177–11234 (2020).

    Article  CAS  Google Scholar 

  187. Iqbal, A. & Bevan, K. H. Simultaneously solving the photovoltage and photocurrent at semiconductor–liquid interfaces. J. Phys. Chem. C 122, 30–43 (2018).

    Article  CAS  Google Scholar 

  188. Bhati, M., Chen, Y. & Senftle, T. P. Density functional theory modeling of photo-electrochemical reactions on semiconductors: H2 evolution on 3C-SiC. J. Phys. Chem. C 124, 26625–26639 (2020).

    Article  CAS  Google Scholar 

  189. Butler, K. T., Sai Gautam, G. & Canepa, P. Designing interfaces in energy materials applications with first-principles calculations. NPJ Comput. Mater. 5, 19 (2019).

    Article  Google Scholar 

  190. Liao, P. & Carter, E. A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem. Soc. Rev. 42, 2401–2422 (2013).

    Article  CAS  Google Scholar 

  191. Shi, Q. et al. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: tuning the electron trapping process. ACS Catal. 8, 3331–3342 (2018).

    Article  CAS  Google Scholar 

  192. Zandi, O. & Hamann, T. W. Enhanced water splitting efficiency through selective surface state removal. J. Phys. Chem. Lett. 5, 1522–1526 (2014).

    Article  CAS  Google Scholar 

  193. Zhang, P., Wang, T. & Gong, J. Passivation of surface states by ALD-grown TiO2 overlayers on Ta3N5 anodes for photoelectrochemical water oxidation. Chem. Commun. 52, 8806–8809 (2016).

    Article  CAS  Google Scholar 

  194. Le Formal, F. et al. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737–743 (2011).

    Article  Google Scholar 

  195. Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    Article  CAS  Google Scholar 

  196. Hermans, Y., Murcia-López, S., Klein, A. & Jaegermann, W. BiVO4 surface reduction upon water exposure. ACS Energy Lett. 4, 2522–2528 (2019).

    Article  CAS  Google Scholar 

  197. Hu, J., Zhao, X., Chen, W., Su, H. & Chen, Z. Theoretical insight into the mechanism of photoelectrochemical oxygen evolution reaction on BiVO4 anode with oxygen vacancy. J. Phys. Chem. C 121, 18702–18709 (2017).

    Article  CAS  Google Scholar 

  198. Zhang, X., Klaver, P., van Santen, R., van de Sanden, M. C. M. & Bieberle-Hütter, A. Oxygen evolution at hematite surfaces: the impact of structure and oxygen vacancies on lowering the overpotential. J. Phys. Chem. C 120, 18201–18208 (2016).

    Article  CAS  Google Scholar 

  199. Liao, P., Keith, J. A. & Carter, E. A. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc. 134, 13296–13309 (2012).

    Article  CAS  Google Scholar 

  200. Pan, L. et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 11, 418 (2020).

    Article  CAS  Google Scholar 

  201. Zhang, Y. et al. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting. Angew. Chem. Int. Ed. 58, 14229–14233 (2019).

    Article  CAS  Google Scholar 

  202. Huang, Y., Yu, Y., Yu, Y. & Zhang, B. Oxygen vacancy engineering in photocatalysis. Sol. RRL 4, 2000037 (2020).

    Article  CAS  Google Scholar 

  203. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article  CAS  Google Scholar 

  204. Hong, W. T. et al. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 10, 2190–2200 (2017).

    Article  CAS  Google Scholar 

  205. Günnemann, C., Bahnemann, D. W. & Robertson, P. K. J. Isotope effects in photocatalysis: an underexplored issue. ACS Omega 6, 11113–11121 (2021).

    Article  CAS  Google Scholar 

  206. Civiš, S., Ferus, M., Kubát, P., Zukalová, M. & Kavan, L. Oxygen-isotope exchange between CO2 and solid Ti18O2. J. Phys. Chem. C 115, 11156–11162 (2011).

    Article  CAS  Google Scholar 

  207. Montoya, J. F. et al. Catalytic role of surface oxygens in TiO2 photooxidation reactions: aqueous benzene photooxidation with Ti18O2 under anaerobic conditions. J. Phys. Chem. Lett. 4, 1415–1422 (2013).

    Article  CAS  Google Scholar 

  208. Mikhaylov, R. V., Lisachenko, A. A. & Titov, V. V. Investigation of photostimulated oxygen isotope exchange on TiO2 Degussa P25 surface upon UV–vis irradiation. J. Phys. Chem. C 116, 23332–23341 (2012).

    Article  CAS  Google Scholar 

  209. Courbon, H., Formenti, M. & Pichat, P. Study of oxygen isotopic exchange over ultraviolet irradiated anatase samples and comparison with the photooxidation of isobutane into acetone. J. Phys. Chem. 81, 550–554 (1977).

    Article  CAS  Google Scholar 

  210. Mesa, C. A. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 82–89 (2020).

    Article  CAS  Google Scholar 

  211. Garcés-Pineda, F. A., Blasco-Ahicart, M., Nieto-Castro, D., López, N. & Galán-Mascarós, J. R. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4, 519–525 (2019).

    Article  CAS  Google Scholar 

  212. Wang, Y. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 4, 746–760 (2019).

    Article  CAS  Google Scholar 

  213. Vyas, V. S., Lau, V. W. & Lotsch, B. V. Soft photocatalysis: organic polymers for solar fuel production. Chem. Mater. 28, 5191–5204 (2016).

    Article  CAS  Google Scholar 

  214. Banerjee, T., Podjaski, F., Kröger, J., Biswal, B. P. & Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 6, 168–190 (2021).

    Article  CAS  Google Scholar 

  215. Cao, S., Low, J., Yu, J. & Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015).

    Article  CAS  Google Scholar 

  216. Ong, W.-J., Tan, L.-L., Ng, Y. H., Yong, S.-T. & Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016).

    Article  CAS  Google Scholar 

  217. Godin, R., Wang, Y., Zwijnenburg, M. A., Tang, J. & Durrant, J. R. Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 139, 5216–5224 (2017).

    Article  CAS  Google Scholar 

  218. Walsh, J. J., Jiang, C., Tang, J. & Cowan, A. J. Photochemical CO2 reduction using structurally controlled g-C3N4. Phys. Chem. Chem. Phys. 18, 24825–24829 (2016).

    Article  CAS  Google Scholar 

  219. Lau, V. W. et al. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 7, 12165 (2016).

    Article  CAS  Google Scholar 

  220. Kasap, H. et al. Solar-driven reduction of aqueous protons coupled to selective alcohol oxidation with a carbon nitride–molecular Ni catalyst system. J. Am. Chem. Soc. 138, 9183–9192 (2016).

    Article  CAS  Google Scholar 

  221. Savoie, B. M. et al. Unequal partnership: asymmetric roles of polymeric donor and fullerene acceptor in generating free charge. J. Am. Chem. Soc. 136, 2876–2884 (2014).

    Article  CAS  Google Scholar 

  222. Huang, H., Pradhan, B., Hofkens, J., Roeffaers, M. B. J. & Steele, J. A. Solar-driven metal halide perovskite photocatalysis: design, stability, and performance. ACS Energy Lett. 5, 1107–1123 (2020).

    Article  CAS  Google Scholar 

  223. Singh, S. et al. Hybrid organic–inorganic materials and composites for photoelectrochemical water splitting. ACS Energy Lett. 5, 1487–1497 (2020).

    Article  CAS  Google Scholar 

  224. Schanze, K. S., Kamat, P. V., Yang, P. & Bisquert, J. Progress in perovskite photocatalysis. ACS Energy Lett. 5, 2602–2604 (2020).

    Article  CAS  Google Scholar 

  225. Shyamal, S. et al. Facets and defects in perovskite nanocrystals for photocatalytic CO2 reduction. J. Phys. Chem. Lett. 11, 3608–3614 (2020).

    Article  CAS  Google Scholar 

  226. Zhu, X., Lin, Y., Sun, Y., Beard, M. C. & Yan, Y. Lead-halide perovskites for photocatalytic α-alkylation of aldehydes. J. Am. Chem. Soc. 141, 733–738 (2019).

    Article  CAS  Google Scholar 

  227. Cardenas-Morcoso, D. et al. Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots. J. Phys. Chem. Lett. 10, 630–636 (2019).

    Article  CAS  Google Scholar 

  228. Gualdrón-Reyes, A. F. et al. Unravelling the photocatalytic behavior of all-inorganic mixed halide perovskites: the role of surface chemical states. ACS Appl. Mater. Interfaces 12, 914–924 (2020).

    Article  CAS  Google Scholar 

  229. Xu, Y.-F. et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 139, 5660–5663 (2017).

    Article  CAS  Google Scholar 

  230. Park, S., Choi, S., Kim, S. & Nam, K. T. Metal halide perovskites for solar fuel production and photoreactions. J. Phys. Chem. Lett. 12, 8292–8301 (2021).

    Article  CAS  Google Scholar 

  231. Wang, H. et al. Promoting photocatalytic H2 evolution on organic–inorganic hybrid perovskite nanocrystals by simultaneous dual-charge transportation modulation. ACS Energy Lett. 4, 40–47 (2019).

    Article  CAS  Google Scholar 

  232. Kumar, S., Regue, M., Isaacs, M. A., Freeman, E. & Eslava, S. All-inorganic CsPbBr3 nanocrystals: gram-scale mechanochemical synthesis and selective photocatalytic CO2 reduction to methane. ACS Appl. Energy Mater. 3, 4509–4522 (2020).

    Article  CAS  Google Scholar 

  233. Huang, Y. T., Kavanagh, S. R., Scanlon, D. O., Walsh, A. & Hoye, R. L. Z. Perovskite-inspired materials for photovoltaics and beyond-from design to devices. Nanotechnology 32, 132004 (2021).

    Article  CAS  Google Scholar 

  234. Jin, H. et al. It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 7, 397–410 (2020).

    Article  CAS  Google Scholar 

  235. Zhu, X.-Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    Article  CAS  Google Scholar 

  236. Puppin, M. et al. Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3. Phys. Rev. Lett. 124, 206402 (2020).

    Article  CAS  Google Scholar 

  237. Guzelturk, B. et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).

    Article  CAS  Google Scholar 

  238. Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  CAS  Google Scholar 

  239. Kabakova, I. V. et al. The effect of ionic composition on acoustic phonon speeds in hybrid perovskites from Brillouin spectroscopy and density functional theory. J. Mater. Chem. C 6, 3861–3868 (2018).

    Article  CAS  Google Scholar 

  240. Limmer, D. T. & Ginsberg, N. S. Photoinduced phase separation in the lead halides is a polaronic effect. J. Chem. Phys. 152, 230901 (2020).

    Article  CAS  Google Scholar 

  241. Cui, Y. et al. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys. Chem. Chem. Phys. 14, 1455–1462 (2012).

    Article  CAS  Google Scholar 

  242. Fabian, D. M. et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825–2850 (2015).

    Article  CAS  Google Scholar 

  243. Ager, J. W., Shaner, M. R., Walczak, K. A., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015).

    Article  CAS  Google Scholar 

  244. Jiang, C., Moniz, S. J. A., Wang, A., Zhang, T. & Tang, J. Photoelectrochemical devices for solar water splitting — materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017).

    Article  CAS  Google Scholar 

  245. Moss, B., Babacan, O., Kafizas, A. & Hankin, A. A review of inorganic photoelectrode developments and reactor scale-up challenges for solar hydrogen production. Adv. Energy Mater. 11, 2003286 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Harnett for sharing his data and insights on WO3. E.P. acknowledges support from grant IJC2018-037384-I, funded by MCIN/AEI /10.13039/501100011033. S.S. and J.R.D. acknowledge funding from the European Union’s Horizon 2020 Research And Innovation Programme under grant agreements 884444-SUN2CHEM and 732840-A-LEAF. M.S. thanks the UK EPSRC for a Doctoral Prize Fellowship. A.A.B. is a Royal Society University Research Fellow. This work was partially funded by CEX2019-000910-S (MCIN/AEI/10.13039/501100011033), Fundació Cellex, Fundació Mir-Puig and Generalitat de Catalunya through CERCA.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the article. E.P. and A.W. also researched the data, discussed the content and edited the article prior to submission.

Corresponding authors

Correspondence to Ernest Pastor or Aron Walsh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Robert Baker, Giulia Galli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastor, E., Sachs, M., Selim, S. et al. Electronic defects in metal oxide photocatalysts. Nat Rev Mater 7, 503–521 (2022). https://doi.org/10.1038/s41578-022-00433-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00433-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing