Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineered platforms for topological superconductivity and Majorana zero modes

Abstract

Among the major avenues that are being pursued for realizing quantum bits, the Majorana-based approach has been the most recent to be launched. It attempts to realize qubits that store quantum information in a topologically protected manner. The quantum information is protected by non-local storage in localized and well-separated Majorana zero modes, and manipulated by exploiting their non-abelian quantum statistics. Realizing these topological qubits is experimentally challenging, requiring superconductivity, helical electrons (created by spin–orbit coupling) and breaking of time-reversal symmetry to all cooperate in an uncomfortable alliance. Over the past decade, several candidate materials systems for realizing Majorana-based topological qubits have been explored, and there is accumulating, though still debated, evidence that zero modes are indeed being realized. This Review surveys the basic physical principles on which these approaches are based, the materials systems that are being developed and the current state of the field. We highlight both the progress that has been made and the challenges that still need to be overcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two realizations of engineered topological superconductors based on semiconducting nanowires proximitized by conventional superconductors.
Fig. 2: Illustration of selected spectroscopic techniques for investigating MZMs.
Fig. 3: Realization of 1D topological superconductivity in superconductor–normal–superconductor Josephson junctions (N-stripes).
Fig. 4: Topological superconductivity and Majorana zero modes in chains of magnetic adatoms on superconductors.

Similar content being viewed by others

References

  1. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131 (2001).

    Article  Google Scholar 

  2. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000).

    Article  CAS  Google Scholar 

  3. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  CAS  Google Scholar 

  4. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

    Article  CAS  Google Scholar 

  5. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article  Google Scholar 

  6. Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    Article  CAS  Google Scholar 

  7. Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).

    Article  CAS  Google Scholar 

  8. Aguado, R. Majorana quasiparticles in condensed matter. Riv. Nuovo Cim. 40, 523–593 (2017).

    CAS  Google Scholar 

  9. Haim, A. & Oreg, Y. Time-reversal-invariant topological superconductivity in one and two dimensions. Phys. Rep. 825, 1–48 (2019).

    Article  Google Scholar 

  10. Aguado, R. & Kouwenhoven, L. Majorana qubits for topological quantum computing. Phys. Today 73, 44–50 (2020).

    Article  Google Scholar 

  11. Oreg, Y. & von Oppen, F. Majorana zero modes in networks of Cooper-pair boxes: Topologically ordered states and topological quantum computation. Annu. Rev. Condens. Matter Phys. 11, 397–420 (2020).

    Article  Google Scholar 

  12. Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor-semiconductor nanowires. Nat. Rev. Phys. 2, 575–594 (2020).

    Article  CAS  Google Scholar 

  13. Kopnin, N. B. & Salomaa, M. M. Mutual friction in superfluid 3He: Effects of bound states in the vortex core. Phys. Rev. B 44, 9667–9677 (1991).

    Article  CAS  Google Scholar 

  14. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  CAS  Google Scholar 

  15. Fu, L. & Kane, C. L. Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction. Phys. Rev. B 79, 161408 (2009).

    Article  CAS  Google Scholar 

  16. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  Google Scholar 

  17. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  CAS  Google Scholar 

  18. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  CAS  Google Scholar 

  19. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Article  CAS  Google Scholar 

  20. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  CAS  Google Scholar 

  21. He, J. J., Ng, T. K., Lee, P. A. & Law, K. T. Selective equal-spin Andreev reflections induced by Majorana fermions. Phys. Rev. Lett. 112, 037001 (2014).

    Article  CAS  Google Scholar 

  22. Kraus, Y. E., Auerbach, A., Fertig, H. A. & Simon, S. H. Testing for Majorana zero modes in a px+ipy superconductor at high temperature by tunneling spectroscopy. Phys. Rev. Lett. 101, 267002 (2008).

    Article  CAS  Google Scholar 

  23. Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    Article  CAS  Google Scholar 

  24. Tanaka, Y., Yokoyama, T. & Nagaosa, N. Manipulation of the Majorana fermion, Andreev reflection, and Josephson current on topological insulators. Phys. Rev. Lett. 103, 107002 (2009).

    Article  CAS  Google Scholar 

  25. Sau, J., Lutchyn, R., Tewari, S. & Das Sarma, S. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).

    Article  CAS  Google Scholar 

  26. Alicea, J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81, 125318 (2010).

    Article  CAS  Google Scholar 

  27. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  CAS  Google Scholar 

  28. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  CAS  Google Scholar 

  29. Chung, S. B., Zhang, H. J., Qi, X. L. & Zhang, S. C. Topological superconducting phase and Majorana fermions in half-metal/superconductor heterostructures. Phys. Rev. B 84, 060510 (2011).

    Article  CAS  Google Scholar 

  30. Duckheim, M. & Brouwer, P. W. Andreev reflection from noncentrosymmetric superconductors and Majorana bound-state generation in half-metallic ferromagnets. Phys. Rev. B 83, 054513 (2011).

    Article  CAS  Google Scholar 

  31. Potter, A. C. & Lee, P. A. Topological superconductivity and Majorana fermions in metallic surface states. Phys. Rev. B 85, 094516 (2012).

    Article  CAS  Google Scholar 

  32. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  33. Krogstrup, P. et al. Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14, 400–406 (2015).

    Article  CAS  Google Scholar 

  34. Chang, W. et al. Hard gap in epitaxial semiconductor–superconductor nanowires. Nat. Nanotechnol. 10, 232–236 (2015).

    Article  CAS  Google Scholar 

  35. Gül, Ö. et al. Ballistic Majorana nanowire devices. Nat. Nanotechnol. 13, 192–197 (2018).

    Article  CAS  Google Scholar 

  36. Zhang, H. et al. Ballistic superconductivity in semiconductor nanowires. Nat. Commun. 8, 16025 (2017).

    Article  CAS  Google Scholar 

  37. Liu, Y. et al. Semiconductor–ferromagnetic insulator–superconductor nanowires: Stray field and exchange field. Nano Lett. 20, 456–462 (2020).

    Article  CAS  Google Scholar 

  38. Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb Nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    Article  CAS  Google Scholar 

  39. Rokhinson, L. P., Liu, X. & Furdyna, J. K. The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795–799 (2012).

    Article  CAS  Google Scholar 

  40. Churchill, H. O. H. et al. Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B 87, 241401 (2013).

    Article  CAS  Google Scholar 

  41. Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    Article  CAS  Google Scholar 

  42. Higginbotham, A. P. et al. Parity lifetime of bound states in a proximitized semiconductor nanowire. Nat. Phys. 11, 1017–1021 (2015).

    Article  CAS  Google Scholar 

  43. Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    Article  CAS  Google Scholar 

  44. Deng, M. T. et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557–1562 (2016).

    Article  CAS  Google Scholar 

  45. Suominen, H. J. et al. Zero-energy modes from coalescing Andreev states in a two-dimensional semiconductor-superconductor hybrid platform. Phys. Rev. Lett. 119, 176805 (2017).

    Article  CAS  Google Scholar 

  46. Chen, J. et al. Experimental phase diagram of zero-bias conductance peaks in superconductor/semiconductor nanowire devices. Sci. Adv. 3, 1701476 (2017).

    Article  CAS  Google Scholar 

  47. Nichele, F. et al. Scaling of Majorana zero-bias conductance peaks. Phys. Rev. Lett. 119, 136803 (2017).

    Article  Google Scholar 

  48. Sestoft, J. E. et al. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection. Phys. Rev. Mater. 2, 044202 (2018).

    Article  CAS  Google Scholar 

  49. Vaitiekenas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367, eaav3392 (2020).

    Article  CAS  Google Scholar 

  50. Vaitiekenas, S., Liu, Y., Krogstrup, P. & Marcus, C. M. Zero-bias peaks at zero magnetic field in ferromagnetic hybrid nanowires. Nat. Phys. 17, 43 (2021).

    Article  CAS  Google Scholar 

  51. Deng, M. T. et al. Nonlocality of Majorana modes in hybrid nanowires. Phys. Rev. B 98, 085125 (2018).

    Article  CAS  Google Scholar 

  52. Prada, E., Aguado, R. & San-Jose, P. Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B 96, 085418 (2017).

    Article  Google Scholar 

  53. Clarke, D. J. Experimentally accessible topological quality factor for wires with zero energy modes. Phys. Rev. B 96, 201109(R) (2017).

    Article  Google Scholar 

  54. Sengupta, K., Žutić, I., Kwon, H.-J., Yakovenko, V. M. & Das Sarma, S. Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors. Phys. Rev. B 63, 144531 (2001).

    Article  CAS  Google Scholar 

  55. Law, K. T., Lee, P. A. & Ng, T. K. Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001 (2009).

    Article  CAS  Google Scholar 

  56. Flensberg, K. Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 82, 180516(R) (2010).

    Article  CAS  Google Scholar 

  57. Wimmer, M., Akhmerov, A. R., Dahlhaus, J. P. & Beenakker, C. W. J. Quantum point contact as a probe of a topological superconductor. New J. Phys. 13, 053016 (2011).

    Article  CAS  Google Scholar 

  58. Yu, P. et al. Non-Majorana states yield nearly quantized conductance in proximatized nanowires. Nat. Phys. 17, 482 (2021).

    Article  CAS  Google Scholar 

  59. Albrecht, S. M. et al. Transport signatures of quasiparticle poisoning in a Majorana island. Phys. Rev. Lett. 118, 137701 (2017).

    Article  CAS  Google Scholar 

  60. Shen, J. et al. Parity transitions in the superconducting ground state of hybrid InSb–Al Coulomb islands. Nat. Commun. 9, 4801 (2018).

    Article  CAS  Google Scholar 

  61. Ménard, G. C. et al. Conductance-matrix symmetries of a three-terminal hybrid device. Phys. Rev. Lett. 124, 036802 (2020).

    Article  Google Scholar 

  62. Fu, L. Electron teleportation via Majorana bound states in a mesoscopic superconductor. Phys. Rev. Lett. 104, 056402 (2010).

    Article  CAS  Google Scholar 

  63. van Heck, B., Lutchyn, R. M. & Glazman, L. I. Conductance of a proximitized nanowire in the Coulomb blockade regime. Phys. Rev. B 93, 235431 (2016).

    Article  CAS  Google Scholar 

  64. Liu, Y. et al. Coherent epitaxial semiconductor–ferromagnetic insulator InAs/EuS interfaces: band alignment and magnetic structure. ACS Appl. Mater. Interfaces 12, 8780–8787 (2019).

    Article  CAS  Google Scholar 

  65. Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw Hill, 1996).

  66. Valentini, M. et al. Non-topological zero bias peaks in full-shell nanowires induced by flux tunable Andreev states. Preprint at arXiv https://arxiv.org/abs/2008.02348 (2020).

  67. Shabani, J. et al. Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks. Phys. Rev. B 93, 155402 (2016).

    Article  CAS  Google Scholar 

  68. Hell, M., Leijnse, M. & Flensberg, K. Two-dimensional platform for networks of Majorana bound states. Phys. Rev. Lett. 118, 107701 (2017).

    Article  Google Scholar 

  69. Pientka, F. et al. Topological superconductivity in a planar Josephson junction. Phys. Rev. X 7, 021032 (2017).

    Google Scholar 

  70. Whiticar, A. M. et al. Coherent transport through a Majorana island in an Aharonov–Bohm interferometer. Nat. Commun. 11, 3212 (2020).

    Article  CAS  Google Scholar 

  71. Setiawan, F., Stern, A. & Berg, E. Topological superconductivity in planar Josephson junctions: Narrowing down to the nanowire limit. Phys. Rev. B 99, 220506 (2019).

    Article  CAS  Google Scholar 

  72. Laeven, T., Nijholt, B., Wimmer, M. & Akhmerov, A. R. Enhanced proximity effect in zigzag-shaped Majorana Josephson junctions. Phys. Rev. Lett. 125, 086802 (2020).

    Article  CAS  Google Scholar 

  73. Melo, A., Rubbert, S. & Akhmerov, A. R. Supercurrent-induced Majorana bound states in a planar geometry. SciPost Phys. 7, 39 (2019).

    Article  CAS  Google Scholar 

  74. Haim, A. & Stern, A. Benefits of weak disorder in one-dimensional topological superconductors. Phys. Rev. Lett. 122, 126801 (2019).

    Article  CAS  Google Scholar 

  75. Ren, H. et al. Topological superconductivity in a phase-controlled Josephson junction. Nature 569, 93–98 (2019).

    Article  CAS  Google Scholar 

  76. Fornieri, A. et al. Evidence of topological superconductivity in planar Josephson junctions. Nature 569, 89–92 (2018).

    Article  CAS  Google Scholar 

  77. Mayer, W. et al. Phase signature of topological transition in Josephson junctions. Phys. Rev. Lett. 126, 036802 (2021).

    Article  Google Scholar 

  78. Ke, C. T. et al. Ballistic superconductivity and tunable π–junctions in InSb quantum wells. Nat. Commun. 10, 3764 (2019).

    Article  CAS  Google Scholar 

  79. Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013).

    Article  CAS  Google Scholar 

  80. Pientka, F., Glazman, L. I. & von Oppen, F. Topological superconducting phase in helical Shiba chains. Phys. Rev. B 88, 155420 (2013).

    Article  CAS  Google Scholar 

  81. Yu, L. U. H. Bound state in superconducors with paramagnetic impurities. Acta Phys. Sin. 21, 75–91 (1965).

    Article  CAS  Google Scholar 

  82. Shiba, H. Classical spins in superconductors. Prog. Theor. Phys. 40, 435–451 (1968).

    Article  Google Scholar 

  83. Rusinov, A. I. On the theory of gapless superconductivity in alloys containing paramagnetic impurities. Sov. Phys. JETP 29, 1101–1106 (1969).

    Google Scholar 

  84. Braunecker, B., Japaridze, G., Klinovaja, J. & Loss, D. Spin-selective Peierls transition in interacting one-dimensional conductors with spin-orbit interaction. Phys. Rev. B 82, 045127 (2010).

    Article  CAS  Google Scholar 

  85. Kjaergaard, M., Wölms, K. & Flensberg, K. Majorana fermions in superconducting nanowires without spin-orbit coupling. Phys. Rev. B 85, 020503 (2012).

    Article  CAS  Google Scholar 

  86. Nakosai, S., Tanaka, Y. & Nagaosa, N. Two-dimensional p-wave superconducting states with magnetic moments on a conventional s-wave superconductor. Phys. Rev. B 88, 180503 (2013).

    Article  CAS  Google Scholar 

  87. Braunecker, B. & Simon, P. Interplay between classical magnetic moments and superconductivity in quantum one-dimensional conductors: Toward a self-sustained topological Majorana phase. Phys. Rev. Lett. 111, 147202 (2013).

    Article  CAS  Google Scholar 

  88. Klinovaja, J., Stano, P., Yazdani, A. & Loss, D. Topological superconductivity and Majorana fermions in RKKY systems. Phys. Rev. Lett. 111, 186805 (2013).

    Article  CAS  Google Scholar 

  89. Vazifeh, M. M. & Franz, M. Self-organized topological state with Majorana fermions. Phys. Rev. Lett. 111, 206802 (2013).

    Article  CAS  Google Scholar 

  90. Schecter, M., Flensberg, K., Christensen, M. H., Andersen, B. M. & Paaske, J. Self-organized topological superconductivity in a Yu-Shiba-Rusinov chain. Phys. Rev. B 93, 140503 (2016).

    Article  CAS  Google Scholar 

  91. Li, J. et al. Topological superconductivity induced by ferromagnetic metal chains. Phys. Rev. B 90, 235433 (2014).

    Article  CAS  Google Scholar 

  92. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article  CAS  Google Scholar 

  93. Peng, Y., Pientka, F., Vinkler-Aviv, Y., Glazman, L. I. & von Oppen, F. Robust Majorana conductance peaks for a superconducting lead. Phys. Rev. Lett. 115, 266804 (2015).

    Article  CAS  Google Scholar 

  94. Kiendl, T., von Oppen, F. & Brouwer, P. W. Renormalization effects in spin-polarized metallic wires proximitized by a superconductor: A scattering approach. Phys. Rev. B 99, 104510 (2019).

    Article  CAS  Google Scholar 

  95. Ruby, M. et al. End states and subgap structure in proximity-coupled chains of magnetic adatoms. Phys. Rev. Lett. 115, 197204 (2015).

    Article  CAS  Google Scholar 

  96. Feldman, B. E. et al. High-resolution studies of the Majorana atomic chain platform. Nat. Phys. 13, 286–291 (2017).

    Article  CAS  Google Scholar 

  97. González, S. A. et al. Photon-assisted resonant Andreev reflections: Yu-Shiba-Rusinov and Majorana states. Phys. Rev. B 102, 045413 (2020).

    Article  Google Scholar 

  98. Jeon, S. et al. Distinguishing a Majorana zero mode using spin-resolved measurements. Science 358, 772–776 (2017).

    Article  CAS  Google Scholar 

  99. Li, J., Jeon, S., Xie, Y., Yazdani, A. & Bernevig, B. A. Majorana spin in magnetic atomic chain systems. Phys. Rev. B 97, 125119 (2018).

    Article  CAS  Google Scholar 

  100. Pawlak, R. et al. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface. NPJ Quantum Inf. 2, 16035 (2016).

    Article  Google Scholar 

  101. Ruby, M., Heinrich, B. W., Peng, Y., von Oppen, F. & Franke, K. J. Exploring a proximity-coupled Co chain on Pb(110) as a possible Majorana platform. Nano Lett. 17, 4473–4477 (2017).

    Article  CAS  Google Scholar 

  102. Menard, G. C. et al. Two-dimensional topological superconductivity in Pb/Co/Si(111). Nat. Commun. 8, 2040 (2017).

    Article  CAS  Google Scholar 

  103. Menard, G. C. et al. Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nat. Commun. 10, 2587 (2019).

    Article  CAS  Google Scholar 

  104. Kim, H. et al. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Sci. Adv. 4, eaar5251 (2018).

    Article  CAS  Google Scholar 

  105. Kamlapure, A., Cornils, L., Wiebe, J. & Wiesendanger, R. Engineering the spin couplings in atomically crafted spin chains on an elemental superconductor. Nat. Commun. 9, 3253 (2018).

    Article  CAS  Google Scholar 

  106. Li, J., Neupert, T., Bernevig, B. A. & Yazdani, A. Manipulating Majorana zero modes on atomic rings with an external magnetic field. Nat. Commun. 7, 10395 (2016).

    Article  CAS  Google Scholar 

  107. Manna, S. et al. Signature of a pair of Majorana zero modes in superconducting gold surface states. Proc. Natl Acad. Sci. USA 117, 8775–8782 (2020).

    Article  CAS  Google Scholar 

  108. Kells, G., Meidan, D. & Brouwer, P. W. Near-zero-energy end states in topologically trivial spin-orbit coupled superconducting nanowires with a smooth confinement. Phys. Rev. B 86, 100503(R) (2012).

    Article  CAS  Google Scholar 

  109. Vuik, A., Eeltink, D., Akhmerov, A. R. & Wimmer, M. Effects of the electrostatic environment on the Majorana nanowire devices. New J. Phys. 18, 033013 (2016).

    Article  CAS  Google Scholar 

  110. Liu, C. X., Sau, J. D., Stanescu, T. D. & Das Sarma, S. Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks. Phys. Rev. B 96, 075161 (2017).

    Article  Google Scholar 

  111. Moore, C., Stanescu, T. D. & Tewari, S. Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor-superconductor heterostructures. Phys. Rev. B 97, 165302 (2018).

    Article  CAS  Google Scholar 

  112. Stanescu, T. D. & Tewari, S. Robust low-energy Andreev bound states in semiconductor-superconductor structures: Importance of partial separation of component Majorana bound states. Phys. Rev. B 100, 155429 (2019).

    Article  CAS  Google Scholar 

  113. Avila, J., Penaranda, F., Prada, E., San-Jose, P. & Aguado, R. Non-hermitian topology as a unifying framework for the Andreev versus Majorana states controversy. Commun. Phys. 2, 133 (2019).

    Article  Google Scholar 

  114. van Zanten, D. M. T. et al. Photon-assisted tunnelling of zero modes in a Majorana wire. Nat. Phys. 663, 663–668 (2020).

    Article  CAS  Google Scholar 

  115. Lee, E. J. et al. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 109, 186802 (2012).

    Article  CAS  Google Scholar 

  116. Liu, J., Potter, A. C., Law, K. T. & Lee, P. A. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. Phys. Rev. Lett. 109, 267002 (2012).

    Article  CAS  Google Scholar 

  117. Ptok, A., Kobialka, A. & Domański, T. Controlling the bound states in a quantum-dot hybrid nanowire. Phys. Rev. B 96, 195430 (2017).

    Article  Google Scholar 

  118. Penaranda, F., Aguado, R., San-Jose, P. & Prada, E. Quantifying wave-function overlaps in inhomogeneous Majorana nanowires. Phys. Rev. B 98, 235406 (2018).

    Article  CAS  Google Scholar 

  119. Reeg, C., Dmytruk, O., Chevallier, D., Loss, D. & Klinovaja, J. Zero-energy Andreev bound states from quantum dots in proximitized Rashba nanowires. Phys. Rev. B 98, 245407 (2018).

    Article  CAS  Google Scholar 

  120. Jünger, C. et al. Magnetic-field-independent subgap states in hybrid Rashba nanowires. Phys. Rev. Lett. 125, 017701 (2020).

    Article  Google Scholar 

  121. Hell, M., Flensberg, K. & Leijnse, M. Distinguishing Majorana bound states from localized Andreev bound states by interferometry. Phys. Rev. B 97, 161401 (2018).

    Article  CAS  Google Scholar 

  122. Drukier, C., Zirnstein, H.-G., Rosenow, B., Stern, A. & Oreg, Y. Evolution of the transmission phase through a Coulomb-blockaded Majorana wire. Phys. Rev. B 98, 161401 (2018).

    Article  CAS  Google Scholar 

  123. Grivnin, A., Bor, E., Heiblum, M., Oreg, Y. & Shtrikman, H. Concomitant opening of a bulk-gap with an emerging possible Majorana zero mode. Nat. Commun. 10, 1940 (2019).

    Article  CAS  Google Scholar 

  124. Hyart, T. et al. Flux-controlled quantum computation with Majorana fermions. Phys. Rev. B 88, 035121 (2013).

    Article  CAS  Google Scholar 

  125. Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016).

    Google Scholar 

  126. Plugge, S., Rasmussen, A., Egger, R. & Flensberg, K. Majorana box qubits. New J. Phys. 19, 012001 (2017).

    Article  CAS  Google Scholar 

  127. Karzig, T. et al. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes. Phys. Rev. B 95, 235305 (2017).

    Article  Google Scholar 

  128. Schrade, C. & Fu, L. Majorana superconducting qubit. Phys. Rev. Lett. 121, 267002 (2018).

    Article  CAS  Google Scholar 

  129. Leijnse, M. & Flensberg, K. Hybrid topological-spin qubit systems for two-qubit-spin gates. Phys. Rev. B 86, 104511 (2012).

    Article  CAS  Google Scholar 

  130. Hoffman, S., Schrade, C., Klinovaja, J. & Loss, D. Universal quantum computation with hybrid spin-Majorana qubits. Phys. Rev. B 94, 045316 (2016).

    Article  Google Scholar 

  131. Manousakis, J. et al. Weak measurement protocols for Majorana bound state identification. Phys. Rev. Lett. 124, 096801 (2020).

    Article  CAS  Google Scholar 

  132. Mishmash, R. V., Bauer, B., von Oppen, F. & Alicea, J. Dephasing and leakage dynamics of noisy Majorana-based qubits: Topological versus Andreev. Phys. Rev. B 101, 075404 (2020).

    Article  CAS  Google Scholar 

  133. Akhmerov, A. R. Topological quantum computation away from the ground state with Majorana fermions. Phys. Rev. B 82, 020509 (2010).

    Article  CAS  Google Scholar 

  134. Munk, M. I. K., Egger, R. & Flensberg, K. Fidelity and visibility loss in Majorana qubits by entanglement with environmental modes. Phys. Rev. B 99, 155419 (2019).

    Article  CAS  Google Scholar 

  135. Munk, M. I. K., Schulenborg, J., Egger, R. & Flensberg, K. Parity-to-charge conversion in Majorana qubit readout. Phys. Rev. Res. 2, 033254 (2020).

    Article  CAS  Google Scholar 

  136. Steiner, J. F. & von Oppen, F. Read out of Majorana qubits. Phys. Rev. Res. 2, 033255 (2020).

    Article  CAS  Google Scholar 

  137. Beenakker, C. W. J. Search for non-Abelian Majorana braiding statistics in superconductors. SciPost Phys. Lect. Notes 15, 1–29 (2020).

    Google Scholar 

  138. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011).

    Article  CAS  Google Scholar 

  139. Sau, J., Clarke, D. & Tewari, S. Controlling non-Abelian statistics of Majorana fermions in semiconductor nanowires. Phys. Rev. B 84, 094505 (2011).

    Article  CAS  Google Scholar 

  140. Bonderson, P., Freedman, M. & Nayak, C. Measurement-only topological quantum computation. Phys. Rev. Lett. 101, 010501 (2008).

    Article  CAS  Google Scholar 

  141. Bravyi, S. Universal quantum computation with the v = 5/2 fractional quantum Hall state. Phys. Rev. A 73, 042313 (2006).

    Article  CAS  Google Scholar 

  142. Ginossar, E. & Grosfeld, E. Microwave transitions as a signature of coherent parity mixing effects in the Majorana-transmon qubit. Nat. Commun. 5, 4772 (2014).

    Article  CAS  Google Scholar 

  143. Barkeshli, M. & Sau, J. D. Physical architecture for a universal topological quantum computer based on a network of Majorana nanowires. Preprint at arXiv https://arxiv.org/abs/1509.07135 (2015).

  144. Litinski, D., Kesselring, M. S., Eisert, J. & von Oppen, F. Combining topological hardware and topological software: Color-code quantum computing with topological superconductor networks. Phys. Rev. X 7, 031048 (2017).

    Google Scholar 

  145. Litinski, D. & von Oppen, F. Quantum computing with Majorana fermion codes. Phys. Rev. B 97, 205404 (2018).

    Article  CAS  Google Scholar 

  146. Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    Article  CAS  Google Scholar 

  147. Karzig, T., Oreg, Y., Refael, G. & Freedman, M. H. Universal geometric path to a robust Majorana magic gate. Phys. Rev. X 6, 031019 (2016).

    Google Scholar 

  148. Karzig, T., Oreg, Y., Refael, G. & Freedman, M. H. Robust Majorana magic gates via measurements. Phys. Rev. B 99, 144521 (2019).

    Article  CAS  Google Scholar 

  149. Vijay, S., Hsieh, T. H. & Fu, L. Majorana fermion surface code for universal quantum computation. Phys. Rev. X 5, 041038 (2015).

    Google Scholar 

  150. Landau, L. A. et al. Towards realistic implementations of a Majorana surface code. Phys. Rev. Lett. 116, 050501 (2016).

    Article  CAS  Google Scholar 

  151. Plugge, S. et al. Roadmap to Majorana surface codes. Phys. Rev. B 94, 174514 (2016).

    Article  Google Scholar 

  152. Kells, G., Lahtinen, V. & Vala, J. Kitaev spin models from topological nanowire networks. Phys. Rev. B 89, 075122 (2014).

    Article  CAS  Google Scholar 

  153. Sagi, E., Ebisu, H., Tanaka, Y., Stern, A. & Oreg, Y. Spin liquids from Majorana zero modes in a Cooper-pair box. Phys. Rev. B 99, 075107 (2019).

    Article  CAS  Google Scholar 

  154. Thomson, A. & Pientka, F. Simulating spin systems with Majorana networks. Preprint at arXiv https://arxiv.org/abs/1807.09291 (2018).

  155. Chew, A., Essin, A. & Alicea, J. Approximating the Sachdev-Ye-Kitaev model with Majorana wires. Phys. Rev. B 96, 121119 (2017).

    Article  Google Scholar 

  156. Pikulin, D. I. & Franz, M. Black hole on a chip: Proposal for a physical realization of the Sachdev-Ye-Kitaev model in a solid-state system. Phys. Rev. X 7, 031006 (2017).

    Google Scholar 

  157. Ebisu, H., Sagi, E. & Oreg, Y. Supersymmetry in the insulating phase of a chain of Majorana Cooper pair boxes. Phys. Rev. Lett. 123, 026401 (2019).

    Article  CAS  Google Scholar 

  158. Béri, B. & Cooper, N. R. Topological Kondo effect with Majorana fermions. Phys. Rev. Lett. 109, 156803 (2012).

    Article  CAS  Google Scholar 

  159. Altland, A. & Egger, R. Multiterminal Coulomb-Majorana junction. Phys. Rev. Lett. 110, 196401 (2013).

    Article  CAS  Google Scholar 

  160. Peng, Y., Pientka, F., Berg, E., Oreg, Y. & von Oppen, F. Signatures of topological Josephson junctions. Phys. Rev. B 94, 085409 (2016).

    Article  CAS  Google Scholar 

  161. Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010).

    Article  CAS  Google Scholar 

  162. Wölms, K., Stern, A. & Flensberg, K. Braiding properties of Majorana Kramers pairs. Phys. Rev. B 93, 045417 (2016).

    Article  CAS  Google Scholar 

  163. Jiang, L. et al. Unconventional Josephson signatures of Majorana bound states. Phys. Rev. Lett. 107, 236401 (2011).

    Article  CAS  Google Scholar 

  164. Domínguez, F., Hassler, F. & Platero, G. Dynamical detection of Majorana fermions in current-biased nanowires. Phys. Rev. B 86, 140503 (2012).

    Article  CAS  Google Scholar 

  165. San-Jose, P., Prada, E. & Aguado, R. ‘AC Josephson effect in finite-length nanowire junctions with Majorana modes. Phys. Rev. Lett. 108, 257001 (2012).

    Article  CAS  Google Scholar 

  166. Houzet, M., Meyer, J. S., Badiane, D. M. & Glazman, L. I. Dynamics of Majorana states in a topological Josephson junction. Phys. Rev. Lett. 111, 046401 (2013).

    Article  CAS  Google Scholar 

  167. Deacon, R. S. et al. Josephson radiation from gapless Andreev bound states in HgTe-based topological junctions. Phys. Rev. X 7, 021011 (2017).

    Google Scholar 

  168. Bretheau, L., Girit, C. O., Pothier, H., Esteve, D. & Urbina, C. Exciting Andreev pairs in a superconducting atomic contact. Nature 499, 312–315 (2013).

    Article  CAS  Google Scholar 

  169. Bretheau, L., Girit, C. O., Urbina, C., Esteve, D. & Pothier, H. Supercurrent spectroscopy of Andreev states. Phys. Rev. X 3, 041034 (2013).

    CAS  Google Scholar 

  170. Virtanen, P. & Recher, P. Microwave spectroscopy of Josephson junctions in topological superconductors. Phys. Rev. B 88, 144507 (2013).

    Article  CAS  Google Scholar 

  171. Väyrynen, J. I., Rastelli, G., Belzig, W. & Glazman, L. I. Microwave signatures of Majorana states in a topological Josephson junction. Phys. Rev. B 92, 134508 (2015).

    Article  CAS  Google Scholar 

  172. Zgirski, M. et al. Evidence for long-lived quasiparticles trapped in superconducting point contacts. Phys. Rev. Lett. 106, 257003 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ady Stern.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Kam Tuen Law, Ramón Aguado and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flensberg, K., von Oppen, F. & Stern, A. Engineered platforms for topological superconductivity and Majorana zero modes. Nat Rev Mater 6, 944–958 (2021). https://doi.org/10.1038/s41578-021-00336-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00336-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing