Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamic and reconfigurable materials from reversible network interactions

Abstract

Polymer materials provide solutions to some of the most pressing environmental, manufacturing and health-care challenges. Traditional thermoplastic and thermoset networks, however, have a limited capacity to reconfigure and restructure, and fail to match the dynamics required for many applications. Introducing dynamic bonding interactions into polymer networks can produce materials that are more easily processed, applied and recycled than their static counterparts. In this Review, we highlight an array of polymer materials designed with dynamic bonds and reconfigurable networks, and discuss the different classes of molecular-scale motifs used to realize dynamic behaviour. After surveying the fundamental polymer physics governing dynamic networks, we examine the many ways to engineer the time regimes of dynamic materials to suit particular applications. Finally, we conclude by discussing opportunities to further develop and integrate these dynamic concepts into existing processes and applications of polymer materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamic polymer materials from exchange of network bonding.
Fig. 2: The reversible bond governs macroscale properties in dynamic polymer materials.
Fig. 3: Engineering the time regime in dynamic polymer materials empowers applications.

Similar content being viewed by others

References

  1. Brazel, C. S. & Rosen, S. L. Fundamental Principles of Polymeric Materials (Wiley, 2012).

  2. Lutz, J.-F., Lehn, J.-M., Meijer, E. W. & Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 1, 16024 (2016).

    Article  CAS  Google Scholar 

  3. Staudinger, H. Über Polymerisation. Ber. Dtsch. Chem. Ges. 53, 1073–1085 (1920).

    Article  Google Scholar 

  4. Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019).

    Article  CAS  Google Scholar 

  5. Fuchs, Y., Soppera, O. & Haupt, K. Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications — a review. Anal. Chim. Acta 717, 7–20 (2012).

    Article  CAS  Google Scholar 

  6. Mike, J. F. & Lutkenhaus, J. L. Recent advances in conjugated polymer energy storage. J. Polym. Sci. B Polym. Phys. 51, 468–480 (2013).

    Article  CAS  Google Scholar 

  7. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    Article  CAS  Google Scholar 

  8. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2017).

    Article  CAS  Google Scholar 

  9. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article  CAS  Google Scholar 

  10. Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360–364 (2019).

    Article  CAS  Google Scholar 

  11. de Pablo, J. J. et al. New frontiers for the materials genome initiative. npj Comput. Mater. 5, 41 (2019).

    Article  Google Scholar 

  12. Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).

    Article  CAS  Google Scholar 

  13. Law, K. L. et al. Plastic accumulation in the North Atlantic subtropical gyre. Science 329, 1185–1188 (2010).

    Article  CAS  Google Scholar 

  14. Jambeck, J. R. et al. Marine pollution. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article  CAS  Google Scholar 

  15. Garcia, J. M. & Robertson, M. L. The future of plastics recycling. Science 358, 870–872 (2017).

    Article  CAS  Google Scholar 

  16. Hillmyer, M. A. The promise of plastics from plants. Science 358, 868–870 (2017).

    Article  CAS  Google Scholar 

  17. Correa, S. et al. Translational applications of hydrogels. Chem. Rev. 121, 11385–11457 (2021).

    Article  CAS  Google Scholar 

  18. Christensen, P. R., Scheuermann, A. M., Loeffler, K. E. & Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442–448 (2019).

    Article  CAS  Google Scholar 

  19. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  CAS  Google Scholar 

  20. Coates, G. W. & Yutan, D. Y. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  21. Scheutz, G. M., Lessard, J. J., Sims, M. B. & Sumerlin, B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc. 141, 16181–16196 (2019).

    Article  CAS  Google Scholar 

  22. Kloxin, C. J. & Bowman, C. N. Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42, 7161–7173 (2013).

    Article  CAS  Google Scholar 

  23. Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).

    Article  CAS  Google Scholar 

  24. Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 10, 14–27 (2011).

    Article  CAS  Google Scholar 

  25. Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942).

    Article  CAS  Google Scholar 

  26. Jiang, G. et al. Network structure and compositional effects on tensile mechanical properties of hydrophobic association hydrogels with high mechanical strength. Polymer 51, 1507–1515 (2010).

    Article  CAS  Google Scholar 

  27. Jiang, H., Duan, L., Ren, X. & Gao, G. Hydrophobic association hydrogels with excellent mechanical and self-healing properties. Eur. Polym. J. 112, 660–669 (2019).

    Article  CAS  Google Scholar 

  28. Schauser, N. S. et al. The role of backbone polarity on aggregation and conduction of ions in polymer electrolytes. J. Am. Chem. Soc. 142, 7055–7065 (2020).

    Article  CAS  Google Scholar 

  29. Trigg, E. B. et al. Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport. Nat. Mater. 17, 725–731 (2018).

    Article  CAS  Google Scholar 

  30. Zhang, Q. et al. Assembling a natural small molecule into a supramolecular network with high structural order and dynamic functions. J. Am. Chem. Soc. 141, 12804–12814 (2019).

    Article  CAS  Google Scholar 

  31. Appel, E. A., del Barrio, J., Loh, X. J. & Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195–6214 (2012).

    Article  CAS  Google Scholar 

  32. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  Google Scholar 

  33. Mantooth, S. M., Munoz-Robles, B. G. & Webber, M. J. Dynamic hydrogels from host–guest supramolecular interactions. Macromol. Biosci. 19, e1800281 (2019).

    Article  CAS  Google Scholar 

  34. Herbst, F., Döhler, D., Michael, P. & Binder, W. H. Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 34, 203–220 (2013).

    Article  CAS  Google Scholar 

  35. Dobb, M. G., Johnson, D. J. & Saville, B. P. Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49). J. Polym. Sci. 15, 2201–2211 (1977).

    CAS  Google Scholar 

  36. Montarnal, D., Tournilhac, F., Hidalgo, M., Couturier, J.-L. & Leibler, L. Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J. Am. Chem. Soc. 131, 7966–7967 (2009).

    Article  CAS  Google Scholar 

  37. Freitas, L. L. D. L., De Lucca Freitas, L. L. & Stadler, R. Thermoplastic elastomers by hydrogen bonding. 3. Interrelations between molecular parameters and rheological properties. Macromolecules 20, 2478–2485 (1987).

    Article  Google Scholar 

  38. Kautz, H., van Beek, D. J. M., Sijbesma, R. P. & Meijer, E. W. Cooperative end-to-end and lateral hydrogen-bonding motifs in supramolecular thermoplastic elastomers. Macromolecules 39, 4265–4267 (2006).

    Article  CAS  Google Scholar 

  39. Koevoets, R. A. et al. Molecular recognition in a thermoplastic elastomer. J. Am. Chem. Soc. 127, 2999–3003 (2005).

    Article  CAS  Google Scholar 

  40. Grindy, S. C. et al. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 14, 1210–1216 (2015).

    Article  CAS  Google Scholar 

  41. Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

    Article  CAS  Google Scholar 

  42. Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Article  Google Scholar 

  43. Zou, W., Dong, J., Luo, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater. 29, 1606100 (2017).

    Article  CAS  Google Scholar 

  44. Kloxin, C. J., Scott, T. F., Adzima, B. J. & Bowman, C. N. Covalent adaptable networks (CANs): a unique paradigm in cross-linked polymers. Macromolecules 43, 2643–2653 (2010).

    Article  CAS  Google Scholar 

  45. Reutenauer, P., Buhler, E., Boul, P. J., Candau, S. J. & Lehn, J.-M. Room temperature dynamic polymers based on Diels–Alder chemistry. Chem. Eur. J. 15, 1893–1900 (2009).

    Article  CAS  Google Scholar 

  46. Yesilyurt, V. et al. Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties. Adv. Mater. 28, 86–91 (2016).

    Article  CAS  Google Scholar 

  47. Marco-Dufort, B., Willi, J., Vielba-Gomez, F., Gatti, F. & Tibbitt, M. W. Environment controls biomolecule release from dynamic covalent hydrogels. Biomacromolecules 22, 146–157 (2021).

    Article  CAS  Google Scholar 

  48. Marco-Dufort, B., Iten, R. & Tibbitt, M. W. Linking molecular behavior to macroscopic properties in ideal dynamic covalent networks. J. Am. Chem. Soc. 142, 15371–15385 (2020).

    Article  CAS  Google Scholar 

  49. Yang, Y. & Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013).

    Article  CAS  Google Scholar 

  50. Elling, B. R. & Dichtel, W. R. Reprocessable cross-linked polymer networks: are associative exchange mechanisms desirable? ACS Cent. Sci. 6, 1488–1496 (2020).

    Article  CAS  Google Scholar 

  51. Winne, J. M., Leibler, L. & Du Prez, F. E. Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polym. Chem. 10, 6091–6108 (2019).

    Article  CAS  Google Scholar 

  52. Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    Article  CAS  Google Scholar 

  53. Denissen, W., Winne, J. M. & Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7, 30–38 (2016).

    Article  CAS  Google Scholar 

  54. Scott, T. F., Schneider, A. D., Cook, W. D. & Bowman, C. N. Photoinduced plasticity in cross-linked polymers. Science 308, 1615–1617 (2005).

    Article  CAS  Google Scholar 

  55. Denissen, W. et al. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nat. Commun. 8, 14857 (2017).

    Article  CAS  Google Scholar 

  56. Jourdain, A. et al. Rheological properties of covalent adaptable networks with 1,2,3-triazolium cross-links: the missing link between vitrimers and dissociative networks. Macromolecules 53, 1884–1900 (2020).

    Article  CAS  Google Scholar 

  57. Chakma, P. & Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem. 131, 9784–9797 (2019).

    Article  Google Scholar 

  58. Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    Article  CAS  Google Scholar 

  59. Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., de Greef, T. F. A. & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).

    Article  CAS  Google Scholar 

  60. Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    Article  CAS  Google Scholar 

  61. Berthier, L. & Kurchan, J. Non-equilibrium glass transitions in driven and active matter. Nat. Phys. 9, 310–314 (2013).

    Article  CAS  Google Scholar 

  62. Sagi, A., Weinstain, R., Karton, N. & Shabat, D. Self-immolative polymers. J. Am. Chem. Soc. 130, 5434–5435 (2008).

    Article  CAS  Google Scholar 

  63. Yardley, R. E., Kenaree, A. R. & Gillies, E. R. Triggering depolymerization: progress and opportunities for self-immolative polymers. Macromolecules 52, 6342–6360 (2019).

    Article  CAS  Google Scholar 

  64. Sasaki, T. et al. Dismantlable thermosetting adhesives composed of a cross-linkable poly(olefin sulfone) with a photobase generator. ACS Appl. Mater. Interfaces 8, 5580–5585 (2016).

    Article  CAS  Google Scholar 

  65. Parada, G. A. & Zhao, X. Ideal reversible polymer networks. Soft Matter 14, 5186–5196 (2018).

    Article  CAS  Google Scholar 

  66. Zou, L., Braegelman, A. S. & Webber, M. J. Dynamic supramolecular hydrogels spanning an unprecedented range of host–guest affinity. ACS Appl. Mater. Interfaces 11, 5695–5700 (2019).

    Article  CAS  Google Scholar 

  67. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  CAS  Google Scholar 

  68. Gu, Y., Zhao, J. & Johnson, J. A. Polymer networks: from plastics and gels to porous frameworks. Angew. Chem. Int. Ed. 59, 5022–5049 (2020).

    Article  CAS  Google Scholar 

  69. Podgórski, M. et al. Toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks (CANs). Adv. Mater. 32, 1906876 (2020).

    Article  CAS  Google Scholar 

  70. Ricarte, R. G., Tournilhac, F., Cloître, M. & Leibler, L. Linear viscoelasticity and flow of self-assembled vitrimers: the case of a polyethylene/dioxaborolane system. Macromolecules 53, 1852–1866 (2020).

    Article  CAS  Google Scholar 

  71. Reiner, M. The Deborah number. Phys. Today 17, 62–62 (1964).

    Article  Google Scholar 

  72. Huilgol, R. R. On the concept of the Deborah number. Trans. Soc. Rheology 19, 297–306 (1975).

    Article  Google Scholar 

  73. Poole, R. J. The Deborah and Weissenberg numbers. Rheol. Bull. 53, 32–39 (2012).

    Google Scholar 

  74. Rouse, P. E. Constrained inversion of rheological data to molecular weight distribution for polymer melts. J. Chem. Phys. 21, 1271–1280 (1953).

    Article  Google Scholar 

  75. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

  76. Zimm, B. H. Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 24, 269–278 (1956).

    Article  CAS  Google Scholar 

  77. de Gennes, P.-G. & Gennes, P.-G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).

  78. Doi, M., Edwards, S. F. & Edwards, S. F. The Theory of Polymer Dynamics (Clarendon, 1988).

  79. Tang, S. & Olsen, B. D. Relaxation processes in supramolecular metallogels based on histidine–nickel coordination bonds. Macromolecules 49, 9163–9175 (2016).

    Article  CAS  Google Scholar 

  80. Green, M. S. & Tobolsky, A. V. A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14, 80–92 (1946).

    Article  CAS  Google Scholar 

  81. Cates, M. E. & Witten, T. A. Chain conformation and solubility of associating polymers. Macromolecules 19, 732–739 (1986).

    Article  CAS  Google Scholar 

  82. Hackelbusch, S., Rossow, T., van Assenbergh, P. & Seiffert, S. Chain dynamics in supramolecular polymer networks. Macromolecules 46, 6273–6286 (2013).

    Article  CAS  Google Scholar 

  83. Semenov, A. N. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31, 1373–1385 (1998).

    Article  CAS  Google Scholar 

  84. Rubinstein, M. & Semenov, A. N. Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 31, 1386–1397 (1998).

    Article  CAS  Google Scholar 

  85. Tanaka, F. & Edwards, S. F. Viscoelastic properties of physically crosslinked networks. 1. Transient network theory. Macromolecules 25, 1516–1523 (1992).

    Article  CAS  Google Scholar 

  86. Pezron, E., Ricard, A. & Leibler, L. Rheology of galactomannan-borax gels. J. Polym. Sci. B Polym. Phys. 28, 2445–2461 (1990).

    Article  CAS  Google Scholar 

  87. Leibler, L., Rubinstein, M. & Colby, R. H. Dynamics of reversible networks. Macromolecules 24, 4701–4707 (1991).

    Article  CAS  Google Scholar 

  88. Sheridan, R. J. & Bowman, C. N. A simple relationship relating linear viscoelastic properties and chemical structure in a model Diels–Alder polymer network. Macromolecules 45, 7634–7641 (2012).

    Article  CAS  Google Scholar 

  89. Xu, D. & Craig, S. L. Scaling laws in supramolecular polymer networks. Macromolecules 44, 5465–5472 (2011).

    Article  CAS  Google Scholar 

  90. Yount, W. C., Loveless, D. M. & Craig, S. L. Strong means slow: dynamic contributions to the bulk mechanical properties of supramolecular networks. Angew. Chem. Int. Ed. 44, 2746–2748 (2005).

    Article  CAS  Google Scholar 

  91. Yount, W. C., Loveless, D. M. & Craig, S. L. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J. Am. Chem. Soc. 127, 14488–14496 (2005).

    Article  CAS  Google Scholar 

  92. Yesilyurt, V. et al. Mixed reversible covalent crosslink kinetics enable precise, hierarchical mechanical tuning of hydrogel networks. Adv. Mater. 29, 1605947 (2017).

    Article  CAS  Google Scholar 

  93. Berry, G. C. & Plazek, D. J. On the use of stretched-exponential functions for both linear viscoelastic creep and stress relaxation. Rheol. Acta 36, 320–329 (1997).

    Article  CAS  Google Scholar 

  94. Jaishankar, A. & McKinley, G. H. Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc. R. Soc. A 469, 20120284 (2013).

    Article  Google Scholar 

  95. Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O. Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory (Wiley, 1987).

  96. Flory, P. J. Molecular size distribution in three dimensional polymers. I. Gelation. J. Am. Chem. Soc. 63, 3083–3090 (1941).

    Article  CAS  Google Scholar 

  97. Stockmayer, W. H. Theory of molecular size distribution and gel formation in branched polymers II. General cross linking. J. Chem. Phys. 12, 125–131 (1944).

    Article  CAS  Google Scholar 

  98. Macosko, C. W. & Miller, D. R. A new derivation of average molecular weights of nonlinear polymers. Macromolecules 9, 199–206 (1976).

    Article  CAS  Google Scholar 

  99. Anseth, K. S. & Bowman, C. N. Kinetic gelation model predictions of crosslinked polymer network microstructure. Chem. Eng. Sci. 49, 2207–2217 (1994).

    Article  CAS  Google Scholar 

  100. Broadbent, S. R. & Hammersley, J. M. Percolation processes: I. Crystals and mazes. Math. Proc. Cambridge Philos. Soc. 53, 629–641 (1957).

    Article  CAS  Google Scholar 

  101. Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973).

    Article  Google Scholar 

  102. McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Bis-aliphatic hydrazone-linked hydrogels form most rapidly at physiological pH: identifying the origin of hydrogel properties with small molecule kinetic studies. Chem. Mater. 26, 2382–2387 (2014).

    Article  CAS  Google Scholar 

  103. Treloar, L. R. G. The Physics of Rubber Elasticity (Oxford Univ. Press, 1975).

  104. Kuhn, W. Beziehungen zwischen Molekülgröße, statistischer Molekülgestalt und elastischen Eigenschaften hochpolymerer Stoffe. Kolloid-Zeitschrift 76, 258–271 (1936).

    Article  CAS  Google Scholar 

  105. Wall, F. T. Statistical thermodynamics of rubber. II. J. Chem. Phys. 10, 485–488 (1942).

    Article  CAS  Google Scholar 

  106. Flory, P. J. & Rehner, J. Jr Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 11, 512–520 (1943).

    Article  CAS  Google Scholar 

  107. James, H. M. & Guth, E. Theory of the elastic properties of rubber. J. Chem. Phys. 11, 455–481 (1943).

    Article  CAS  Google Scholar 

  108. Zhong, M., Wang, R., Kawamoto, K., Olsen, B. D. & Johnson, J. A. Quantifying the impact of molecular defects on polymer network elasticity. Science 353, 1264–1268 (2016).

    Article  CAS  Google Scholar 

  109. Lin, T.-S., Wang, R., Johnson, J. A. & Olsen, B. D. Extending the phantom network theory to account for cooperative effect of defects. Macromol. Symposia 385, 1900010 (2019).

    Article  CAS  Google Scholar 

  110. Grindy, S. C., Lenz, M. & Holten-Andersen, N. Engineering elasticity and relaxation time in metal-coordinate cross-linked hydrogels. Macromolecules 49, 8306–8312 (2016).

    Article  CAS  Google Scholar 

  111. Cazzell, S. A. & Holten-Andersen, N. Expanding the stoichiometric window for metal cross-linked gel assembly using competition. Proc. Natl Acad. Sci. USA 116, 21369–21374 (2019).

    Article  CAS  Google Scholar 

  112. Ferry, J. D. Viscoelastic Properties of Polymers (Wiley, 1980).

  113. Markovitz, H. Superposition in rheology. J. Polym. Sci. Polym. Symp. 50, 431–456 (2007).

    Article  Google Scholar 

  114. Leibler, L. & Pezron, E. in Space-Time Organization in Macromolecular Fluids (eds Tanaka, F., Doi, M. & Ohta, T.) 85–93 (Springer, 1989).

  115. Pezron, E., Leibler, L., Ricard, A., Lafuma, F. & Audebert, R. Complex formation in polymer-ion solution. 1. Polymer concentration effects. Macromolecules 22, 1169–1174 (1989).

    Article  CAS  Google Scholar 

  116. Pezron, E., Leibler, L. & Lafuma, F. Complex formation in polymer-ion solutions. 2. Polyelectrolyte effects. Macromolecules 22, 2656–2662 (1989).

    Article  CAS  Google Scholar 

  117. Mordvinkin, A. et al. Hierarchical sticker and sticky chain dynamics in self-healing butyl rubber ionomers. Macromolecules 52, 4169–4184 (2019).

    Article  CAS  Google Scholar 

  118. Podgórski, M. et al. Thiol–anhydride dynamic reversible networks. Angew. Chem. Int. Ed. 59, 9345–9349 (2020).

    Article  CAS  Google Scholar 

  119. He, C. et al. Conformational entropy as a means to control the behavior of poly(diketoenamine) vitrimers in and out of equilibrium. Angew. Chem. Int. Ed. 59, 735–739 (2020).

    Article  CAS  Google Scholar 

  120. Shen, W., Zhang, K., Kornfield, J. A. & Tirrell, D. A. Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat. Mater. 5, 153–158 (2006).

    Article  CAS  Google Scholar 

  121. Tang, S., Habicht, A., Li, S., Seiffert, S. & Olsen, B. D. Self-diffusion of associating star-shaped polymers. Macromolecules 49, 5599–5608 (2016).

    Article  CAS  Google Scholar 

  122. Rapp, P. B. et al. Analysis and control of chain mobility in protein hydrogels. J. Am. Chem. Soc. 139, 3796–3804 (2017).

    Article  CAS  Google Scholar 

  123. Rapp, P. B., Omar, A. K., Silverman, B. R., Wang, Z.-G. & Tirrell, D. A. Mechanisms of diffusion in associative polymer networks: evidence for chain hopping. J. Am. Chem. Soc. 140, 14185–14194 (2018).

    Article  CAS  Google Scholar 

  124. Marrucci, G., Bhargava, S. & Cooper, S. L. Models of shear-thickening behavior in physically crosslinked networks. Macromolecules 26, 6483–6488 (1993).

    Article  CAS  Google Scholar 

  125. Rasid, I. M., Ramirez, J., Olsen, B. D. & Holten-Andersen, N. Understanding the molecular origin of shear thinning in associative polymers through quantification of bond dissociation under shear. Phys. Rev. Mater. 4, 055602 (2020).

    Article  Google Scholar 

  126. Vaccaro, A. & Marrucci, G. A model for the nonlinear rheology of associating polymers. J. Nonnewton. Fluid Mech. 92, 261–273 (2000).

    Article  CAS  Google Scholar 

  127. Zaccarelli, E. Colloidal gels: equilibrium and non-equilibrium routes. J. Phys. Condens. Matter 19, 323101 (2007).

    Article  CAS  Google Scholar 

  128. Mewis, J. & Wagner, N. J. Colloidal Suspension Rheology (Cambridge Univ. Press, 2012).

  129. Wagner, N. J. & Brady, J. F. Shear thickening in colloidal dispersions. Phys. Today 62, 27–32 (2009).

    Article  CAS  Google Scholar 

  130. Wang, Q., Wang, L., Detamore, M. S. & Berkland, C. Biodegradable colloidal gels as moldable tissue engineering scaffolds. Adv. Mater. 20, 236–239 (2008).

    Article  CAS  Google Scholar 

  131. Whitaker, K. A. et al. Colloidal gel elasticity arises from the packing of locally glassy clusters. Nat. Commun. 10, 2237 (2019).

    Article  CAS  Google Scholar 

  132. Massaro, R., Colombo, G., Van Puyvelde, P. & Vermant, J. Viscoelastic cluster densification in sheared colloidal gels. Soft Matter 16, 2437–2447 (2020).

    Article  CAS  Google Scholar 

  133. Peppas, N. & Langer, R. New challenges in biomaterials. Science 263, 1715–1720 (1994).

    Article  CAS  Google Scholar 

  134. Zhou, H. et al. Injectable biomaterials for translational medicine. Mater. Today 28, 81–97 (2019).

    Article  CAS  Google Scholar 

  135. Kretlow, J. D., Young, S., Klouda, L., Wong, M. & Mikos, A. G. Injectable biomaterials for regenerating complex craniofacial tissues. Adv. Mater. 21, 3368–3393 (2009).

    Article  CAS  Google Scholar 

  136. Guvendiren, M., Lu, H. D. & Burdick, J. A. Shear-thinning hydrogels for biomedical applications. Soft Matter 8, 260–272 (2012).

    Article  CAS  Google Scholar 

  137. Perera, M. M., Mario Perera, M. & Ayres, N. Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels. Polym. Chem. 11, 1410–1423 (2020).

    Article  CAS  Google Scholar 

  138. Tang, S., Richardson, B. M. & Anseth, K. S. Dynamic covalent hydrogels as biomaterials to mimic the viscoelasticity of soft tissues. Prog. Mater. Sci. 120, 100738 (2021).

    Article  CAS  Google Scholar 

  139. Lopez Hernandez, H., Souza, J. W. & Appel, E. A. A quantitative description for designing the extrudability of shear-thinning physical hydrogels. Macromol. Biosci. 21, 2000295 (2021).

    Article  CAS  Google Scholar 

  140. Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J. & Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. A 18, 806–815 (2012).

    Article  CAS  Google Scholar 

  141. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  Google Scholar 

  142. Yu, A. C. et al. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications. Proc. Natl Acad. Sci. USA 113, 14255–14260 (2016).

    Article  CAS  Google Scholar 

  143. Wang, L., Long, Y., Ding, H., Geng, J. & Bai, B. Mechanically robust re-crosslinkable polymeric hydrogels for water management of void space conduits containing reservoirs. Chem. Eng. J. 317, 952–960 (2017).

    Article  CAS  Google Scholar 

  144. Yu, A. C. et al. Wildfire prevention through prophylactic treatment of high-risk landscapes using viscoelastic retardant fluids. Proc. Natl Acad. Sci. USA 116, 20820–20827 (2019).

    Article  CAS  Google Scholar 

  145. Song, Y. et al. The use of folate/zinc supramolecular hydrogels to increase droplet deposition on Chenopodium album L. leaves. ACS Sustain. Chem. Eng. 8, 12911–12919 (2020).

    Article  CAS  Google Scholar 

  146. Mackanic, D. G. et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 10, 5384 (2019).

    Article  CAS  Google Scholar 

  147. Oh, J. Y. et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 5, eaav3097 (2019).

    Article  CAS  Google Scholar 

  148. Jing, B. B. & Evans, C. M. Catalyst-free dynamic networks for recyclable, self-healing solid polymer electrolytes. J. Am. Chem. Soc. 141, 18932–18937 (2019).

    Article  CAS  Google Scholar 

  149. Zou, Z. et al. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4, eaaq0508 (2018).

    Article  CAS  Google Scholar 

  150. Marco-Dufort, B. & Tibbitt, M. W. Design of moldable hydrogels for biomedical applications using dynamic covalent boronic esters. Mater. Today Chem. 12, 16–33 (2019).

    Article  CAS  Google Scholar 

  151. Cromwell, O. R., Chung, J. & Guan, Z. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc. 137, 6492–6495 (2015).

    Article  CAS  Google Scholar 

  152. Li, C.-H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).

    Article  CAS  Google Scholar 

  153. Kang, J., Tok, J. B.-H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

    Article  Google Scholar 

  154. Yang, J., Bai, R., Chen, B. & Suo, Z. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30, 1901693 (2020).

    Article  CAS  Google Scholar 

  155. Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).

    Article  CAS  Google Scholar 

  156. Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2011).

    Article  CAS  Google Scholar 

  157. Lipson, H. & Kurman, M. Fabricated: The New World of 3D Printing (Wiley, 2013).

  158. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  CAS  Google Scholar 

  159. Guzzi, E. A. & Tibbitt, M. W. Additive manufacturing of precision biomaterials. Adv. Mater. 32, e1901994 (2020).

    Article  CAS  Google Scholar 

  160. Hull, C. W. Apparatus for production of three-dimensional objects by stereolithography. US Patent US4575330A (1986).

  161. Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).

    Article  CAS  Google Scholar 

  162. Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).

    Article  CAS  Google Scholar 

  163. Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018).

    Article  CAS  Google Scholar 

  164. Nelson, A. Z. et al. Designing and transforming yield-stress fluids. Curr. Opin. Solid State Mater. Sci. 23, 100758 (2019).

    Article  CAS  Google Scholar 

  165. Saha, A. et al. Additive manufacturing of catalytically active living materials. ACS Appl. Mater. Interfaces 10, 13373–13380 (2018).

    Article  CAS  Google Scholar 

  166. Markstedt, K. et al. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16, 1489–1496 (2015).

    Article  CAS  Google Scholar 

  167. Müller, M., Öztürk, E., Arlov, Ø., Gatenholm, P. & Zenobi-Wong, M. Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications. Ann. Biomed. Eng. 45, 210–223 (2017).

    Article  Google Scholar 

  168. Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27, 5075–5079 (2015).

    Article  CAS  Google Scholar 

  169. Ouyang, L., Highley, C. B., Rodell, C. B., Sun, W. & Burdick, J. A. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater. Sci. Eng. 10, 1743–1751 (2016).

    Article  CAS  Google Scholar 

  170. Loebel, C., Rodell, C. B., Chen, M. H. & Burdick, J. A. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat. Protoc. 12, 1521–1541 (2017).

    Article  CAS  Google Scholar 

  171. Chimene, D. et al. Nanoengineered ionic–covalent entanglement (NICE) bioinks for 3D bioprinting. ACS Appl. Mater. Interfaces 10, 9957–9968 (2018).

    Article  CAS  Google Scholar 

  172. Lee, M. et al. Exploitation of cationic silica nanoparticles for bioprinting of large-scale constructs with high printing fidelity. ACS Appl. Mater. Interfaces 10, 37820–37828 (2018).

    Article  CAS  Google Scholar 

  173. Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    Article  CAS  Google Scholar 

  174. Guzzi, E. A., Bovone, G. & Tibbitt, M. W. Universal nanocarrier ink platform for biomaterials additive manufacturing. Small 15, e1905421 (2019).

    Article  CAS  Google Scholar 

  175. Lee, M., Bae, K., Levinson, C. & Zenobi-Wong, M. Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting. Biofabrication 12, 025025 (2020).

    Article  CAS  Google Scholar 

  176. Gantenbein, S. et al. Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561, 226–230 (2018).

    Article  CAS  Google Scholar 

  177. Discher, D. E., Janmey, P. & Wang, Y.-L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  178. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  179. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Article  CAS  Google Scholar 

  180. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  181. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    Article  CAS  Google Scholar 

  182. Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical memory of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).

    Article  CAS  Google Scholar 

  183. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    Article  CAS  Google Scholar 

  184. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  Google Scholar 

  185. Cameron, A. R., Frith, J. E. & Cooper-White, J. J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32, 5979–5993 (2011).

    Article  CAS  Google Scholar 

  186. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6364 (2015).

    Article  CAS  Google Scholar 

  187. Charrier, E. E., Pogoda, K., Wells, R. G. & Janmey, P. A. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat. Commun. 9, 449 (2018).

    Article  CAS  Google Scholar 

  188. Hui, E., Gimeno, K. I., Guan, G. & Caliari, S. R. Spatiotemporal control of viscoelasticity in phototunable hyaluronic acid hydrogels. Biomacromolecules 20, 4126–4134 (2019).

    Article  CAS  Google Scholar 

  189. Mandal, K., Gong, Z., Rylander, A., Shenoy, V. B. & Janmey, P. A. Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomater. Sci. 8, 1316–1328 (2020).

    Article  CAS  Google Scholar 

  190. Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008).

    Article  CAS  Google Scholar 

  191. Gong, Z. et al. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proc. Natl Acad. Sci. USA 115, E2686–E2695 (2018).

    CAS  Google Scholar 

  192. Bennett, M. et al. Molecular clutch drives cell response to surface viscosity. Proc. Natl Acad. Sci. USA 115, 1192–1197 (2018).

    Article  CAS  Google Scholar 

  193. Lou, J., Stowers, R., Nam, S., Xia, Y. & Chaudhuri, O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154, 213–222 (2018).

    Article  CAS  Google Scholar 

  194. Nam, S. & Chaudhuri, O. Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments. Nat. Phys. 14, 621–628 (2018).

    Article  CAS  Google Scholar 

  195. Smithmyer, M. E. et al. Self-healing boronic acid-based hydrogels for 3D co-cultures. ACS Macro Lett. 7, 1105–1110 (2018).

    Article  CAS  Google Scholar 

  196. Wisdom, K. M. et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9, 4144 (2018).

    Article  CAS  Google Scholar 

  197. Wei, Z., Schnellmann, R., Pruitt, H. C. & Gerecht, S. Hydrogel network dynamics regulate vascular morphogenesis. Cell Stem Cell 27, 798–812.e6 (2020).

    Article  CAS  Google Scholar 

  198. Hushka, E. A., Max Yavitt, F., Brown, T. E., Dempsey, P. J. & Anseth, K. S. Relaxation of extracellular matrix forces directs crypt formation and architecture in intestinal organoids. Adv. Healthc. Mater. 9, 1901214 (2020).

    Article  CAS  Google Scholar 

  199. Imbernon, L. & Norvez, S. From landfilling to vitrimer chemistry in rubber life cycle. Eur. Polym. J. 82, 347–376 (2016).

    Article  CAS  Google Scholar 

  200. Röttger, M. et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 356, 62–65 (2017).

    Article  CAS  Google Scholar 

  201. Liu, X., Hong, M., Falivene, L., Cavallo, L. & X. Chen, E. Y. Closed-loop polymer upcycling by installing property-enhancing comonomer sequences and recyclability. Macromolecules 52, 4570–4578 (2019).

    Article  CAS  Google Scholar 

  202. Sheppard, D. T. et al. Reprocessing postconsumer polyurethane foam using carbamate exchange catalysis and twin-screw extrusion. ACS Cent. Sci. 6, 921–927 (2020).

    Article  CAS  Google Scholar 

  203. Oh, Y., Park, J., Park, J.-J., Jeong, S. & Kim, H. Dual cross-linked, polymer thermosets: modular design, reversible transformation, and triggered debonding. Chem. Mater. 32, 6384–6391 (2020).

    Article  CAS  Google Scholar 

  204. Swartz, J. L., Li, R. L. & Dichtel, W. R. Incorporating functionalized cellulose to increase the toughness of covalent adaptable networks. ACS Appl. Mater. Interfaces 12, 44110–44116 (2020).

    Article  CAS  Google Scholar 

  205. Chen, X., Li, L., Wei, T., Venerus, D. C. & Torkelson, J. M. Reprocessable polyhydroxyurethane network composites: effect of filler surface functionality on cross-link density recovery and stress relaxation. ACS Appl. Mater. Interfaces 11, 2398–2407 (2019).

    Article  CAS  Google Scholar 

  206. Lopez, G. et al. Perfluoropolyether (PFPE)-based vitrimers with ionic conductivity. Macromolecules 52, 2148–2155 (2019).

    Article  CAS  Google Scholar 

  207. Deng, J. et al. Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. 30, e1705918 (2018).

    Article  CAS  Google Scholar 

  208. Pei, Z. et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 13, 36–41 (2014).

    Article  CAS  Google Scholar 

  209. Choi, Y. S. et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020).

    Article  CAS  Google Scholar 

  210. Park, H. Y., Kloxin, C. J., Scott, T. F. & Bowman, C. N. Covalent adaptable networks as dental restorative resins: stress relaxation by addition–fragmentation chain transfer in allyl sulfide-containing resins. Dent. Mater. 26, 1010–1016 (2010).

    Article  CAS  Google Scholar 

  211. Liu, Y.-L. & Chen, Y.-W. Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromol. Chem. Phys. 208, 224–232 (2007).

    Article  CAS  Google Scholar 

  212. Capelot, M., Montarnal, D., Tournilhac, F. & Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 134, 7664–7667 (2012).

    Article  CAS  Google Scholar 

  213. McBride, M. K. et al. A readily programmable, fully reversible shape-switching material. Sci. Adv. 4, eaat4634 (2018).

    Article  CAS  Google Scholar 

  214. Zhao, W. et al. Vitrimer-cellulose paper composites: a new class of strong, smart, green, and sustainable materials. ACS Appl. Mater. Interfaces 11, 36090–36099 (2019).

    Article  CAS  Google Scholar 

  215. Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article  CAS  Google Scholar 

  216. Nelson, C. M. & Bissell, M. J. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin. Cancer Biol. 15, 342–352 (2005).

    Article  Google Scholar 

  217. Brouns, J. E. P. & Dankers, P. Y. W. Introduction of enzyme-responsivity in biomaterials to achieve dynamic reciprocity in cell–material interactions. Biomacromolecules 22, 4–23 (2020).

    Article  CAS  Google Scholar 

  218. Servick, K. Messenger RNA gave us a COVID-19 vaccine. Will it treat diseases, too? Science https://doi.org/10.1126/science.abg1977 (2020).

    Article  Google Scholar 

  219. Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2 — preliminary report. N. Engl. J. Med. 383, 1920–1931 (2020).

    Article  CAS  Google Scholar 

  220. Kim, J., Eygeris, Y., Gupta, M. & Sahay, G. Self-assembled mRNA vaccines. Adv. Drug Deliv. Rev. 170, 83–112 (2021).

    Article  CAS  Google Scholar 

  221. Worrell, B. T. et al. Bistable and photoswitchable states of matter. Nat. Commun. 9, 2804 (2018).

    Article  CAS  Google Scholar 

  222. He, X. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).

    Article  CAS  Google Scholar 

  223. Hess, H. & Ross, J. L. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem. Soc. Rev. 46, 5570–5587 (2017).

    Article  CAS  Google Scholar 

  224. Yu, S., Xian, S., Ye, Z., Pramudya, I. & Webber, M. J. Glucose-fueled peptide assembly: glucagon delivery via enzymatic actuation. J. Am. Chem. Soc. 143, 12578–12589 (2021).

    Article  CAS  Google Scholar 

  225. Lloyd, E. M. et al. Fully recyclable metastable polymers and composites. Chem. Mater. 31, 398–406 (2019).

    Article  CAS  Google Scholar 

  226. Pal, S. et al. Synthesis and closed-loop recycling of self-immolative poly(dithiothreitol). Macromolecules 53, 4685–4691 (2020).

    Article  CAS  Google Scholar 

  227. Tanaka, F. & Edwards, S. F. Viscoelastic properties of physically crosslinked networks: Part 2. Dynamic mechanical moduli. J. Nonnewton. Fluid Mech. 43, 273–288 (1992).

    Article  CAS  Google Scholar 

  228. Zhang, Z., Chen, Q. & Colby, R. H. Dynamics of associative polymers. Soft Matter 14, 2961–2977 (2018).

    Article  CAS  Google Scholar 

  229. Omar, A. K. & Wang, Z.-G. Shear-induced heterogeneity in associating polymer gels: role of network structure and dilatancy. Phys. Rev. Lett. 119, 117801 (2017).

    Article  Google Scholar 

  230. Flory, P. J. Spatial configuration of macromolecular chains. Science 188, 1268–1276 (1975).

    Article  CAS  Google Scholar 

  231. Gennes, P.-Gde & de Gennes, P.-G. Soft matter (Nobel lecture). Angew. Chem. Int. Ed. Engl. 31, 842–845 (1992).

    Article  Google Scholar 

  232. Rodell, C. B., Kaminski, A. L. & Burdick, J. A. Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14, 4125–4134 (2013).

    Article  CAS  Google Scholar 

  233. Adzima, B. J., Alan Aguirre, H., Kloxin, C. J., Scott, T. F. & Bowman, C. N. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels–Alder polymer network. Macromolecules 41, 9112–9117 (2008).

    Article  CAS  Google Scholar 

  234. Tan, C. S. Y. et al. Distinguishing relaxation dynamics in transiently crosslinked polymeric networks. Polym. Chem. 8, 5336–5343 (2017).

    Article  CAS  Google Scholar 

  235. Ligthart, G. B. W. L., Ohkawa, H., Sijbesma, R. P. & Meijer, E. W. Complementary quadruple hydrogen bonding in supramolecular copolymers. J. Am. Chem. Soc. 127, 810–811 (2005).

    Article  CAS  Google Scholar 

  236. Watts, A. & Hillmyer, M. A. Aliphatic polyester thermoplastic elastomers containing hydrogen-bonding ureidopyrimidinone endgroups. Biomacromolecules 20, 2598–2609 (2019).

    Article  CAS  Google Scholar 

  237. Tillman, K. R. et al. Dynamic covalent exchange in poly(thioether anhydrides). Polym. Chem. 11, 7551–7561 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.J.W. acknowledges funding support from the National Science Foundation (DMR-BMAT CAREER award 1944875), a 3M Non-Tenured Faculty Award (3M Company) and the University of Notre Dame ‘Advancing our Vision’ initiative. M.W.T. acknowledges funding support from ETH Zurich start-up funds and the Swiss National Science Foundation (200021_184697).

Author information

Authors and Affiliations

Authors

Contributions

M.J.W. and M.W.T. contributed equally to this work.

Corresponding authors

Correspondence to Matthew J. Webber or Mark W. Tibbitt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Emily Davidson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webber, M.J., Tibbitt, M.W. Dynamic and reconfigurable materials from reversible network interactions. Nat Rev Mater 7, 541–556 (2022). https://doi.org/10.1038/s41578-021-00412-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00412-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing