Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Generating prophylactic immunity against arboviruses in vertebrates and invertebrates

Abstract

The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flavivirus and alphavirus infections: viraemia, disease course, diagnosis and treatment.
Fig. 2: Whole virion vaccines and antibody-induced protection.
Fig. 3: Augmenting mosquito immunity to inhibit flavivirus and alphavirus transmission.

Similar content being viewed by others

References

  1. World Health Organization. Global Arbovirus Initiative https://www.who.int/news-room/events/detail/2022/03/31/default-calendar/global-arbovirus-initiative (2022).

  2. Balakrishnan, V. S. WHO launches global initiative for arboviral diseases. Lancet Microbe 3, e407 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roiz, D. et al. The rising global economic costs of Aedes and Aedes-borne diseases. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2679030/v1 (2023).

  4. Longbottom, J. et al. Aedes albopictus invasion across Africa: the time is now for cross-country collaboration and control. Lancet Glob. Health 11, e623–e628 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Suhrbier, A. Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat. Rev. Rheumatol. 15, 597–611 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Casades-Marti, L. et al. Risk factors for exposure of wild birds to West Nile virus in a gradient of wildlife-livestock interaction. Pathogens 12, 83 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Read, A. J. et al. Clinical and epidemiological features of West Nile virus equine encephalitis in New South Wales, Australia, 2011. Aust. Vet. J. 97, 133–143 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Mulvey, P. et al. The ecology and evolution of Japanese encephalitis virus. Pathogens 10, 1534 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pham, D. et al. Emergence of Japanese encephalitis in Australia: a diagnostic perspective. Pathology 54, 669–677 (2022).

    Article  PubMed  Google Scholar 

  10. Pedersen, C. E. Jr., Robinson, D. M. & Cole, F. E. Jr. Isolation of the vaccine strain of Venezuelan equine encephalomyelitis virus from mosquitoes in Louisiana. Am. J. Epidemiol. 95, 490–496 (1972).

    Article  PubMed  Google Scholar 

  11. Coates, E. E. et al. Safety and immunogenicity of a trivalent virus-like particle vaccine against western, eastern, and Venezuelan equine encephalitis viruses: a phase 1, open-label, dose-escalation, randomised clinical trial. Lancet Infect. Dis. 22, 1210–1220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, B., Wang, H. & Liang, G. Getah virus (alphavirus): an emerging, spreading zoonotic virus. Pathogens 11, 945 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thorarinsson, R. et al. Effects of a DNA and multivalent oil-adjuvanted vaccines against pancreas disease in Atlantic salmon (Salmo salar) challenged with salmonid alphavirus subtype 3. Fish Shellfish Immunol. Rep. 3, 100063 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Harris, E. FDA approves first chikungunya vaccine. JAMA 330, 2241–2241 (2023).

    PubMed  Google Scholar 

  15. World Health Organization. Disease Outbreak News: Western Equine Encephalitis in Argentina https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON499 (2023).

  16. Yan, K. et al. A yellow fever virus 17D infection and disease mouse model used to evaluate a chimeric Binjari-yellow fever virus vaccine. Vaccines 8, 368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, B., Qi, Z. & Qian, X. Recent advancements in mosquito-borne flavivirus vaccine development. Viruses 15, 813 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koopmans, M., de Lamballerie, X., Jaenisch, T. & Consortium, Z. I. Familiar barriers still unresolved — a perspective on the Zika virus outbreak research response. Lancet Infect. Dis. 19, e59–e62 (2019).

    Article  PubMed  Google Scholar 

  19. Ritchie, S. et al. In: Innovative Strategies for Vector Control (eds Koenraadt, C. J. M., Spitzen, J. & Takken, W.) 58-89 (Wageningen Academic Publishers, 2021).

  20. World Health Organization. Call for Public Consultation-development of Target Product Profiles (TPPs) for Wolbachia infected Aedes aegypti Population Replacement Intervention https://www.who.int/news-room/articles-detail/call-for-public-consultation-development-target-product-profiles-wolbachia-infected-aedes-aegypti-population-replacement-intervention (2021).

  21. Ant, T. H., Mancini, M. V., McNamara, C. J., Rainey, S. M. & Sinkins, S. P. Wolbachia-virus interactions and arbovirus control through population replacement in mosquitoes. Pathog. Glob. Health 117, 245–258 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Possas, C. et al. Vaccine innovation for dengue, chikungunya, zika and yellow fever: accelerating global development agenda and partnerships in post-COVID era. Vacc. Res. 2, 1–17 (2022).

    Google Scholar 

  23. Pierson, T. C. & Diamond, M. S. The continued threat of emerging flaviviruses. Nat. Microbiol. 5, 796–812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zimmerman, O., Holmes, A. C., Kafai, N. M., Adams, L. J. & Diamond, M. S. Entry receptors — the gateway to alphavirus infection. J. Clin. Invest. 133, e165307 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan, Y. et al. Flaviviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Front. Immunol. 13, 829433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hobson-Peters, J. et al. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci. Transl. Med. 11, eaax7888 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Abbo, S. R. et al. Comparative efficacy of Mayaro virus-like particle vaccines produced in insect or mammalian cells. J. Virol. 97, e0160122 (2023).

    Article  PubMed  Google Scholar 

  28. Castilho, L. R., Mattos, N. R., Abreu, W. S. & Gutarra, M. L. E. Virus-like particles (VLPs) as important tools for flavivirus vaccine development. Biologics 2, 226–242 (2022).

    Article  Google Scholar 

  29. Bennett, S. R. et al. Safety and immunogenicity of PXVX0317, an aluminium hydroxide-adjuvanted chikungunya virus-like particle vaccine: a randomised, double-blind, parallel-group, phase 2 trial. Lancet Infect. Dis. 22, 1343–1355 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Adams, C. et al. Structure and neutralization mechanism of a human antibody targeting a complex epitope on Zika virus. PLoS Pathog. 19, e1010814 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Salem, G. M. et al. Antibodies from dengue patients with prior exposure to Japanese encephalitis virus are broadly neutralizing against Zika virus. Commun. Biol. 7, 15 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsuji, I. et al. Somatic hypermutation and framework mutations of variable region contribute to anti-Zika virus-specific monoclonal antibody binding and function. J. Virol. 96, e0007122 (2022).

    Article  PubMed  Google Scholar 

  33. Kim, A. S. & Diamond, M. S. A molecular understanding of alphavirus entry and antibody protection. Nat. Rev. Microbiol. 21, 396–407 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Raju, S. et al. A chikungunya virus-like particle vaccine induces broadly neutralizing and protective antibodies against alphaviruses in humans. Sci. Transl. Med. 15, eade8273 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hasan, S. S. et al. A human antibody against Zika virus crosslinks the E protein to prevent infection. Nat. Commun. 8, 14722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, S. et al. A human antibody neutralizes different flaviviruses by using different mechanisms. Cell Rep. 31, 107584 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Fox, J. M. et al. Broadly neutralizing alphavirus antibodies bind an epitope on E2 and inhibit entry and egress. Cell 163, 1095–1107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sharma, A. et al. The epitope arrangement on flavivirus particles contributes to Mab C10’s extraordinary neutralization breadth across Zika and dengue viruses. Cell 184, 6052–6066 (2021). An excellent example illustrating how antibodies neutralize flaviviruses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roux, K. H., Strelets, L. & Michaelsen, T. E. Flexibility of human IgG subclasses. J. Immunol. 159, 3372–3382 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Wrigley, N. G., Brown, E. B. & Skehel, J. J. Electron microscopic evidence for the axial rotation and inter-domain flexibility of the Fab regions of immunoglobulin G. J. Mol. Biol. 169, 771–774 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. Chu, T. H., Patz, E. F. Jr. & Ackerman, M. E. Coming together at the hinges: therapeutic prospects of IgG3. mAbs 13, 1882028 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kam, Y. W. et al. Early appearance of neutralizing immunoglobulin G3 antibodies is associated with chikungunya virus clearance and long-term clinical protection. J. Infect. Dis. 205, 1147–1154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zepeda, O. et al. Antibody immunity to Zika virus among young children in a flavivirus-endemic area in Nicaragua. Viruses 15, 796 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lim, X. X. et al. Human antibody C10 neutralizes by diminishing Zika but enhancing dengue virus dynamics. Cell 184, 6067–6080.e13 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Stiasny, K., Medits, I., Rossbacher, L. & Heinz, F. X. Impact of structural dynamics on biological functions of flaviviruses. FEBS J. 290, 1973–1985 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Gould, C. V. et al. Transmission of yellow fever vaccine virus through blood transfusion and organ transplantation in the USA in 2021: report of an investigation. Lancet Microbe 4, e711–e721 (2023). A cautionary tale for the transmission of live-attenuated virus vaccines, from an example of the use of metagenomic next-generation sequencing for diagnosis.

    Article  PubMed  Google Scholar 

  47. Strauss, J. H. & Strauss, E. G. Recombination in alphaviruses. Semin. Virol. 8, 85–94 (1997).

    Article  CAS  Google Scholar 

  48. Seligman, S. J. & Gould, E. A. Live flavivirus vaccines: reasons for caution. Lancet 363, 2073–2075 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Brault, A. C. et al. A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat. Genet. 39, 1162–1166 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dietrich, E. A., Ong, Y. T., Stovall, J. L., Dean, H. & Huang, C. Y. Limited transmission potential of Takeda’s tetravalent dengue vaccine candidate by Aedes albopictus. Am. J. Trop. Med. Hyg. 97, 1423–1427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de Miranda, R. M. et al. Neotropical sylvatic mosquitoes and Aedes aegypti are not competent to transmit 17DD attenuated yellow fever virus from vaccinated viremic new world non-human primates. Viruses 14, 2231 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang, X., Usama, A., Huanchun, C., Cao, S. & Ye, J. Biological determinants perpetuating the transmission dynamics of mosquito-borne flaviviruses. Emerg. Microbes Infect. 12, 2212812 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Querec, T. D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10, 116–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Prow, N. A. et al. A vaccinia-based single vector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses. Nat. Commun. 9, 1230 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang, T. et al. Research progress of aluminum phosphate adjuvants and their action mechanisms. Pharmaceutics 15, 1756 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Verma, S. K. et al. New-age vaccine adjuvants, their development, and future perspective. Front. Immunol. 14, 1043109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Strezova, A. et al. Long-term protection against herpes zoster by the adjuvanted recombinant zoster vaccine: interim efficacy, immunogenicity, and safety results up to 10 years after initial vaccination. Open Forum Infect. Dis. 9, ofac485 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Weaver, S. C., Pfeffer, M., Marriott, K., Kang, W. & Kinney, R. M. Genetic evidence for the origins of Venezuelan equine encephalitis virus subtype IAB outbreaks. Am. J. Trop. Med. Hyg. 60, 441–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Nguyen, W. et al. Arthritogenic alphavirus vaccines: serogrouping versus cross-protection in mouse models. Vaccines 8, 209 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wijewardana, V., Ulbert, S. & Cattoli, G. Editorial: Irradiation technologies for vaccine development. Front. Immunol. 13, 1075335 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sundaram, A. K. et al. Comparison of purified psoralen-inactivated and formalin-inactivated dengue vaccines in mice and nonhuman primates. Vaccine 38, 3313–3320 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Adam, A. et al. Optimized production and immunogenicity of an insect virus-based chikungunya virus candidate vaccine in cell culture and animal models. Emerg. Microbes Infect. 10, 305–316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. The University of Queensland Australia. Vaccine to Protect Pigs from Japanese Encephalitis Virus https://www.uq.edu.au/news/article/2023/02/vaccine-protect-pigs-japanese-encephalitis-virus (2023).

  64. Shaw, C. A. et al. A phase 1, randomized, placebo-controlled, dose-ranging study to evaluate the safety and immunogenicity of an mRNA-based chikungunya virus vaccine in healthy adults. Vaccine 41, 3898–3906 (2023). One of the first mRNA vaccine trials for an alphavirus, showing that 79% of vaccine recipients had measurable neutralizing antibody responses to CHIKV 1 year after a two-dose vaccine regimen.

    Article  CAS  PubMed  Google Scholar 

  65. Essink, B. et al. The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: the results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. Lancet Infect. Dis. 23, 621–633 (2023). Some of the first mRNA vaccine trials for a flavivirus showing that responses to ZIKV persisted for up to a year; collection of data beyond 13 months is planned.

    Article  CAS  PubMed  Google Scholar 

  66. Prow, N. A. et al. The vaccinia virus based sementis copenhagen vector vaccine against Zika and chikungunya is immunogenic in non-human primates. NPJ Vaccines 5, 44 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Konishi, E. et al. Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology 188, 714–720 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Bollman, B. et al. An optimized messenger RNA vaccine candidate protects non-human primates from Zika virus infection. NPJ Vaccines 8, 58 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rzymski, P., Szuster-Ciesielska, A., Dzieciatkowski, T., Gwenzi, W. & Fal, A. mRNA vaccines: the future of prevention of viral infections? J. Med. Virol. 95, e28572 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Evans, J. P. et al. Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Sci. Transl. Med. 14, eabn8057 (2022). This study describes in detail a key potential limitation for mRNA vaccine technology in terms of waning antibody titres over a relatively short timeframe.

    Article  CAS  PubMed  Google Scholar 

  71. Wieten, R. W. et al. A single 17D yellow fever vaccination provides lifelong immunity; characterization of yellow-fever-specific neutralizing antibody and T-cell responses after vaccination. PLoS One 11, e0149871 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. O’Connor, M. A. et al. A replicon RNA vaccine can induce durable protective immunity from SARS-CoV-2 in nonhuman primates after neutralizing antibodies have waned. PLoS Pathog. 19, e1011298 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Comes, J. D. G., Pijlman, G. P. & Hick, T. A. H. Rise of the RNA machines — self-amplification in mRNA vaccine design. Trends Biotechnol. 41, 1417–1429 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. McGee, J. E. et al. Complete substitution with modified nucleotides suppresses the early interferon response and increases the potency of self-amplifying RNA. Preprint at bioRxiv https://doi.org/10.1101/2023.09.15.557994 (2023). For current mRNA vaccines, N-methyl pseudouridine is used in place of uridine to reduce type I interferon responses that inhibit translation; this modification does not support self-amplifying RNA but this study identifies other modifications that do.

  75. Piras-Douce, F. et al. Evaluation of safety and immuno-efficacy of a next generation live-attenuated yellow fever vaccine in cynomolgus macaques. Vaccine 41, 1457–1470 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Schneider, M. et al. Safety and immunogenicity of a single-shot live-attenuated chikungunya vaccine: a double-blind, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 401, 2138–2147 (2023). A pivotal phase III trial for IXCHIQ, leading the way to approval via the accelerated approval pathway; the first approved CHIKV vaccine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matangkasombut, P. et al. Dengue viremia kinetics in asymptomatic and symptomatic infection. Int. J. Infect. Dis. 101, 90–97 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Wressnigg, N. et al. Single-shot live-attenuated chikungunya vaccine in healthy adults: a phase 1, randomised controlled trial. Lancet Infect. Dis. 20, 1193–1203 (2020).

    Article  PubMed  Google Scholar 

  79. Roques, P. et al. Effectiveness of CHIKV vaccine VLA1553 demonstrated by passive transfer of human sera. JCI Insight 7, e160173 (2022). This study describes a novel approach to demonstrate the protective capacity of vaccine-induced antibodies via passive transfer of vaccine-recipient sera to non-human primates that were then challenged with CHIKV.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Konishi, E. et al. The anamnestic neutralizing antibody response is critical for protection of mice from challenge following vaccination with a plasmid encoding the Japanese encephalitis virus premembrane and envelope genes. J. Virol. 73, 5527–5534 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hugo, L. E., Prow, N. A., Tang, B., Devine, G. & Suhrbier, A. Chikungunya virus transmission between Aedes albopictus and laboratory mice. Parasit. Vectors 9, 555 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lambrechts, L. et al. Direct mosquito feedings on dengue-2 virus-infected people reveal dynamics of human infectiousness. PLoS Negl. Trop. Dis. 17, e0011593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hou, J., Ye, W. & Chen, J. Current development and challenges of tetravalent live-attenuated dengue vaccines. Front. Immunol. 13, 840104 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. de Castro Ferreira, C. et al. The 17D-204 and 17DD yellow fever vaccines: an overview of major similarities and subtle differences. Expert Rev. Vaccines 17, 79–90 (2018).

    Article  Google Scholar 

  85. Laera, D., HogenEsch, H. & O’Hagan, D. T. Aluminum adjuvants — ‘back to the future’. Pharmaceutics 15, 1884 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Burrack, K. S., Montgomery, S. A., Homann, D. & Morrison, T. E. CD8+ T cells control Ross River virus infection in musculoskeletal tissues of infected mice. J. Immunol. 194, 678–689 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Grubor-Bauk, B. et al. NS1 DNA vaccination protects against Zika infection through T cell-mediated immunity in immunocompetent mice. Sci. Adv. 5, eaax2388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Castilow, E. M. & Varga, S. M. Overcoming T cell-mediated immunopathology to achieve safe RSV vaccination. Future Virol. 3, 445–454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Iwata-Yoshikawa, N. et al. A lethal mouse model for evaluating vaccine-associated enhanced respiratory disease during SARS-CoV-2 infection. Sci. Adv. 8, eabh3827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Doherty, T. M. & Rook, G. Progress and hindrances in tuberculosis vaccine development. Lancet 367, 947–949 (2006).

    Article  PubMed  Google Scholar 

  91. Stone, E. T. & Pinto, A. K. T cells in tick-borne flavivirus encephalitis: a review of current paradigms in protection and disease pathology. Viruses 15, 958 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Garber, C. et al. T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses. Nat. Neurosci. 22, 1276–1288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kehn-Hall, K. & Bradfute, S. B. Understanding host responses to equine encephalitis virus infection: implications for therapeutic development. Expert Rev. Anti Infect. Ther. 20, 1551–1566 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Poo, Y. S. et al. Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLoS Negl. Trop. Dis. 8, e3354 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Reagin, K. L. & Funk, K. E. The role of antiviral CD8+ T cells in cognitive impairment. Curr. Opin. Neurobiol. 76, 102603 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Saxena, V., Mathur, A., Krishnani, N. & Dhole, T. N. An insufficient anti-inflammatory cytokine response in mouse brain is associated with increased tissue pathology and viral load during Japanese encephalitis virus infection. Arch. Virol. 153, 283–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, J., Woodruff, M. C., Kim, E. H. & Nam, J. H. Knife’s edge: balancing immunogenicity and reactogenicity in mRNA vaccines. Exp. Mol. Med. 55, 1305–1313 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586, 594–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Farmer, J. F. & Suhrbier, A. Interpreting paired serology for Ross River virus and Barmah Forest virus diseases. Aust. J. Gen. Pract. 48, 645–649 (2019).

    Article  PubMed  Google Scholar 

  100. Wressnigg, N. et al. An inactivated Ross River virus vaccine is well tolerated and immunogenic in an adult population in a randomized phase 3 trial. Clin. Vaccin. Immunol. 22, 267–273 (2015).

    Article  CAS  Google Scholar 

  101. Nasveld, P. E. et al. Long term immunity to live attenuated Japanese encephalitis chimeric virus vaccine: randomized, double-blind, 5-year phase II study in healthy adults. Hum. Vaccin. 6, 1038–1046 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Salje, H. et al. Evaluation of the extended efficacy of the Dengvaxia vaccine against symptomatic and subclinical dengue infection. Nat. Med. 27, 1395–1400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Ernst, D. Long-Term Immunogenicity, Effectiveness Observed with HPV Vaccine Gardasil 9 https://www.empr.com/home/news/long-term-immunogenicity-effectiveness-observed-with-hpv-vaccine-gardasil-9/ (2023).

  105. Yu, D., Walker, L. S. K., Liu, Z., Linterman, M. A. & Li, Z. Targeting T(FH) cells in human diseases and vaccination: rationale and practice. Nat. Immunol. 23, 1157–1168 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Corrado, M. & Pearce, E. L. Targeting memory T cell metabolism to improve immunity. J. Clin. Invest. 132, e148546 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tran, Q. M. et al. Expected endpoints from future chikungunya vaccine trial sites informed by serological data and modeling. Vaccine 41, 182–192 (2023).

    Article  PubMed  Google Scholar 

  108. Chen, G. L. et al. Effect of a chikungunya virus-like particle vaccine on safety and tolerability outcomes: a randomized clinical trial. JAMA 323, 1369–1377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pereira, S. S. et al. NS1-based ELISA test efficiently detects dengue infections without cross-reactivity with Zika virus. Int. J. Infect. Dis. 112, 202–204 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Edelman, R. et al. Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am. J. Trop. Med. Hyg. 62, 681–685 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Hills, S. Evidence to Recommendations for Chikungunya Vaccine use Among Adult Travelers https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2023-10-25-26/02-Chikungunya-Hills-508.pdf (2023).

  112. Waickman, A. T. et al. Evolution of inflammation and immunity in a dengue virus 1 human infection model. Sci. Transl. Med. 14, eabo5019 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Barnes, M. V. C., Mandla, A., Smith, E., Maskuniitty, M. & Openshaw, P. J. M. Human infection challenge in the pandemic era and beyond, HIC-Vac annual meeting report, 2022. Immunother. Adv. 3, ltad024 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cooper, M. M., Loiseau, C., McCarthy, J. S. & Doolan, D. L. Human challenge models: tools to accelerate the development of malaria vaccines. Expert Rev. Vaccines 18, 241–251 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Paixao, E. S. et al. Mortality from congenital Zika syndrome — nationwide cohort study in Brazil. N. Engl. J. Med. 386, 757–767 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yin, P. et al. Chikungunya virus cell-to-cell transmission is mediated by intercellular extensions in vitro and in vivo. Nat. Microbiol. 8, 1653–1667 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bruhns, P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119, 5640–5649 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, A. et al. Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat. Rev. Immunol. 23, 381–396 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. European Medicines Agency. Assessment Report: Qdenga https://www.ema.europa.eu/en/documents/assessment-report/qdenga-epar-public-assessment-report_en.pdf (2022).

  120. Dias, A. G. Jr. et al. Antibody Fc characteristics and effector functions correlate with protection from symptomatic dengue virus type 3 infection. Sci. Transl. Med. 14, eabm3151 (2022). This study describes a systems serology approach illustrating a role for Fc receptor engagement in protection against symptomatic DENV infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Loos, C. et al. Systems serology-based comparison of antibody effector functions induced by adjuvanted vaccines to guide vaccine design. NPJ Vaccines 8, 34 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. O’Connor, D. The omics strategy: the use of systems vaccinology to characterize immune responses to childhood immunization. Expert Rev. Vaccines 21, 1205–1214 (2022).

    Article  PubMed  Google Scholar 

  123. Hagan, T. et al. Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses. Nat. Immunol. 23, 1788–1798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hazlewood, J. E. et al. Injection site vaccinology of a recombinant vaccinia-based vector reveals diverse innate immune signatures. PLoS Pathog. 17, e1009215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kosoy, G. & Miller, B. L. Two decades of arrayed imaging reflectometry for sensitive, high-throughput biosensing. Biosensors 13, 870 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, X. et al. Metabolomics acts as a powerful tool for comprehensively evaluating vaccines approved under emergency: a CoronaVac retrospective study. Front. Immunol. 14, 1168308 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kannan, S., Subbaram, K. & Faiyazuddin, M. In A Handbook of Artificial Intelligence in Drug Delivery (eds Philip, A., Shahiwala, A., Rashid, M. & Faiyazuddin, M.) 467-486 (Academic Press, 2023).

  128. Carvalho, D. O. et al. Transgene-induced cell death following dengue-2 virus infection in Aedes aegypti. Sci. Rep. 13, 5958 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Spinner, S. A. M. et al. New self-sexing Aedes aegypti strain eliminates barriers to scalable and sustainable vector control for governments and communities in dengue-prone environments. Front. Bioeng. Biotechnol. 10, 975786 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Waltz, E. Biotech firm announces results from first US trial of genetically modified mosquitoes. Nature 604, 608–609 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Lee, W. S., Webster, J. A., Madzokere, E. T., Stephenson, E. B. & Herrero, L. J. Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasit. Vectors 12, 165 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Samuel, G. H., Adelman, Z. N. & Myles, K. M. Antiviral immunity and virus-mediated antagonism in disease vector mosquitoes. Trends Microbiol. 26, 447–461 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Perveen, N. et al. Host-pathogen interaction in arthropod vectors: lessons from viral infections. Front. Immunol. 14, 1061899 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schuster, S., Miesen, P. & van Rij, R. P. Antiviral RNAi in insects and mammals: parallels and differences. Viruses 11, 448 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Utarini, A. et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N. Engl. J. Med. 384, 2177–2186 (2021). This study reports an impressive result for Wolbachia intervention, having a protective efficacy of 77.1% against dengue.

    Article  PubMed  PubMed Central  Google Scholar 

  136. World Health Organization Vector Control Advisory Group. Eighteenth Meeting of the WHO Vector Control Advisory Group, Meeting report, 24–26 April 2023 https://apps.who.int/iris/rest/bitstreams/1523233/retrieve (2023).

  137. Zug, R. & Hammerstein, P. Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front. Microbiol. 6, 1201 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wang, Z., Yong, H., Zhang, S., Liu, Z. & Zhao, Y. Colonization resistance of symbionts in their insect hosts. Insects 14, 594 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Fattouh, N., Cazevieille, C. & Landmann, F. Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress. PLoS Negl. Trop. Dis. 13, e0007218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kaur, R. et al. Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe 29, 879–893 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shropshire, J. D., Leigh, B. & Bordenstein, S. R. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 9, e61989 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zheng, R. et al. Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens. ISME J. 17, 1143–1152 (2023).

    Article  PubMed  Google Scholar 

  143. Zhang, G., Hussain, M., O’Neill, S. L. & Asgari, S. Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti. Proc. Natl Acad. Sci. USA 110, 10276–10281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shin, S. W., Kokoza, V., Lobkov, I. & Raikhel, A. S. Relish-mediated immune deficiency in the transgenic mosquito Aedes aegypti. Proc. Natl Acad. Sci. USA 100, 2616–2621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kokoza, V. et al. Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc. Natl Acad. Sci. USA 97, 9144–9149 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bian, G., Shin, S. W., Cheon, H. M., Kokoza, V. & Raikhel, A. S. Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti. Proc. Natl Acad. Sci. USA 102, 13568–13573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Franz, A. W. et al. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc. Natl Acad. Sci. USA 103, 4198–4203 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Reid, W. R., Olson, K. E. & Franz, A. W. E. Current effector and gene-drive developments to engineer arbovirus-resistant Aedes aegypti (Diptera: Culicidae) for a sustainable population replacement strategy in the field. J. Med. Entomol. 58, 1987–1996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Buchman, A. et al. Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs. Proc. Natl Acad. Sci. USA 116, 3656–3661 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Buchman, A. et al. Broad dengue neutralization in mosquitoes expressing an engineered antibody. PLoS Pathog. 16, e1008103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mishra, P., Furey, C., Balaraman, V. & Fraser, M. J. Antiviral hammerhead ribozymes are effective for developing transgenic suppression of chikungunya virus in Aedes aegypti mosquitoes. Viruses 8, 163 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Williams, A. E., Franz, A. W. E., Reid, W. R. & Olson, K. E. Antiviral effectors and gene drive strategies for mosquito population suppression or replacement to mitigate arbovirus transmission by Aedes aegypti. Insects 11, 52 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bier, E. Gene drives gaining speed. Nat. Rev. Genet. 23, 5–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Cobb, M. Gene drives could fight malaria and other global killers but might have unintended consequences. Scientific American https://go.nature.com/3Ty3JFY (13 January 2023).

  155. National Gene Technology Scheme. Draft National Gene Drive Policy Guide https://go.nature.com/3xcbOIK (2023).

  156. Riabinina, O., Quinn, M. & Whitehead, J. P. Genetic toolbox approaches in mosquitoes. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.top107691 (2022).

    Article  PubMed  Google Scholar 

  157. World Health Organization. Guidance Framework for Testing Genetically Modified Mosquitoes https://iris.who.int/handle/10665/341370 (2021).

  158. James, S. L., Dass, B. & Quemada, H. Regulatory and policy considerations for the implementation of gene drive-modified mosquitoes to prevent malaria transmission. Transgenic Res. 32, 17–32 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Patterson, E. I., Villinger, J., Muthoni, J. N., Dobel-Ober, L. & Hughes, G. L. Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. Curr. Opin. Insect Sci. 39, 50–56 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hall, R. A. et al. Commensal viruses of mosquitoes: host restriction, transmission, and interaction with arboviral pathogens. Evol. Bioinform. Online 12, 35–44 (2016).

    CAS  PubMed  Google Scholar 

  161. Olmo, R. P. et al. Mosquito vector competence for dengue is modulated by insect-specific viruses. Nat. Microbiol. 8, 135–149 (2023). This study provides a mechanistic explanation for how insect-specific viruses can increase the transmission of dengue.

    Article  CAS  PubMed  Google Scholar 

  162. Zakrzewski, M. et al. Mapping the virome in wild-caught Aedes aegypti from Cairns and Bangkok. Sci. Rep. 8, 4690 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Feng, Y. et al. A time-series meta-transcriptomic analysis reveals the seasonal, host, and gender structure of mosquito viromes. Virus Evol. 8, veac006 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Romo, H., Kenney, J. L., Blitvich, B. J. & Brault, A. C. Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus. Emerg. Microbes Infect. 7, 181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Goenaga, S. et al. Potential for co-infection of a mosquito-specific flavivirus, Nhumirim virus, to block West Nile virus transmission in mosquitoes. Viruses 7, 5801–5812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Baidaliuk, A. et al. Cell-fusing agent virus reduces arbovirus dissemination in Aedes aegypti mosquitoes in vivo. J. Virol. 93, e00705-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Joseph, R. E., Bozic, J., Werling, K. L., Urakova, N. & Rasgon, J. L. Eilat virus (EILV) causes superinfection exclusion against West NILE virus (WNV) in a strain specific manner in Culex tarsalis mosquitoes. Preprint at bioRxiv https://doi.org/10.1101/2023.05.25.542294 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Koh, C., Henrion-Lacritick, A., Frangeul, L. & Saleh, M. C. Interactions of the insect-specific palm Creek virus with Zika and Chikungunya viruses in Aedes mosquitoes. Microorganisms 9, 1652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tan, L., Zhang, Y., Kim, D. Y. & Li, R. Insect-specific chimeric viruses potentiated antiviral responses and inhibited pathogenic alphavirus growth in mosquito cells. Microbiol. Spectr. 11, e0361322 (2023).

    Article  PubMed  Google Scholar 

  170. Prince, B. C., Walsh, E., Torres, T. Z. B. & Rückert, C. Recognition of arboviruses by the mosquito immune system. Biomolecules 13, 1159 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. McLean, B. J. et al. A novel insect-specific flavivirus replicates only in Aedes-derived cells and persists at high prevalence in wild Aedes vigilax populations in Sydney, Australia. Virology 486, 272–283 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Ratcliffe, N. A. et al. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit. Vectors 15, 112 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Wang, S. & Jacobs-Lorena, M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol. 31, 185–193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fofana, A. et al. The strategy of paratransgenesis for the control of malaria transmission. Front. Trop. Dis. 3, 867104 (2022).

    Article  Google Scholar 

  175. Wang, S. et al. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc. Natl Acad. Sci. USA 109, 12734–12739 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, S. et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357, 1399–1402 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Patterson, E. I. et al. Negeviruses reduce replication of alphaviruses during coinfection. J. Virol. 95, e0043321 (2021).

    Article  PubMed  Google Scholar 

  178. Liu, P. et al. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus. Sci. Rep. 6, 20979 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. World Mosquito Program. Annual Review https://www.worldmosquitoprogram.org/sites/default/files/2023-06/WMP-AnnualReview-2022.pdf (2022).

  180. US Food & Drug Administration. FDA Approves First Vaccine to Prevent Disease Caused by Chikungunya Virus https://www.fda.gov/news-events/press-announcements/fda-approves-first-vaccine-prevent-disease-caused-chikungunya-virus (2023).

  181. Götte, B., Liu, L. & McInerney, G. M. The enigmatic alphavirus non-structural protein 3 (nsP3) revealing its secrets at last. Viruses 10, 105 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Roques, P. et al. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus. JCI Insight 2, e83527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Burton, D. R. Antiviral neutralizing antibodies: from in vitro to in vivo activity. Nat. Rev. Immunol. 23, 720–734 (2023).

    Article  CAS  PubMed  Google Scholar 

  184. Powell, L. A. et al. Human mAbs broadly protect against arthritogenic alphaviruses by recognizing conserved elements of the Mxra8 receptor-binding site. Cell Host Microbe 28, 699–711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Basore, K. et al. Cryo-EM structure of Chikungunya virus in complex with the Mxra8 receptor. Cell 177, 1725–1737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ma, H. et al. The low-density lipoprotein receptor promotes infection of multiple encephalitic alphaviruses. Nat. Commun. 15, 246 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Xie, S., Zhang, H., Liang, Z., Yang, X. & Cao, R. AXL, an important host factor for DENV and ZIKV replication. Front. Cell Infect. Microbiol. 11, 575346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhou, Q. F. et al. Structural basis of Chikungunya virus inhibition by monoclonal antibodies. Proc. Natl Acad. Sci. USA 117, 27637–27645 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Williamson, L. E. et al. Structural constraints link differences in neutralization potency of human anti-Eastern equine encephalitis virus monoclonal antibodies. Proc. Natl Acad. Sci. USA 120, e2213690120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kafai, N. M. et al. Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. J. Exp. Med. 219, e20212532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ramjag, A. et al. A high-throughput screening assay to identify inhibitory antibodies targeting alphavirus release. Virol. J. 19, 170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Williamson, L. E. et al. Therapeutic alphavirus cross-reactive E1 human antibodies inhibit viral egress. Cell 184, 4430–4446 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Malekshahi, Z. et al. Interference of the Zika virus E-protein with the membrane attack complex of the complement system. Front. Immunol. 11, 569549 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Earnest, J. T. et al. The mechanistic basis of protection by non-neutralizing anti-alphavirus antibodies. Cell Rep. 35, 108962 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Chen, X. et al. Development and optimization of a Zika virus antibody-dependent cell-mediated cytotoxicity (ADCC) assay. J. Immunol. Methods 488, 112900 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Piliponsky, A. M., Acharya, M. & Shubin, N. J. Mast cells in viral, bacterial, and fungal infection immunity. Int. J. Mol. Sci. 20, 2851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Schwedler, J. L. et al. Therapeutic efficacy of a potent anti-Venezuelan equine encephalitis virus antibody is contingent on Fc effector function. mAbs 16, 2297451 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Corti, D., Purcell, L. A., Snell, G. & Veesler, D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 184, 4593–4595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mangalmurti, N. & Hunter, C. A. Cytokine storms: understanding COVID-19. Immunity 53, 19–25 (2020). This article introduces the concept of protective inflammation, an area that is increasingly being characterized for COVID-19 but remains understudied for arbovirus infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Long, K. M. & Heise, M. T. Protective and pathogenic responses to Chikungunya virus. Infect. Curr. Trop. Med. Rep. 2, 13–21 (2015).

    Article  PubMed  Google Scholar 

  201. Foy, B. H., Sundt, T. M., Carlson, J. C. T., Aguirre, A. D. & Higgins, J. M. Human acute inflammatory recovery is defined by co-regulatory dynamics of white blood cell and platelet populations. Nat. Comm. 13, 4705 (2022).

    Article  CAS  Google Scholar 

  202. Yang, X. et al. Antibody-dependent enhancement: “Evil” antibodies favorable for viral infections. Viruses 14, 1739 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Martinez-Vega, R. A., Carrasquila, G., Luna, E. & Ramos-Castaneda, J. ADE and dengue vaccination. Vaccine 35, 3910–3912 (2017).

    Article  PubMed  Google Scholar 

  204. Mallapaty, S. Dengue vaccine poised for roll-out but safety concerns linger. Nature 611, 434–435 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Thomas, S. J. Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines 8, 55 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Katzelnick, L. C. et al. Zika virus infection enhances future risk of severe dengue disease. Science 369, 1123–1128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Modhiran, N. et al. A broadly protective antibody that targets the flavivirus NS1 protein. Science 371, 190–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Guirakhoo, F., Domi, A. & Paul, N. Methods for generating a ZIKV immune response utilizing a recombinant modified vaccina Ankara vector encoding the NS1 protein. US Patent 11638750 B2 (2020).

  209. Suhrbier, A. & La Linn, M. Suppression of antiviral responses by antibody-dependent enhancement of macrophage infection. Trends Immunol. 24, 165–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  210. Taylor, A. et al. Fc receptors in antibody-dependent enhancement of viral infections. Immunol. Rev. 268, 340–364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Garcia-Nicolas, O. et al. A Japanese encephalitis virus vaccine inducing antibodies strongly enhancing in vitro infection is protective in pigs. Viruses 9, 124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Kubinski, M. et al. Tick-borne encephalitis virus: a quest for better vaccines against a virus on the rise. Vaccines 8, 451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Simon-Loriere, E. & Schwartz, O. Towards SARS-CoV-2 serotypes? Nat. Rev. Microbiol. 20, 187–188 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Nakayama, E. E. & Shioda, T. SARS-CoV-2 related antibody-dependent enhancement phenomena in vitro and in vivo. Microorganisms 11, 1015 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Gan, L., Chen, Y., Tan, J., Wang, X. & Zhang, D. Does potential antibody-dependent enhancement occur during SARS-CoV-2 infection after natural infection or vaccination? A meta-analysis. BMC Infect. Dis. 22, 742 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Powers, J. M. et al. Infection with chikungunya virus confers heterotypic cross-neutralizing antibodies and memory B-cells against other arthritogenic alphaviruses predominantly through the B domain of the E2 glycoprotein. PLoS Negl. Trop. Dis. 17, e0011154 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Salgado, R. et al. West Nile virus vaccination protects against Usutu virus disease in mice. Viruses 13, 2352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Prow, N. A., Jimenez Martinez, R., Hayball, J. D., Howley, P. M. & Suhrbier, A. Poxvirus-based vector systems and the potential for multi-valent and multi-pathogen vaccines. Expert Rev. Vaccines 17, 925–934 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.S. is funded by an investigator grant from the National Health and Medical Research Council (NHMRC) of Australia (APP1173880) ‘Chikungunya and Zika viruses; understanding disease and developing interventions’. G.J.D. is a chief investigator on an NHMRC grant (APP2012404) ‘Removing mosquito populations by releasing incompatible males’. L.E.H. is a principal investigator on an NHMRC grant (APP2012500) ‘Mosquito-specific viruses: novel agents to control transmission of arboviral pathogens’. The authors thank the Brazil Family Foundation for their generous philanthropic donations to support PC3-based virus research at QIMR Berghofer Medical Research Institute. The funders had no role in the preparation of the manuscript or in the decision to publish. The authors thank N. Beebe for his helpful input.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. D.J.R., L.E.H., G.J.D. and A.S. contributed substantially to the discussion of the content. A.S., G.J.D. and L.E.H. wrote the article. D.J.R. and A.S. reviewed and/or edited the manuscript before submission. A.L.C. designed the original concepts for the figures.

Corresponding author

Correspondence to Andreas Suhrbier.

Ethics declarations

Competing interests

A.S. is a chief investigator on a Medical Research Future Fund grant (Australia) and will receive research grant funding from that grant for preclinical evaluation of mRNA vaccines; the principal unvestigator is Southern RNA. A.S. and D.J.R. are chief investigators on an NHMRC development grant application and may receive research grant funding from that grant for preclinical evaluation of chimeric insect-specific virus vaccines; the principal investigator and patent holders are from the University of Queensland. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks G. Christophides and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawle, D.J., Hugo, L.E., Cox, A.L. et al. Generating prophylactic immunity against arboviruses in vertebrates and invertebrates. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01016-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01016-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research