Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Creating emergent phenomena in oxide superlattices

Abstract

Complex oxides are record holder materials for many phenomena, including ferroelectricity, piezoelectricity, superconductivity and multiferroicity. Complex oxides often have competing ground states with energies slightly higher than that of the true ground state. This competition is fortuitous because thermodynamic variables (for example, temperature, electric field, magnetic field, stress and chemical potentials) can access these metastable phases that are usually hidden but emerge as the energetic landscape is reshaped by adjusting the thermodynamic variables. Epitaxial superlattices are a platform for imposing thermodynamic boundary conditions to unleash the properties of hidden phases by altering the delicate balance between competing spin, charge, orbital and lattice degrees of freedom. Additionally, a feature of complex oxides with large responses (large property coefficients) is the coexistence of phases on the nanoscale. New phases can emerge at the heterointerfaces of oxide superlattices, and X-ray, electron, neutron and proximal probes as well as ab initio theoretical studies can provide insights into these emergent phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A comparison of the energy scales of various thermodynamic constraints in oxide superlattices.
Fig. 2: A schematic of the approaches used in vacuum thin-film deposition techniques to create epitaxial heterostructures.
Fig. 3: An atomic-level composite comprising a ferrimagnet and a geometric ferroelectric.
Fig. 4: A design methodology for creating higher-temperature magnetoelectric multiferroics in oxide superlattices.
Fig. 5: Hierarchical structures in oxide superlattices.
Fig. 6: Epitaxial constraints alter the crystal structure and the microstructure of BiFeO3 to access hidden ground states, including an isostructural morphotropic phase transition.

Similar content being viewed by others

References

  1. Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature 363, 56–58 (1993).

    CAS  Google Scholar 

  2. Penney, T., Shafer, M. W. & Torrance, J. B. Insulator-metal transition and long-range magnetic order in EuO. Phys. Rev. B 5, 3669–3674 (1972).

    Google Scholar 

  3. Anguelouch, A. et al. Properties of epitaxial chromium dioxide films grown by chemical vapor deposition using a liquid precursor. J. Appl. Phys. 91, 7140–7142 (2002).

    CAS  Google Scholar 

  4. Tomioka, Y., Asamitsu, A., Moritomo, Y. & Tokura, Y. Anomalous magnetotransport properties of Pr1-xCaxMnO3. J. Phys. Soc. Jpn 64, 3626–3630 (1995).

    CAS  Google Scholar 

  5. Li, J. et al. Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl. Phys. Lett. 84, 5261–5263 (2004).

    CAS  Google Scholar 

  6. Vrejoiu, I. et al. Intrinsic ferroelectric properties of strained tetragonal PbZr0.2Ti0.8O3 obtained on layer–by–layer grown, defect–free single–crystalline films. Adv. Mater. 18, 1657–1661 (2006).

    CAS  Google Scholar 

  7. Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    CAS  Google Scholar 

  8. Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954–958 (2010).

    CAS  Google Scholar 

  9. Cross, L. E. Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987).

    CAS  Google Scholar 

  10. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–415 (1994).

    CAS  Google Scholar 

  11. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    CAS  Google Scholar 

  12. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986).

    CAS  Google Scholar 

  13. Bednorz, J. G., Takashige, M. & Müller, K. A. Susceptibility measurements support high-Tc superconductivity in the Ba-La-Cu-O system. Europhys. Lett. 3, 379–386 (1987).

    CAS  Google Scholar 

  14. Rudolph, P. (ed.) Handbook of Crystal Growth: Bulk Crystal Growth: Basic Techniques 2nd edn Vol. 2 (Elsevier, Amsterdam, 2015).

  15. Heckmann, G. Die Gittertheorie der festen Körper. Ergeb. Exakten Naturwiss. 4, 100–153 (1925).

    Google Scholar 

  16. Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Univ. Press, 1985).

  17. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

    CAS  Google Scholar 

  18. Kalinin, S. V. & Spaldin, N. A. Functional ion defects in transition metal oxides. Science 341, 858–859 (2013).

    CAS  Google Scholar 

  19. Yi, D., Lu, N., Chen, X., Shen, S. & Yu, P. Engineering magnetism at functional oxides interfaces: manganites and beyond. J. Phys. Condens. Matter 29, 443004 (2017).

    Google Scholar 

  20. Terashima, T. & Bando, Y. Formation of artificial superlattice composed of ultrathin layers of CoO and NiO by reactive evaporation. J. Appl. Phys. 56, 3445–3447 (1984).

    CAS  Google Scholar 

  21. Ramesh, R., Simion, B. & Thomas, G. Epitaxial magnetic garnet heterostructures. J. Phys. IV 7, C1-695–C1-698 (1997).

    Google Scholar 

  22. Kawasaki, J. K. et al. Rutile IrO2/TiO2 superlattices: a hyperconnected analog to the Ruddelsden-Popper structure. Phys. Rev. Mater. 2, 054206 (2018).

    CAS  Google Scholar 

  23. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004).

    CAS  Google Scholar 

  24. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    CAS  Google Scholar 

  25. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    CAS  Google Scholar 

  26. Warusawithana, M. P. et al. A ferroelectric oxide made directly on silicon. Science 324, 367–370 (2009).

    CAS  Google Scholar 

  27. Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977–980 (2009).

    CAS  Google Scholar 

  28. He, Q. et al. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. 2, 225 (2011).

    CAS  Google Scholar 

  29. Schlom, D. G. et al. Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118–130 (2014).

    CAS  Google Scholar 

  30. Iijima, K., Terashima, T., Bando, Y., Kamigaki, K. & Terauchi, H. Atomic layer growth of oxide thin films with perovskite-type structure by reactive evaporation. J. Appl. Phys. 72, 2840–2845 (1992).

    CAS  Google Scholar 

  31. Bozovic, I. et al. Atomic-layer engineering of cuprate superconductors. J. Supercond. 7, 187–195 (1994).

    CAS  Google Scholar 

  32. Specht, E. D., Christen, H. M., Norton, D. P. & Boatner, L. A. X-ray diffraction measurement of the effect of layer thickness on the ferroelectric transition in epitaxial KTaO3/KNbO3 multilayers. Phys. Rev. Lett. 80, 4317–4320 (1998).

    CAS  Google Scholar 

  33. Schlom, D. G., Haeni, J. H., Lettieri, J. & Theis, C. D. Oxide nano-engineering using MBE. Mater. Sci. Eng. B 87, 282–291 (2001).

    Google Scholar 

  34. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002).

    CAS  Google Scholar 

  35. Warusawithana, M. P., Colla, E. V., Eckstein, J. N. & Weissman, M. B. Artificial dielectric superlattices with broken inversion symmetry. Phys. Rev. Lett. 90, 036802 (2003).

    Google Scholar 

  36. Tenne, D. A. et al. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313, 1614–1616 (2006).

    CAS  Google Scholar 

  37. Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).

    CAS  Google Scholar 

  38. Ramesh, R. & Schlom, D. G. Whither oxide electronics. MRS Bull. 33, 1006–1011 (2008).

    Google Scholar 

  39. Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    CAS  Google Scholar 

  40. Mohaddes-Ardabili, L. et al. Self-assembled single-crystal ferromagnetic iron nanowires formed by decomposition. Nat. Mater. 3, 533–538 (2004).

    CAS  Google Scholar 

  41. Zheng, H. et al. Three-dimensional heteroepitaxy in self-assembled BaTiO3-CoFe2O4 nanostructures. Appl. Phys. Lett. 85, 2035–2037 (2004).

    CAS  Google Scholar 

  42. MacManus-Driscoll, J. L. et al. Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314–320 (2008).

    CAS  Google Scholar 

  43. Machlin, E. S. & Chaudhari, P. (eds) Synthesis and Properties of Metastable Phases 11–29 (The Metallurgical Society, 1980).

  44. Flynn, C. P. Strain-assisted epitaxial growth of new ordered compounds. Phys. Rev. Lett. 57, 599–602 (1986).

    CAS  Google Scholar 

  45. Bruinsma, R. & Zangwill, A. Structural transitions in epitaxial overlayers, J. Phys. 47, 2055–2073 (1986).

    CAS  Google Scholar 

  46. Zunger, A. & Wood, D. M. Structural phenomena in coherent epitaxial solids. J. Cryst. Growth 98, 1–17 (1989).

    CAS  Google Scholar 

  47. Kaul, A. R., Gorbenko, O. Y. & Kamenev, A. A. The role of heteroepitaxy in the development of new thin-film oxide-based functional materials. Russ. Chem. Rev. 73, 861–880 (2007).

    Google Scholar 

  48. Lee, C.-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013).

    CAS  Google Scholar 

  49. Dingle, R., Stormer, H. L., Gossard, A. C. & Wiegmann, W. Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33, 665–667 (1978).

    CAS  Google Scholar 

  50. Tsukazaki, A. et al. Quantum Hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).

    CAS  Google Scholar 

  51. Tsukazaki, A. et al. Observation of the fractional quantum Hall effect in an oxide. Nat. Mater. 9, 889–893 (2010).

    CAS  Google Scholar 

  52. Harrison, W. A., Kraut, E. A., Waldrop, J. R. & Grant, R. W. Polar heterojunction interfaces. Phys. Rev. B 18, 4402–4410 (1978).

    CAS  Google Scholar 

  53. Tasker, P. W. The stability of ionic crystal surfaces. J. Phys. C 12, 4977–4984 (1979).

    CAS  Google Scholar 

  54. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    CAS  Google Scholar 

  55. Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nat. Mater. 5, 204–209 (2006).

    CAS  Google Scholar 

  56. Schlom, D. G. & Mannhart, J. Interface takes charge over Si. Nat. Mater. 10, 168–169 (2011).

    CAS  Google Scholar 

  57. Mundy, J. A. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).

    CAS  Google Scholar 

  58. Freund, L. B. & Suresh, S. in Thin Film Materials: Stress, Defect Formation and Surface Evolution 60–83; 283–290; 396–416 (Cambridge Univ. Press, 2003).

  59. Klenov, D. O., Donner, W., Foran, B. & Stemmer, S. Impact of stress on oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3−∂ thin films on (001) LaAlO3. Appl. Phys. Lett. 82, 3427 (2003).

    CAS  Google Scholar 

  60. Donner, W. et al. Epitaxial strain-induced chemical ordering in La0.5Sr0.5CoO3−δ films on SrTiO3. Chem. Mater. 23, 984–988 (2011).

    CAS  Google Scholar 

  61. Boullay, P. et al. Structure determination of a brownmillerite Ca2Co2O5 thin film by precession electron diffraction. Phys. Rev. B 79, 184108 (2009).

    Google Scholar 

  62. Nguyen, L. D., Brown, A. S., Thompson, M. A. & Jelloian, L. M. 50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistors. IEEE Trans. Electron Devices 39, 2007–2014 (1992).

    CAS  Google Scholar 

  63. Welser, J., Hoyt, J. L. & Gibbons, J. F. Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors. IEEE Electron Device Lett. 15, 100–102 (1994).

    CAS  Google Scholar 

  64. Newnham, R. E., Skinner, D. P. & Cross, L. E. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978).

    CAS  Google Scholar 

  65. Huang, J., MacManus-Driscoll, J. L. & Wang, H. New epitaxy paradigm in epitaxial self-assembled oxide vertically aligned nanocomposite thin films. J. Mater. Res. 32, 4054–4066 (2017).

    CAS  Google Scholar 

  66. Hamasaki, Y. et al. Crystal isomers of ScFeO3. Cryst. Growth Des. 16, 5214–5222 (2016).

    CAS  Google Scholar 

  67. Lee, S., Ivanov, I. N., Keum, J. K. & Lee, H. N. Epitaxial stabilization and phase instability of VO2 polymorphs. Sci. Rep. 6, 19621 (2016).

    CAS  Google Scholar 

  68. Cava, R. J. Structural chemistry and the local charge picture of copper oxide superconductors. Science 247, 656–662 (1990).

    CAS  Google Scholar 

  69. Sai, N., Meyer, B. & Vanderbilt, D. Compositional inversion symmetry breaking in ferroelectric perovskites. Phys. Rev. Lett. 84, 5636–5639 (2000).

    CAS  Google Scholar 

  70. Ederer, C. & Spaldin, N. A. Magnetoelectrics: a new route to magnetic ferroelectrics. Nat. Mater. 3, 849–851 (2004).

    CAS  Google Scholar 

  71. Kawamura, K. et al. Structural origin of the anisotropic and isotropic thermal expansion of K2NiF4-type LaSrAlO4 and Sr2TiO4. Inorg. Chem. 54, 3896–3904 (2015).

    CAS  Google Scholar 

  72. Birol, T., Benedek, N. A. & Fennie, C. J. Interface control of emergent ferroic order in Ruddlesden-Popper Srn+1TinO3n+1. Phys. Rev. Lett. 107, 517–519 (2011).

    Google Scholar 

  73. Junquera, J., Zimmer, M., Ordejón, P. & Ghosez, P. First-principles calculation of the band offset at BaO/BaTiO3 and SrO/SrTiO3 interfaces. Phys. Rev. B 67, 155327 (2003).

    Google Scholar 

  74. Bousquet, E., Junquera, J. & Ghosez, P. First-principles study of competing ferroelectric and antiferroelectric instabilities in BaTiO3/BaO superlattices. Phys. Rev. B 82, 045426 (2010).

    Google Scholar 

  75. Verissimo-Alves, M., García-Fernández, P., Bilc, D. I., Ghosez, P. & Junquera, J. Highly confined spin-polarized two-dimensional electron gas in SrTiO3/SrRuO3 Superlattices. Phys. Rev. Lett. 108, 107003 (2012).

    Google Scholar 

  76. Wojdeł, J. C. & Íñiguez, J. Ferroelectric transitions at ferroelectric domain walls found from first-principles. Phys. Rev. Lett. 112, 247603 (2014).

    Google Scholar 

  77. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    CAS  Google Scholar 

  78. Belik, A. A. et al. Neutron powder diffraction study on the crystal and magnetic structures of BiCoO3. Chem. Mater. 18, 798–803 (2006).

    CAS  Google Scholar 

  79. Li, M.-R. et al. A polar corundum oxide displaying weak ferromagnetism at room temperature. J. Am. Chem. Soc. 134, 3737–3747 (2012).

    CAS  Google Scholar 

  80. Pitcher, M. J. et al. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite. Science 347, 420–424 (2015).

    CAS  Google Scholar 

  81. Bossak, A. A. et al. XRD and HREM studies of epitaxially stabilized hexagonal orthoferrites RFeO3 (R = Eu−Lu). Chem. Mater. 16, 1751–1755 (2004).

    CAS  Google Scholar 

  82. Dawber, M. et al. Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 95, 177601 (2005).

    CAS  Google Scholar 

  83. Kwestroo, W. & Paping, H. A. M. The systems BaO-SrO-TiO2, BaO-CaO-TiO2, and SrO-CaO-TiO2. J. Am. Ceram. Soc. 42, 292–299 (1959).

    CAS  Google Scholar 

  84. Mundy, J. A. et al. A high-energy density antiferroelectric made by interfacial electrostatic engineering. Preprint at arXiv https://arxiv.org/abs/1812.09615 (2018).

  85. Jiang, J. C., Pan, X. Q., Tian, W., Theis, C. D. & Schlom, D. G. Abrupt PbTiO3/SrTiO3 superlattices grown by reactive molecular beam epitaxy. Appl. Phys. Lett. 74, 2851–2853 (1999).

    CAS  Google Scholar 

  86. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    CAS  Google Scholar 

  87. Prosandeev, S. & Bellaiche, L. Characteristics and signatures of dipole vortices in ferroelectric nanodots: first-principles-based simulations and analytical expressions. Phys. Rev. B 75, 094102 (2007).

    Google Scholar 

  88. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    CAS  Google Scholar 

  89. Dawber, M. & Bousquet, E. New developments in artificially layered ferroelectric oxide superlattices. MRS Bull. 38, 1048–1055 (2013).

    CAS  Google Scholar 

  90. Benedek, N. & Fennie, C. Hybrid improper ferroelectricity: A mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

    Google Scholar 

  91. Oh, Y. S., Luo, X., Huang, F.-T., Wang, Y. & Cheong, S.-W. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca Sr)3Ti2O7 crystals. Nat. Mater. 14, 407–413 (2015).

    CAS  Google Scholar 

  92. Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2014).

    CAS  Google Scholar 

  93. Simkin, M. & Mahan, G. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927–930 (2000).

    CAS  Google Scholar 

  94. Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Natl Acad. Sci. USA 115, 915–920 (2018).

    CAS  Google Scholar 

  95. Lagerwall, S. T. & Dahl, I. Ferroelectric liquid crystals. Mol. Cryst. Liq. Cryst. 114, 151–187 (1984).

    CAS  Google Scholar 

  96. Damodaran, A. R. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).

    CAS  Google Scholar 

  97. Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    CAS  Google Scholar 

  98. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    CAS  Google Scholar 

  99. Khan, A. I. et al. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182–186 (2015).

    CAS  Google Scholar 

  100. Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 8, 405 (2019).

    Google Scholar 

  101. Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).

    Google Scholar 

  102. Kwon, D. et al. Response speed of negative capacitance FinFETs. Presented at the 2018 IEEE Symposium on VLSI Technology, Honolulu, HI (2018).

  103. Shibuya, K., Kawasaki, M. & Tokura, Y. Metal-insulator transitions in TiO2/VO2 superlattices. Phys. Rev. B 82, 205118 (2010).

    Google Scholar 

  104. Gibert, M., Zubko, P., Scherwitzl, R., Íñiguez, J. & Triscone, J.-M. Exchange bias in LaNiO3-LaMnO3 superlattices. Nat. Mater. 11, 195–198 (2012).

    CAS  Google Scholar 

  105. Hirai, D., Matsuno, J. & Takagi, H. Fabrication of (111)-oriented Ca0.5Sr0.5IrO3/SrTiO3 superlattices—A designed playground for honeycomb physics. APL Mater. 3, 041508 (2015).

    Google Scholar 

  106. Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68–72 (2016).

    CAS  Google Scholar 

  107. Choi, W. S. et al. Strain-induced spin states in atomically ordered cobaltites. Nano Lett. 12, 4966–4970 (2012).

    CAS  Google Scholar 

  108. Rondinelli, J. M. & Spaldin, N. A. Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv. Mater. 23, 3363–3381 (2011).

    CAS  Google Scholar 

  109. Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 37, 261–270 (2012).

    CAS  Google Scholar 

  110. Ohnishi, T., Shibuya, K., Yamamoto, T. & Lippmaa, M. Defects and transport in complex oxide thin films. J. Appl. Phys. 103, 103703 (2008).

    Google Scholar 

  111. Smith, E. H. et al. Exploiting kinetics and thermodynamics to grow phase-pure complex oxides by molecular-beam epitaxy under continuous codeposition. Phys. Rev. Mater. 1, 023403 (2017).

    Google Scholar 

  112. Günther, K. G. Aufdampfschichten aus halbleitenden III — V-Verbindungen. Z. Naturforsch. A 13, 1081–1089 (1958).

    Google Scholar 

  113. Freller, H. & Günther, K. G. Three-temperature method as an origin of molecular beam epitaxy. Thin Solid Films 88, 291–307 (1982).

    CAS  Google Scholar 

  114. Holman, R. L. & Fulrath, R. M. Intrinsic nonstoichiometry in the lead zirconate-lead titanate system determined by Knudsen effusion. J. Appl. Phys. 44, 5227–5236 (1973).

    CAS  Google Scholar 

  115. Eisa, M. A., Abadir, M. F. & Gadalla, A. M. The system TiO2-Pb-O in air. Trans. J. Br. Ceram. Soc. 79, 100–104 (1980).

    CAS  Google Scholar 

  116. Hurle, D. T. J. A thermodynamic analysis of native point defect and dopant solubilities in zinc-blende III–V semiconductors. J. Appl. Phys. 107, 121301 (2010).

    Google Scholar 

  117. Sai, N., Rabe, K. M. & Vanderbilt, D. Theory of structural response to macroscopic electric fields in ferroelectric systems. Phys. Rev. B 66, 104108 (2002).

    Google Scholar 

  118. Zhou, Y. & Rabe, K. M. Determination of ground-state and low-energy structures of perovskite superlattices from first principles. Phys. Rev. B 89, 214108 (2014).

    Google Scholar 

  119. Wojdeł, J. C., Hermet, P., Ljungberg, M. P., Ghosez, P. & Íñiguez, J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013).

    Google Scholar 

  120. García-Fernández, P., Wojdeł, J. C., Íñiguez, J. & Junquera, J. Second-principles method for materials simulations including electron and lattice degrees of freedom. Phys. Rev. B 93, 195137 (2016).

    Google Scholar 

  121. Rabe, K. M. & Joannopoulos, J. D. Ab initio determination of a structural phase transition temperature. Phys. Rev. Lett. 59, 570–573 (1987).

    CAS  Google Scholar 

  122. Chen, L.-Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review. J. Am. Ceram. Soc. 91, 1835–1844 (2008).

    CAS  Google Scholar 

  123. Hong, Z. et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 17, 2246–2252 (2017).

    CAS  Google Scholar 

  124. Ohashi, S. et al. Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth. Rev. Sci. Instrum. 70, 178–183 (1999).

    CAS  Google Scholar 

  125. Jäger, M., Teker, A., Mannhart, J. & Braun, W. Independence of surface morphology and reconstruction during the thermal preparation of perovskite oxide surfaces. Appl. Phys. Lett. 112, 111601 (2018).

    Google Scholar 

  126. King, P. D. C. et al. Atomic-scale control of competing electronic phases in ultrathin LaNiO3. Nat. Nanotechnol. 9, 443–447 (2014).

    CAS  Google Scholar 

  127. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    CAS  Google Scholar 

  128. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Google Scholar 

  129. Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    CAS  Google Scholar 

  130. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2018).

    Google Scholar 

Download references

Acknowledgements

For more than two decades, the authors have been extremely fortunate to have the pleasure to collaborate with outstanding colleagues within their home institutions and around the world. The authors are grateful to their past and current students and postdocs, who have made their learning experience much richer. The authors are also fortunate to have been funded from a variety of sources, enabling complementary aspects of their research activity, particularly the US National Science Foundation (NSF)-Materials Research Science and Engineering Centers (MRSEC), US Department of Energy, US Army Research Office (ARO)-Multidisciplinary University Research Initiative (MURI), US Office of Naval Research (ONR)-MURI, Semiconductor Research Corporation-Western Institute of Nanoelectronics (SRC-WIN), Nanoelectronics Research Initiative (NRI), Joint University Microelectronics Program (JUMP) and the NSF-Natural Sciences and Engineering Research Council of Canada (NSERC). The two examples discussed in detail in this Review were primarily supported by the US Department of Energy, Office of Basic Sciences, Division of Materials Sciences and Engineering, under award no. DE-SC0002334 (for the work at Cornell University) and by the ARO under grant W911NF-16-1-0315 and the Gordon and Betty Moore Foundation’s EPiQS Initiative (for the work at University of California, Berkeley).

Author information

Authors and Affiliations

Authors

Contributions

This Review was conceived, discussed and written by R.R. and D.G.S.

Corresponding authors

Correspondence to Ramamoorthy Ramesh or Darrell G. Schlom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, R., Schlom, D.G. Creating emergent phenomena in oxide superlattices. Nat Rev Mater 4, 257–268 (2019). https://doi.org/10.1038/s41578-019-0095-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0095-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing