Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Infectious triggers and novel therapeutic opportunities in childhood B cell leukaemia

Abstract

B cell acute lymphoblastic leukaemia (B-ALL) is the most common form of childhood cancer. Although treatment has advanced remarkably in the past 50 years, it still fails in ~20% of patients. Recent studies revealed that more than 5% of healthy newborns carry preleukaemic clones that originate in utero, but only a small percentage of these carriers will progress to overt B-ALL. The drivers of progression are unclear, but B-ALL incidence seems to be increasing in parallel with the adoption of modern lifestyles. Emerging evidence shows that a major driver for the conversion from the preleukaemic state to the B-ALL state is exposure to immune stressors, such as infection. Here, we discuss our current understanding of the environmental triggers and genetic predispositions that may lead to B-ALL, highlighting lessons from epidemiology, the clinic and animal models, and identifying priority areas for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic vulnerability of B-ALL preleukaemic clones.
Fig. 2: A unified model for childhood B-ALL development.

Similar content being viewed by others

References

  1. Parkin, D. M., Stiller, C. A., Draper, G. J. & Bieber, C. A. The international incidence of childhood cancer. Int. J. Cancer 42, 511–520 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Linabery, A. M. & Ross, J. A. Trends in childhood cancer incidence in the US (1992–2004). Cancer 112, 416–432 (2008).

    Article  PubMed  Google Scholar 

  3. Mullighan, C. G. The genomic landscape of acute lymphoblastic leukemia in children and young adults. Hematol. Am. Soc. Hematol. Educ. Program. 2014, 174–180 (2014).

    Article  Google Scholar 

  4. UK Childhood Cancer Study Investigators. The United Kingdom Childhood Cancer Study: objectives, materials and methods. Br. J. Cancer 82, 1073–1102 (2000).

    Article  PubMed Central  Google Scholar 

  5. Greaves, M. F., Pegram, S. M. & Chan, L. C. Collaborative group study of the epidemiology of acute lymphoblastic leukaemia subtypes: background and first report. Leuk. Res. 9, 715–733 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Inaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. Lancet 381, 1943–1955 (2013).

    Article  PubMed  Google Scholar 

  7. Yen, H. J. et al. Patient-reported outcomes in survivors of childhood hematologic malignancies with hematopoietic stem cell transplant. Blood 135, 1847–1858 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mori, H. et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl Acad. Sci. USA 99, 8242–8247 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schafer, D. et al. Five percent of healthy newborns have an ETV6-RUNX1 fusion as revealed by DNA-based GIPFEL screening. Blood 131, 821–826 (2018). This study, together with Mori et al. (2002), demonstrates that the presence of the first hit in the general child population is much higher than previously anticipated.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Linet, M. S. et al. International long-term trends and recent patterns in the incidence of leukemias and lymphomas among children and adolescents ages 0-19 years. Int. J. Cancer 138, 1862–1874 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Steliarova-Foucher, E. et al. International incidence of childhood cancer, 2001–10: a population-based registry study. Lancet Oncol. 18, 719–731 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Steliarova-Foucher, E. et al. Changing geographical patterns and trends in cancer incidence in children and adolescents in Europe, 1991–2010 (Automated Childhood Cancer Information System): a population-based study. Lancet Oncol. 19, 1159–1169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ward, G. The infective theory of acute leukemia. Br. J. Child. Dis. 14, 11 (1917). This article first links infections to B-ALL development.

    Google Scholar 

  14. Fidanza, M. et al. Inhibition of precursor B-cell malignancy progression by toll-like receptor ligand-induced immune responses. Leukemia 30, 2116–2119 (2016). This work shows that early innate immune response induction by Toll-like receptor ligation could reduce leukaemia penetrance in mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fidanza, M. et al. IFN-gamma directly inhibits murine B-cell precursor leukemia-initiating cell proliferation early in life. Eur. J. Immunol. 47, 892–899 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Martin-Lorenzo, A. et al. Infection exposure is a causal factor in B-cell precursor acute lymphoblastic leukemia as a result of Pax5-inherited susceptibility. Cancer Discov. 5, 1328–1343 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez-Hernandez, G. et al. Infection exposure promotes ETV6-RUNX1 precursor B-cell leukemia via impaired H3K4 demethylases. Cancer Res. 77, 4365–4377 (2017). Together with Martin-Lorenzo et al. (2015), this study provides evidence that delayed exposure to common infections triggers preleukaemia-to-leukaemia conversion in different mouse models, recapitulating human B-ALL genetic predispositions.

    Article  CAS  PubMed  Google Scholar 

  18. Swaminathan, S. & Muschen, M. Infectious origins of childhood leukemia. Oncotarget 6, 16798–16799 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grabas, M. R. et al. Incidence and time trends of childhood cancer in Denmark, 1943–2014. Acta Oncol. 59, 588–595 (2020).

    Article  PubMed  Google Scholar 

  20. Biondi, A. et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol. 13, 936–945 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schultz, K. R. et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: children’s oncology group study AALL0031. Leukemia 28, 1467–1471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Prasad, V. Perspective: the precision-oncology illusion. Nature 537, S63 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Tannock, I. F. & Hickman, J. A. Limits to personalized cancer medicine. N. Engl. J. Med. 375, 1289–1294 (2016).

    Article  PubMed  Google Scholar 

  24. Fischer, U. et al. Cell fate decisions: the role of transcription factors in early B-cell development and leukemia. Blood Cancer Discov. 1, 224–233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kimura, S. & Mullighan, C. G. Molecular markers in ALL: clinical implications. Best Pract. Res. Clin. Haematol. 33, 101193 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gocho, Y. & Yang, J. J. Genetic defects in hematopoietic transcription factors and predisposition to acute lymphoblastic leukemia. Blood 134, 793–797 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roberts, K. G. Genetics and prognosis of ALL in children vs adults. Hematol. Am. Soc. Hematol. Educ. Program 2018, 137–145 (2018).

    Article  Google Scholar 

  28. Paulsson, K. et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat. Genet. 47, 672–676 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Andersson, A. K. et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat. Genet. 47, 330–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yasuda, T. et al. Corrigendum: recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat. Genet. 48, 1591 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Roberts, K. G. et al. High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J. Clin. Oncol. 35, 394–401 (2017).

    Article  PubMed  Google Scholar 

  32. Molina, O. et al. Impaired condensin complex and Aurora B kinase underlie mitotic and chromosomal defects in hyperdiploid B-cell ALL. Blood 136, 313–327 (2020).

    PubMed  PubMed Central  Google Scholar 

  33. Kratz, C. P., Stanulla, M. & Cave, H. Genetic predisposition to acute lymphoblastic leukemia: overview on behalf of the I-BFM ALL Host Genetic Variation Working Group. Eur. J. Med. Genet. 59, 111–115 (2016).

    Article  PubMed  Google Scholar 

  34. Moriyama, T., Relling, M. V. & Yang, J. J. Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood 125, 3988–3995 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pui, C. H., Nichols, K. E. & Yang, J. J. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat. Rev. Clin. Oncol. 16, 227–240 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Papaemmanuil, E. et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trevino, L. R. et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1001–1005 (2009). This article, together with Papaemmanuil et al. (2009), first shows that common low-penetrance susceptibility alleles contribute to the risk of developing childhood B-ALL, mainly by affecting transcriptional regulators of early B cell development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perez-Andreu, V. et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat. Genet. 45, 1494–1498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Migliorini, G. et al. Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype. Blood 122, 3298–3307 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Qian, M. et al. Novel susceptibility variants at the ERG locus for childhood acute lymphoblastic leukemia in Hispanics. Blood 133, 724–729 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiemels, J. L. et al. GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat. Commun. 9, 286 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Xu, H. et al. Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J. Natl Cancer Inst. 105, 733–742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Churchman, M. L. et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell 33, 937–948 e938 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shah, S. et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat. Genet. 45, 1226–1231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Auer, F. et al. Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547G>A. Leukemia 28, 1136–1138 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Duployez, N. et al. Germline PAX5 mutation predisposes to familial B acute lymphoblastic leukemia. Blood https://doi.org/10.1182/blood.2020005756 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moriyama, T. et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol. 16, 1659–1666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, M. Y. et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat. Genet. 47, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Noetzli, L. et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat. Genet. 47, 535–538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Topka, S. et al. Germline ETV6 mutations confer susceptibility to acute lymphoblastic leukemia and thrombocytopenia. PLoS Genet. 11, e1005262 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Melazzini, F. et al. Clinical and pathogenic features of ETV6-related thrombocytopenia with predisposition to acute lymphoblastic leukemia. Haematologica 101, 1333–1342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Perez-Garcia, A. et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood 122, 2425–2432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sood, R., Kamikubo, Y. & Liu, P. Role of RUNX1 in hematological malignancies. Blood 129, 2070–2082 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nishimoto, N. et al. T cell acute lymphoblastic leukemia arising from familial platelet disorder. Int. J. Hematol. 92, 194–197 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Waanders, E. et al. Germline activating TYK2 mutations in pediatric patients with two primary acute lymphoblastic leukemia occurrences. Leukemia 31, 821–828 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Gu, Z. et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat. Genet. 51, 296–307 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qian, M. et al. Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP. Genome Res. 27, 185–195 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pui, C. H., Roberts, K. G., Yang, J. J. & Mullighan, C. G. Philadelphia chromosome-like acute lymphoblastic leukemia. Clin. Lymphoma Myeloma Leuk. 17, 464–470 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007). This study finds that mutations in genes encoding principal regulators of B lymphocyte development and differentiation were present in 40% of B-ALL cases.

    Article  CAS  PubMed  Google Scholar 

  60. Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pang, S. H., Carotta, S. & Nutt, S. L. Transcriptional control of pre-B cell development and leukemia prevention. Curr. Top. Microbiol. Immunol. 381, 189–213 (2014).

    PubMed  Google Scholar 

  62. Hu, Y., Yoshida, T. & Georgopoulos, K. Transcriptional circuits in B cell transformation. Curr. Opin. Hematol. 24, 345–352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maia, A. T. et al. Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins. Leukemia 17, 2202–2206 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Boulianne, B. et al. Lineage-specific genes are prominent DNA damage hotspots during leukemic transformation of B cell precursors. Cell Rep. 18, 1687–1698 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chan, L. N. & Muschen, M. B-cell identity as a metabolic barrier against malignant transformation. Exp. Hematol. 53, 1–6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martin-Lorenzo, A. et al. Loss of Pax5 exploits Sca1-BCR-ABL(p190) susceptibility to confer the metabolic shift essential for pB-ALL. Cancer Res. 78, 2669–2679 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vicente-Duenas, C., Hauer, J., Cobaleda, C., Borkhardt, A. & Sanchez-Garcia, I. Epigenetic priming in cancer initiation. Trends Cancer 4, 408–417 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Buffler, P. A., Kwan, M. L., Reynolds, P. & Urayama, K. Y. Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Cancer Invest. 23, 60–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Kaatsch, P. & Mergenthaler, A. Incidence, time trends and regional variation of childhood leukaemia in Germany and Europe. Radiat. Prot. Dosimetry 132, 107–113 (2008).

    Article  PubMed  Google Scholar 

  71. Laurier, D. et al. Childhood leukaemia risks: from unexplained findings near nuclear installations to recommendations for future research. J. Radiol. Prot. 34, R53–R68 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Doll, R. & Wakeford, R. Risk of childhood cancer from fetal irradiation. Br. J. Radiol. 70, 130–139 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Kendall, G. M. et al. A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980–2006. Leukemia 27, 3–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Pearce, M. S. et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380, 499–505 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wakeford, R. The risk of childhood leukaemia following exposure to ionising radiation–a review. J. Radiol. Prot. 33, 1–25 (2013).

    Article  PubMed  Google Scholar 

  76. Rubery, E. D. Investigation of the possible increased incidence of cancer in West Cumbria. J. Soc. Radiol. Prot. 5, 187–191 (1985).

    Article  Google Scholar 

  77. Laurier, D. et al. Epidemiological studies of leukaemia in children and young adults around nuclear facilities: a critical review. Radiat. Prot. Dosimetry 132, 182–190 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. IARC. Non-ionizing radiation, part 1: static and extremely low-frequency (ELF) electric and magnetic fields. in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (IARC Press, 2002).

  79. Campos-Sanchez, E. et al. Novel ETV6-RUNX1 mouse model to study the role of ELF-MF in childhood B-acute lymphoblastic leukemia: a pilot study. Bioelectromagnetics 40, 343–353 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Schuz, J. et al. Extremely low-frequency magnetic fields and risk of childhood leukemia: a risk assessment by the ARIMMORA consortium. Bioelectromagnetics 37, 183–189 (2016).

    Article  PubMed  CAS  Google Scholar 

  81. Caughey, R. W. & Michels, K. B. Birth weight and childhood leukemia: a meta-analysis and review of the current evidence. Int. J. Cancer 124, 2658–2670 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Comstock, G. W. Snippets from the past: 70 years ago in the journal. Am. J. Epidemiol. 157, 183–184 (2003).

    Article  PubMed  Google Scholar 

  83. O’Neill, K. A., Bunch, K. J. & Murphy, M. F. Intrauterine growth and childhood leukemia and lymphoma risk. Expert. Rev. Hematol. 5, 559–576 (2012).

    Article  PubMed  CAS  Google Scholar 

  84. Greaves, M. Infection, immune responses and the aetiology of childhood leukaemia. Nat. Rev. Cancer 6, 193–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Kinlen, L. Childhood leukaemia, nuclear sites, and population mixing. Br. J. Cancer 104, 12–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Greaves, M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer 18, 471–484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hagan, T. et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178, 1313–1328 e1313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Francis, S. S., Selvin, S., Yang, W., Buffler, P. A. & Wiemels, J. L. Unusual space-time patterning of the Fallon, Nevada leukemia cluster: evidence of an infectious etiology. Chem. Biol. Interact. 196, 102–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Cazzaniga, G. et al. Possible role of pandemic AH1N1 swine flu virus in a childhood leukemia cluster. Leukemia 31, 1819–1821 (2017). This is the first report connecting a space–time cluster of childhood B-ALL with a specific viral infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kroll, M. E., Stiller, C. A., Murphy, M. F. & Carpenter, L. M. Childhood leukaemia and socioeconomic status in England and Wales 1976–2005: evidence of higher incidence in relatively affluent communities persists over time. Br. J. Cancer 105, 1783–1787 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ajrouche, R. et al. Childhood acute lymphoblastic leukaemia and indicators of early immune stimulation: the Estelle study (SFCE). Br. J. Cancer 112, 1017–1026 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gilham, C. et al. Day care in infancy and risk of childhood acute lymphoblastic leukaemia: findings from UK case-control study. BMJ 330, 1294 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Goodman, R. A., Osterholm, M. T., Granoff, D. M. & Pickering, L. K. Infectious diseases and child day care. Pediatrics 74, 134–139 (1984).

    Article  CAS  PubMed  Google Scholar 

  94. Kamper-Jorgensen, M. et al. Childcare in the first 2 years of life reduces the risk of childhood acute lymphoblastic leukemia. Leukemia 22, 189–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Ma, X. et al. Daycare attendance and risk of childhood acute lymphoblastic leukaemia. Br. J. Cancer 86, 1419–1424 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Neglia, J. P. et al. Patterns of infection and day care utilization and risk of childhood acute lymphoblastic leukaemia. Br. J. Cancer 82, 234–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Rudant, J. et al. Childhood acute lymphoblastic leukemia and indicators of early immune stimulation: a childhood leukemia international consortium study. Am. J. Epidemiol. 181, 549–562 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Urayama, K. Y., Buffler, P. A., Gallagher, E. R., Ayoob, J. M. & Ma, X. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. Int. J. Epidemiol. 39, 718–732 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dockerty, J. D., Draper, G., Vincent, T., Rowan, S. D. & Bunch, K. J. Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers. Int. J. Epidemiol. 30, 1428–1437 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Greenbaum, S. et al. Cesarean delivery and childhood malignancies: a single-center, population-based cohort study. J. Pediatr. 197, 292–296 e293 (2018).

    Article  PubMed  Google Scholar 

  101. Marcotte, E. L. et al. Caesarean delivery and risk of childhood leukaemia: a pooled analysis from the childhood leukemia international consortium (CLIC). Lancet Haematol. 3, e176–e185 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wang, R. et al. Cesarean section and risk of childhood acute lymphoblastic leukemia in a population-based, record-linkage study in California. Am. J. Epidemiol. 185, 96–105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Amitay, E. L. & Keinan-Boker, L. Breastfeeding and childhood leukemia incidence: a meta-analysis and systematic review. JAMA Pediatr. 169, e151025 (2015).

    Article  PubMed  Google Scholar 

  104. Morra, M. E. et al. Early vaccination protects against childhood leukemia: a systematic review and meta-analysis. Sci. Rep. 7, 15986 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Shimkln, M. B. BCG and cancer prevention. West. J. Med. 122, 185 (1975).

    Google Scholar 

  106. Miller, A. et al. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. Preprint at medRxiv https://doi.org/10.1101/2020.03.24.20042937 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kinlen, L. Evidence for an infective cause of childhood leukaemia: comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet 2, 1323–1327 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. Kinlen, L. J. Epidemiological evidence for an infective basis in childhood leukaemia. Br. J. Cancer 71, 1–5 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kinlen, L. J. An examination, with a meta-analysis, of studies of childhood leukaemia in relation to population mixing. Br. J. Cancer 107, 1163–1168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Steinmaus, C., Lu, M., Todd, R. L. & Smith, A. H. Probability estimates for the unique childhood leukemia cluster in Fallon, Nevada, and risks near other US military aviation facilities. Env. Health Perspect. 112, 766–771 (2004).

    Article  Google Scholar 

  111. Greaves, M. F. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia 2, 120–125 (1988).

    CAS  PubMed  Google Scholar 

  112. Urayama, K. Y., Ma, X. & Buffler, P. A. Exposure to infections through day-care attendance and risk of childhood leukaemia. Radiat. Prot. Dosimetry 132, 259–266 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Crouch, S. et al. Infectious illness in children subsequently diagnosed with acute lymphoblastic leukemia: modeling the trends from birth to diagnosis. Am. J. Epidemiol. 176, 402–408 (2012).

    Article  PubMed  Google Scholar 

  114. Cardwell, C. R., McKinney, P. A., Patterson, C. C. & Murray, L. J. Infections in early life and childhood leukaemia risk: a UK case-control study of general practitioner records. Br. J. Cancer 99, 1529–1533 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Francis, S. S. et al. In utero cytomegalovirus infection and development of childhood acute lymphoblastic leukemia. Blood 129, 1680–1684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kreis, C., Grotzer, M., Hengartner, H. & Spycher, B. D. Space-time clustering of childhood cancers in Switzerland: a nationwide study. Int. J. Cancer 138, 2127–2135 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Roman, E. et al. Childhood acute lymphoblastic leukemia and infections in the first year of life: a report from the United Kingdom childhood cancer study. Am. J. Epidemiol. 165, 496–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Roman, E., Simpson, J., Ansell, P., Lightfoot, T. & Smith, A. Infectious proxies and childhood leukaemia: findings from the United Kingdom Childhood Cancer Study (UKCCS). Blood Cell Mol. Dis. 42, 126–128 (2009).

    Article  Google Scholar 

  119. Soegaard, S. H. et al. Neonatal inflammatory markers are associated with childhood B-cell precursor acute lymphoblastic leukemia. Cancer Res. 78, 5458–5463 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Beneforti, L. et al. Pro-inflammatory cytokines favor the emergence of ETV6-RUNX1-positive pre-leukemic cells in a model of mesenchymal niche. Br. J. Haematol. 190, 262–273 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Portale, F. et al. Activin A contributes to the definition of a pro-oncogenic bone marrow microenvironment in t(12;21) preleukemia. Exp. Hematol. 73, 7–12 e14 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Kreis, C. et al. Space-time clustering of childhood leukemia: evidence of an association with ETV6-RUNX1 (TEL-AML1) fusion. PLoS ONE 12, e0170020 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nat. Immunol. 8, 463–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Ng, A. P. et al. An Erg-driven transcriptional program controls B cell lymphopoiesis. Nat. Commun. 11, 3013 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sondergaard, E. et al. ERG controls B cell development by promoting Igh V-to-DJ recombination. Cell Rep. 29, 2756–2769 e2756 (2019).

    Article  PubMed  CAS  Google Scholar 

  126. Lahoud, M. H. et al. Gene targeting of Desrt, a novel ARID class DNA-binding protein, causes growth retardation and abnormal development of reproductive organs. Genome Res. 11, 1327–1334 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Boiers, C. et al. A human IPS model implicates embryonic B-myeloid fate restriction as developmental susceptibility to B acute lymphoblastic leukemia-associated ETV6-RUNX1. Dev. Cell 44, 362–377 e367 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schindler, J. W. et al. TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. Cell Stem Cell 5, 43–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Rodriguez-Hernandez, G. et al. Infectious stimuli promote malignant B-cell acute lymphoblastic leukemia in the absence of AID. Nat. Commun. 10, 5563 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vijayakrishnan, J. et al. Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nat. Commun. 10, 5348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Teng, G. et al. RAG represents a widespread threat to the lymphocyte genome. Cell 162, 751–765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014). This study identifies RAG-mediated deletions as the dominant mutational process leading to the acquisition of additional somatic mutations in the progress from preleukaemic cells to overt B-ALL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Swaminathan, S. et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat. Immunol. 16, 766–774 (2015). This study shows that ex vivo exposure to lipopolysaccharide triggers transformation of ETV6–RUNX1+ precursor B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Churchman, M. L. et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell 28, 343–356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cazzaniga, G. et al. Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia. Blood 118, 5559–5564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kosik, P. et al. Low numbers of pre-leukemic fusion genes are frequently present in umbilical cord blood without affecting DNA damage response. Oncotarget 8, 35824–35834 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Sanjuan-Pla, A. et al. Revisiting the biology of infant t(4;11)/MLL-AF4+B-cell acute lymphoblastic leukemia. Blood 126, 2676–2685 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Marschalek, R. Mechanisms of leukemogenesis by MLL fusion proteins. Br. J. Haematol. 152, 141–154 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Hyrenius-Wittsten, A. et al. De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nat. Commun. 9, 1770 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Vicente-Duenas, C. et al. An intact gut microbiome protects genetically predisposed mice against leukemia. Blood 136, 2003–2017 (2020). This study shows that gut microbiota alterations caused by antibiotic treatment were sufficient to induce leukaemia in genetically predisposed mice in the absence of infectious stimuli.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Roy, A. A. “gut feeling” about precursor B-ALL. Blood 136, 1995–1996 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480 e1412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hein, D. et al. The preleukemic TCF3-PBX1 gene fusion can be generated in utero and is present in approximately 0.6% of healthy newborns. Blood 134, 1355–1358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. McNally, R. J. & Eden, T. O. An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br. J. Haematol. 127, 243–263 (2004).

    Article  PubMed  Google Scholar 

  150. Ford, A. M. et al. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc. Natl Acad. Sci. USA 95, 4584–4588 (1998). This study finds that leukaemia in identical twins had its origins in utero, in the fetus, therefore showing the existence of a prenatal predisposition to B-ALL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hong, D. et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319, 336–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    Article  PubMed  CAS  Google Scholar 

  153. Mendez-Ferrer, S., Scadden, D. T. & Sanchez-Aguilera, A. Bone marrow stem cells: current and emerging concepts. Ann. N. Y. Acad. Sci. 1335, 32–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Taub, J. W. et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood 99, 2992–2996 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Wiemels, J. L. et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 354, 1499–1503 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Hein, D., Borkhardt, A. & Fischer, U. Insights into the prenatal origin of childhood acute lymphoblastic leukemia. Cancer Metastasis Rev. 39, 161–171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zamora, A. E. et al. Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8+ T cell responses. Sci. Transl Med. 11, eaat8549 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Kalafati, L. et al. Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183, 771–785.e712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Priem, B. et al. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183, 786–801.e719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mina, M. J. et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science 366, 599–606 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Petrova, V. N. et al. Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Sci. Immunol. 4, eaay6125 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the scientists who have contributed to this exciting field and apologize to those colleagues they were unable to cite. They thank the reviewers for their suggestions and comments, and A. Borkhardt, U. Fischer and all members of their groups for their generosity and useful discussions before the preparation of the manuscript, where several of the concepts examined have been investigated together. Research at C.C.’s laboratory was partially supported by the European Regional Development Fund (FEDER)/MINECO (SAF2017-83061-R), Fundación Ramón Areces and a research contract with Fundación Síndrome de Wolf-Hirschhorn o 4p-. Institutional grants from Fundación Ramón Areces and Banco de Santander to Centro de Biología Molecular Severo Ochoa are also acknowledged. The C.C. and C.V.-D. laboratories are members of the EU COST Action LEGEND (CA16223). Research in the C.V.-D. group is partially supported by an FEDER Miguel Servet grant (CPII19/00024 — AES 2017-2020) from Instituto de Salud Carlos III (Ministerio de Economía y Competitividad), Fondo de Investigaciones Sanitarias/Instituto de Salud Carlos III (PI17/00167). Research in the I.S.-G. group is partially supported by the FEDER and by MINECO/FEDER (SAF2015-64420-R), MCIU/AEI/FEDER (RTI2018-093314-B-I00), Junta de Castilla y León (UIC-017, CSI001U16, CSI234P18 and CSI144P20), the German Carreras Foundation (DJCLS 07R/2019) and Fundacion Unoentrecienmil (CUNINA project). The I.S.-G. laboratory is a member of EuroSyStem and the DECIDE Network funded by the European Union under the Seventh Framework Programme. C.V.-D. and I.S.-G. have been supported by the German Federal Office for Radiation Protection (BfS) (FKZ: 3618S32274).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Cesar Cobaleda or Isidro Sanchez-Garcia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks C. Mullighan, M. Witkowski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cobaleda, C., Vicente-Dueñas, C. & Sanchez-Garcia, I. Infectious triggers and novel therapeutic opportunities in childhood B cell leukaemia. Nat Rev Immunol 21, 570–581 (2021). https://doi.org/10.1038/s41577-021-00505-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00505-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer