Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RHO GTPases: from new partners to complex immune syndromes

Abstract

Ras homology (RHO) GTPases are signalling proteins that have crucial roles in triggering multiple immune functions. Through their interactions with a broad range of effectors and kinases, they regulate cytoskeletal dynamics, cell polarity and the trafficking and proliferation of immune cells. The activity and localization of RHO GTPases are highly controlled by classical families of regulators that share consensus motifs. In this Review, we describe the recent discovery of atypical modulators and partners of RHO GTPases, which bring an additional layer of regulation and plasticity to the control of RHO GTPase activities in the immune system. Furthermore, the development of large-scale genetic screening has now enabled researchers to identify dysregulation of RHO GTPase signalling pathways as a cause of many immune system-related diseases. We discuss the mutations that have been identified in RHO GTPases and their signalling circuits in patients with rare diseases. The discoveries of new RHO GTPase partners and genetic mutations in RHO GTPase signalling hubs have uncovered unsuspected layers of crosstalk with other signalling pathways and may provide novel therapeutic opportunities for patients affected by complex immune or broader syndromes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis, post-translational modifications and typical mechanisms of action of RHO GTPases.
Fig. 2: Model of RHOA and RAC1 regulation by the atypical negative regulators FAM65A, FAM65B and FAM49B.
Fig. 3: RHO GTPase signalling networks involving novel effector proteins.
Fig. 4: RHO GTPases and their partner proteins mutated in human diseases.
Fig. 5: Position of the diverse mutations of CDC42 identified in patients.

Similar content being viewed by others

References

  1. Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Cherfils, J. & Zeghouf, M. Chronicles of the GTPase switch. Nat. Chem. Biol. 7, 493–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Hodge, R. G. & Ridley, A. J. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17, 496–510 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Aspenström, P. Fast-cycling Rho GTPases. Small GTPases 11, 248–255 (2020).

    Article  PubMed  CAS  Google Scholar 

  6. Cherfils, J. & Zeghouf, M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93, 269–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Laurin, M. & Côté, J. F. Insights into the biological functions of Dock family guanine nucleotide exchange factors. Genes Dev. 28, 533–547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tcherkezian, J. & Lamarche-Vane, N. Current knowledge of the large RhoGAP family of proteins. Biol. Cell 99, 67–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Mata, R., Boulter, E. & Burridge, K. The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 12, 493–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peurois, F., Peyroche, G. & Cherfils, J. Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization. Biochem. Soc. Trans. 47, 13–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, M. & Casey, P. J. Protein prenylation: unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol. 17, 110–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Rougerie, P. et al. Fam65b is a new transcriptional target of FOXO1 that regulates RhoA signaling for T lymphocyte migration. J. Immunol. 190, 748–755 (2013). This study presents the first description of FAM65B as an atypical RHOA inhibitor that affects T cell migration by decreasing RHOA–GTP levels.

    Article  CAS  PubMed  Google Scholar 

  13. Gao, K. et al. Front-signal-dependent accumulation of the RHOA inhibitor FAM65B at leading edges polarizes neutrophils. J. Cell Sci. 128, 992–1000 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Megrelis, L. et al. Fam65b phosphorylation relieves tonic RhoA inhibition during T cell migration. Front. Immunol. 9, 2001 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mardakheh, F. K., Self, A. & Marshall, C. J. RHO binding to FAM65A regulates Golgi reorientation during cell migration. J. Cell Sci. 129, 4466–4479 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Flynn, P., Mellor, H., Palmer, R., Panayotou, G. & Parker, P. J. Multiple interactions of PRK1 with RhoA. Functional assignment of the Hr1 repeat motif. J. Biol. Chem. 273, 2698–2705 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Froehlich, J. et al. FAM65B controls the proliferation of transformed and primary T cells. Oncotarget 7, 63215–63225 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhou, L. Y. et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death Differ. 26, 1299–1315 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Kong, K. F. et al. Protein kinase C-eta controls CTLA-4-mediated regulatory T cell function. Nat. Immunol. 15, 465–472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, Z. et al. Structure and control of the actin regulatory WAVE complex. Nature 468, 533–538 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fort, L. et al. Fam49/CYRI interacts with Rac1 and locally suppresses protrusions. Nat. Cell Biol. 20, 1159–1171 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shang, W. et al. Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation. Proc. Natl Acad. Sci. USA 115, E4051–E4060 (2018). Fort et al. (2018) and Shang et al. (2018) provide the first descriptions of FAM49 as an inhibitor of RAC1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuki, K. E. et al. CYRI/FAM49B negatively regulates RAC1-driven cytoskeletal remodelling and protects against bacterial infection. Nat. Microbiol. 4, 1516–1531 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Gilli, F. et al. Loss of braking signals during inflammation: a factor affecting the development and disease course of multiple sclerosis. Arch. Neurol. 68, 879–888 (2011).

    Article  PubMed  Google Scholar 

  26. Faroudi, M. et al. Critical roles for Rac GTPases in T-cell migration to and within lymph nodes. Blood 116, 5536–5547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuramochi, S. et al. LOK is a novel mouse STE20-like protein kinase that is expressed predominantly in lymphocytes. J. Biol. Chem. 272, 22679–22684 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Walter, S. A., Cutler, R. E. Jr., Martinez, R., Gishizky, M. & Hill, R. J. Stk10, a new member of the polo-like kinase kinase family highly expressed in hematopoietic tissue. J. Biol. Chem. 278, 18221–18228 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Bagci, H. et al. Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms. Nat. Cell Biol. 22, 120–134 (2020). This article maps the interaction network of RHO GTPases and identifies novel effectors.

    Article  CAS  PubMed  Google Scholar 

  30. Mott, H. R. & Owen, D. Structures of Ras superfamily effector complexes: what have we learnt in two decades? Crit. Rev. Biochem. Mol. Biol. 50, 85–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Belkina, N. V., Liu, Y., Hao, J. J., Karasuyama, H. & Shaw, S. LOK is a major ERM kinase in resting lymphocytes and regulates cytoskeletal rearrangement through ERM phosphorylation. Proc. Natl Acad. Sci. USA 106, 4707–4712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Charrin, S. & Alcover, A. Role of ERM (ezrin-radixin-moesin) proteins in T lymphocyte polarization, immune synapse formation and in T cell receptor-mediated signaling. Front. Biosci. 11, 1987–1997 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Fehon, R. G., McClatchey, A. I. & Bretscher, A. Organizing the cell cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Biol. 11, 276–287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garcia-Ortiz, A. & Serrador, J. M. ERM proteins at the crossroad of leukocyte polarization, migration and intercellular adhesion. Int. J. Mol. Sci. 21, 1502 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  35. Endo, J. et al. Deficiency of a STE20/PAK family kinase LOK leads to the acceleration of LFA-1 clustering and cell adhesion of activated lymphocytes. FEBS Lett. 468, 234–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, J. H. et al. Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation. J. Cell Biol. 167, 327–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Faure, S. et al. ERM proteins regulate cytoskeleton relaxation promoting T cell-APC conjugation. Nat. Immunol. 5, 272–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Nijhara, R. et al. Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes. J. Immunol. 173, 4985–4993 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, S. Y. et al. Coordinated balance of Rac1 and RhoA plays key roles in determining phagocytic appetite. PLoS ONE 12, e0174603 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Salloum, G., Jaafar, L. & El-Sibai, M. RhoA and Rac1: antagonists moving forward. Tissue Cell 65, 101364 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Ishihara, S. et al. Dual functions of Rap1 are crucial for T-cell homeostasis and prevention of spontaneous colitis. Nat. Commun. 6, 8982 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Kinashi, T. & Katagiri, K. Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule, RAPL. Immunol. Lett. 93, 1–5 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Matsui, T., Yonemura, S. & Tsukita, S. Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr. Biol. 9, 1259–1262 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ormonde, J. V. S., Li, Z., Stegen, C. & Madrenas, J. TAOK3 regulates canonical TCR signaling by preventing early SHP-1-mediated inactivation of LCK. J. Immunol. 201, 3431–3442 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Ormonde, J. V. S., Nie, Y. & Madrenas, J. TAOK3, a regulator of LCK-SHP-1 crosstalk during TCR signaling. Crit. Rev. Immunol. 39, 59–81 (2019).

    Article  PubMed  Google Scholar 

  47. Hammad, H. et al. Transitional B cells commit to marginal zone B cell fate by Taok3-mediated surface expression of ADAM10. Nat. Immunol. 18, 313–320 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Youn, J. Y. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69, 517–532 e511 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Diaz-Horta, O. et al. Ripor2 is involved in auditory hair cell stereociliary bundle structure and orientation. J. Mol. Med. 96, 1227–1238 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Diaz-Horta, O. et al. FAM65B is a membrane-associated protein of hair cell stereocilia required for hearing. Proc. Natl Acad. Sci. USA 111, 9864–9868 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de Bruijn, S. E. et al. A RIPOR2 in-frame deletion is a frequent and highly penetrant cause of adult-onset hearing loss. J. Med. Genet. https://doi.org/10.1136/jmedgenet-2020-106863 (2020).

    Article  PubMed  Google Scholar 

  52. Aguilar, B. J., Zhou, H. & Lu, Q. Cdc42 signaling pathway inhibition as a therapeutic target in Ras- related cancers. Curr. Med. Chem. 24, 3485–3507 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Kazanietz, M. G. & Caloca, M. J. The Rac GTPase in cancer: from old concepts to new paradigms. Cancer Res. 77, 5445–5451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aspenström, P. Activated Rho GTPases in cancer-the beginning of a new paradigm. Int. J. Mol. Sci. 19, 3949 (2018).

    Article  PubMed Central  Google Scholar 

  55. Bustelo, X. R. RHO GTPases in cancer: known facts, open questions, and therapeutic challenges. Biochem. Soc. Trans. 46, 741–760 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Maldonado, M. D. M. & Dharmawardhane, S. Targeting Rac and Cdc42 GTPases in cancer. Cancer Res. 78, 3101–3111 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Voena, C. & Chiarle, R. RHO family GTPases in the biology of lymphoma. Cells 8, 646 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  58. Cannon, A. C., Uribe-Alvarez, C. & Chernoff, J. RAC1 as a therapeutic target in malignant melanoma. Trends Cancer 6, 478–488 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Clayton, N. S. & Ridley, A. J. Targeting Rho GTPase signaling networks in cancer. Front. Cell Dev. Biol. 8, 222 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jung, H., Yoon, S. R., Lim, J., Cho, H. J. & Lee, H. G. Dysregulation of Rho GTPases in human cancers. Cancers 12, 1179 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  61. Bouafia, A. et al. Loss of ARHGEF1 causes a human primary antibody deficiency. J. Clin. Invest. 129, 1047–1060 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Serwas, N. K. et al. Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat. Commun. 10, 3106 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Dobbs, K. et al. Inherited DOCK2 deficiency in patients with early-onset invasive infections. N. Engl. J. Med. 372, 2409–2422 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moens, L. et al. Human DOCK2 deficiency: report of a novel mutation and evidence for neutrophil dysfunction. J. Clin. Immunol. 39, 298–308 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Engelhardt, K. R. et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J. Allergy Clin. Immunol. 124, 1289–1302 e1284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Engelhardt, K. R. et al. The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J. Allergy Clin. Immunol. 136, 402–412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Phatarpekar, P. V. et al. The septin cytoskeleton regulates natural killer cell lytic granule release. J. Cell Biol. 219, e202002145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Randall, K. L. et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J. Exp. Med. 208, 2305–2320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dasouki, M. et al. Deficient T cell receptor excision circles (TRECs) in autosomal recessive hyper IgE syndrome caused by DOCK8 mutation: implications for pathogenesis and potential detection by newborn screening. Clin. Immunol. 141, 128–132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lambe, T. et al. DOCK8 is essential for T-cell survival and the maintenance of CD8+T-cell memory. Eur. J. Immunol. 41, 3423–3435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mizesko, M. C. et al. Defective actin accumulation impairs human natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. J. Allergy Clin. Immunol. 131, 840–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ham, H. et al. Dedicator of cytokinesis 8 interacts with talin and Wiskott-Aldrich syndrome protein to regulate NK cell cytotoxicity. J. Immunol. 190, 3661–3669 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Tangye, S. G. et al. Dedicator of cytokinesis 8-deficient CD4+ T cells are biased to a TH2 effector fate at the expense of TH1 and TH17 cells. J. Allergy Clin. Immunol. 139, 933–949 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Schneider, C. et al. Migration-induced cell shattering due to DOCK8 deficiency causes a type 2-biased helper T cell response. Nat. Immunol. 21, 1528–1539 (2020).

    Article  PubMed  CAS  Google Scholar 

  76. Keles, S. et al. Dedicator of cytokinesis 8 regulates signal transducer and activator of transcription 3 activation and promotes TH17 cell differentiation. J. Allergy Clin. Immunol. 138, 1384–1394 e1382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, Q. et al. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J. Exp. Med. 211, 2549–2566 (2014). This study shows that DOCK8, which is associated with human immunodeficiency diseases, regulates the shape integrity of lymphocytes during migration through CDC42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Janssen, E. et al. Dedicator of cytokinesis 8-deficient patients have a breakdown in peripheral B-cell tolerance and defective regulatory T cells. J. Allergy Clin. Immunol. 134, 1365–1374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Keles, S. et al. Plasmacytoid dendritic cell depletion in DOCK8 deficiency: rescue of severe herpetic infections with IFN-alpha 2b therapy. J. Allergy Clin. Immunol. 133, 1753–1755 e1753 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bittner, T. C. et al. Successful long-term correction of autosomal recessive hyper-IgE syndrome due to DOCK8 deficiency by hematopoietic stem cell transplantation. Klin. Padiatr. 222, 351–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Gatz, S. A. et al. Curative treatment of autosomal-recessive hyper-IgE syndrome by hematopoietic cell transplantation. Bone Marrow Transpl. 46, 552–556 (2011).

    Article  CAS  Google Scholar 

  82. Sanal, O. et al. Additional diverse findings expand the clinical presentation of DOCK8 deficiency. J. Clin. Immunol. 32, 698–708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jing, H. et al. Somatic reversion in dedicator of cytokinesis 8 immunodeficiency modulates disease phenotype. J. Allergy Clin. Immunol. 133, 1667–1675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Crequer, A. et al. Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J. Clin. Invest. 122, 3239–3247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chae, H. D., Lee, K. E., Williams, D. A. & Gu, Y. Cross-talk between RhoH and Rac1 in regulation of actin cytoskeleton and chemotaxis of hematopoietic progenitor cells. Blood 111, 2597–2605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reijnders, M. R. F. et al. RAC1 missense mutations in developmental disorders with diverse phenotypes. Am. J. Hum. Genet. 101, 466–477 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ambruso, D. R. et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc. Natl Acad. Sci. USA 97, 4654–4659 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gu, Y. & Williams, D. A. RAC2 GTPase deficiency and myeloid cell dysfunction in human and mouse. J. Pediatr. Hematol. Oncol. 24, 791–794 (2002).

    Article  PubMed  Google Scholar 

  89. Accetta, D. et al. Human phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening for T-cell lymphopenia. J. Allergy Clin. Immunol. 127, 535–538 e531-532 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Gu, Y. et al. Biochemical and biological characterization of a human Rac2 GTPase mutant associated with phagocytic immunodeficiency. J. Biol. Chem. 276, 15929–15938 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Hsu, A. P. et al. Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood 133, 1977–1988 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Arrington, M. E., Temple, B., Schaefer, A. & Campbell, S. L. The molecular basis for immune dysregulation by the hyper-activated E62K mutant of the GTPase RAC2. J. Biol. Chem. 295, 12130–12142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Alkhairy, O. K. et al. RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. J. Allergy Clin. Immunol. 135, 1380–1384 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Sharapova, S. O. et al. Heterozygous activating mutation in RAC2 causes infantile-onset combined immunodeficiency with susceptibility to viral infections. Clin. Immunol. 205, 1–5 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Lougaris, V. et al. A monoallelic activating mutation in RAC2 resulting in a combined immunodeficiency. J. Allergy Clin. Immunol. 143, 1649–1653 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Stengel, K. & Zheng, Y. Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal. 23, 1415–1423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Takenouchi, T., Kosaki, R., Niizuma, T., Hata, K. & Kosaki, K. Macrothrombocytopenia and developmental delay with a de novo CDC42 mutation: yet another locus for thrombocytopenia and developmental delay. Am. J. Med. Genet. A 167A, 2822–2825 (2015).

    Article  PubMed  CAS  Google Scholar 

  98. Takenouchi, T., Okamoto, N., Ida, S., Uehara, T. & Kosaki, K. Further evidence of a mutation in CDC42 as a cause of a recognizable syndromic form of thrombocytopenia. Am. J. Med. Genet. A 170A, 852–855 (2016).

    Article  PubMed  CAS  Google Scholar 

  99. Motokawa, M. et al. A hot-spot mutation in CDC42 (p.Tyr64Cys) and novel phenotypes in the third patient with Takenouchi-Kosaki syndrome. J. Hum. Genet. 63, 387–390 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Kalina, T. et al. EuroFlow standardized approach to diagnostic immunopheneotyping of severe PID in newborns and young children. Front. Immunol. 11, 371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bucciol, G. et al. Systemic inflammation and Myelofibrosis in a patient with Takenouchi-Kosaki syndrome due to CDC42 Tyr64Cys mutation. J. Clin. Immunol. 40, 567–570 (2020).

    Article  PubMed  Google Scholar 

  102. Hamada, N. et al. Neuropathophysiological significance of the c.1449T>C/p.(Tyr64Cys) mutation in the CDC42 gene responsible for Takenouchi-Kosaki syndrome. Biochem. Biophys. Res. Commun. 529, 1033–1037 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Martinelli, S. et al. Functional dysregulation of CDC42 causes diverse developmental phenotypes. Am. J. Hum. Genet. 102, 309–320 (2018). This report establishes the first genotype–phenotype relationships in patients with various mutations in CDC42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Szczawinska-Poplonyk, A., Ploski, R., Bernatowska, E. & Pac, M. A novel CDC42 mutation in an 11-year old child manifesting as syndromic immunodeficiency, autoinflammation, hemophagocytic lymphohistiocytosis, and malignancy: a case report. Front. Immunol. 11, 318 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gernez, Y. et al. Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1beta inhibition. J. Allergy Clin. Immunol. 144, 1122–1125 e1126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lam, M. T. et al. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J. Exp. Med. 216, 2778–2799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bekhouche, B. et al. A toxic palmitoylation of Cdc42 enhances NF-kappaB signaling and drives a severe autoinflammatory syndrome. J. Allergy Clin. Immunol. 146, 1201–1204 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. He, T., Huang, Y., Ling, J. & Yang, J. A new patient with NOCARH syndrome due to CDC42 defect. J. Clin. Immunol. 40, 571–575 (2020).

    Article  PubMed  Google Scholar 

  109. Verboon, J. M. et al. Infantile myelofibrosis and myeloproliferation with CDC42 dysfunction. J. Clin. Immunol. 40, 554–566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Johnson, J. L., Erickson, J. W. & Cerione, R. A. C-terminal di-arginine motif of Cdc42 protein is essential for binding to phosphatidylinositol 4,5-bisphosphate-containing membranes and inducing cellular transformation. J. Biol. Chem. 287, 5764–5774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Akula, M. K. et al. Protein prenylation restrains innate immunity by inhibiting Rac1 effector interactions. Nat. Commun. 10, 3975 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Akula, M. K. et al. Control of the innate immune response by the mevalonate pathway. Nat. Immunol. 17, 922–929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Park, Y. H., Wood, G., Kastner, D. L. & Chae, J. J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17, 914–921 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schnappauf, O., Chae, J. J., Kastner, D. L. & Aksentijevich, I. The pyrin inflammasome in health and disease. Front. Immunol. 10, 1745 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Özen, S., Batu, E. D. & Demir, S. Familial Mediterranean fever: recent developments in pathogenesis and new recommendations for management. Front. Immunol. 8, 253 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Migita, K. et al. Familial Mediterranean fever: overview of pathogenesis, clinical features and management. Immunol. Med. 41, 55–61 (2018).

    Article  PubMed  Google Scholar 

  117. Jamilloux, Y., Magnotti, F., Belot, A. & Henry, T. The pyrin inflammasome: from sensing RhoA GTPases-inhibiting toxins to triggering autoinflammatory syndromes. Pathog. Dis. https://doi.org/10.1093/femspd/fty020 (2018).

    Article  PubMed  Google Scholar 

  118. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Vabres, P. et al. Postzygotic inactivating mutations of RHOA cause a mosaic neuroectodermal syndrome. Nat. Genet. 51, 1438–1441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Harms, F. L. et al. Activating mutations in PAK1, encoding p21-activated kinase 1, cause a neurodevelopmental disorder. Am. J. Hum. Genet. 103, 579–591 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kernohan, K. D. et al. p21 protein-activated kinase 1 is associated with severe regressive autism, and epilepsy. Clin. Genet. 96, 449–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Ohori, S. et al. A novel PAK1 variant causative of neurodevelopmental disorder with postnatal macrocephaly. J. Hum. Genet. 65, 481–485 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Fritz-Laylin, L. K., Lord, S. J. & Mullins, R. D. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. J. Cell Biol. 216, 1673–1688 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fritz-Laylin, L. K. et al. Actin-based protrusions of migrating neutrophils are intrinsically lamellar and facilitate direction changes. eLife 6, 437 (2017).

    Article  Google Scholar 

  125. Westerberg, L. et al. Wiskott-Aldrich syndrome protein deficiency leads to reduced B-cell adhesion, migration, and homing, and a delayed humoral immune response. Blood 105, 1144–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, X. et al. Abnormalities of follicular helper T-cell number and function in Wiskott-Aldrich syndrome. Blood 127, 3180–3191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhou, L. et al. Abnormal distribution of distinct lymphocyte subsets in children with Wiskott-Aldrich syndrome. Hum. Immunol. 78, 565–573 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Cotta-de-Almeida, V., Dupré, L., Guipouy, D. & Vasconcelos, Z. Signal integration during T lymphocyte activation and function: lessons from the Wiskott-Aldrich syndrome. Front. Immunol. 6, 47 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Rivers, E. & Thrasher, A. J. Wiskott-Aldrich syndrome protein: emerging mechanisms in immunity. Eur. J. Immunol. 47, 1857–1866 (2017). This review provides an overview of the roles of WASp in innate and adaptive immunity and clarifies mechanistic insights into Wiskott–Aldrich syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun, X., Wei, Y., Lee, P. P., Ren, B. & Liu, C. The role of WASp in T cells and B cells. Cell Immunol. 341, 103919 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. de Noronha, S. et al. Impaired dendritic-cell homing in vivo in the absence of Wiskott-Aldrich syndrome protein. Blood 105, 1590–1597 (2005).

    Article  PubMed  CAS  Google Scholar 

  132. Snapper, S. B. et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J. Leukoc. Biol. 77, 993–998 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Haddad, E. et al. The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. Blood 97, 33–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Lanzi, G. et al. A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP. J. Exp. Med. 209, 29–34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gallego, M. D. et al. WIP and WASP play complementary roles in T cell homing and chemotaxis to SDF-1alpha. Int. Immunol. 18, 221–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Castiello, M. C. et al. Wiskott-Aldrich syndrome protein deficiency perturbs the homeostasis of B-cell compartment in humans. J. Autoimmun. 50, 42–50 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dupré, L. et al. Wiskott-Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 17, 157–166 (2002).

    Article  PubMed  Google Scholar 

  138. Kumari, S. et al. Actin foci facilitate activation of the phospholipase C-gamma in primary T lymphocytes via the WASP pathway. eLife 4, e04953 (2015).

    Article  PubMed Central  Google Scholar 

  139. Rey-Suarez, I. et al. WASP family proteins regulate the mobility of the B cell receptor during signaling activation. Nat. Commun. 11, 439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lorenzi, R., Brickell, P. M., Katz, D. R., Kinnon, C. & Thrasher, A. J. Wiskott-Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood 95, 2943–2946 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Tsuboi, S. & Meerloo, J. Wiskott-Aldrich syndrome protein is a key regulator of the phagocytic cup formation in macrophages. J. Biol. Chem. 282, 34194–34203 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Orange, J. S. et al. Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc. Natl Acad. Sci. USA 99, 11351–11356 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gismondi, A. et al. Impaired natural and CD16-mediated NK cell cytotoxicity in patients with WAS and XLT: ability of IL-2 to correct NK cell functional defect. Blood 104, 436–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Lee, P. P. et al. Wiskott-Aldrich syndrome protein regulates autophagy and inflammasome activity in innate immune cells. Nat. Commun. 8, 1576 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Taylor, M. D. et al. Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome. Sci. Transl Med. 2, 37ra44 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Hurst, V., Shimada, K. & Gasser, S. M. Nuclear actin and actin-binding proteins in DNA repair. Trends Cell Biol. 29, 462–476 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Keszei, M. et al. Constitutive activation of WASp in X-linked neutropenia renders neutrophils hyperactive. J. Clin. Invest. 128, 4115–4131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Al-Mousa, H. et al. Hematopoietic stem cell transplantation corrects WIP deficiency. J. Allergy Clin. Immunol. 139, 1039–1040 e1034 (2017).

    Article  PubMed  Google Scholar 

  149. Rai, R. et al. Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott - Aldrich syndrome. Nat. Commun. 11, 4034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pala, F. et al. Lentiviral-mediated gene therapy restores B cell tolerance in Wiskott-Aldrich syndrome patients. J. Clin. Invest. 125, 3941–3951 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Schaefer, A., Reinhard, N. R. & Hordijk, P. L. Toward understanding RhoGTPase specificity: structure, function and local activation. Small GTPases 5, 6 (2014).

    Article  PubMed  Google Scholar 

  152. Madaule, P. & Axel, R. A novel ras-related gene family. Cell 41, 31–40 (1985).

    Article  CAS  PubMed  Google Scholar 

  153. Didsbury, J., Weber, R. F., Bokoch, G. M., Evans, T. & Snyderman, R. rac, a novel ras-related family of proteins that are botulinum toxin substrates. J. Biol. Chem. 264, 16378–16382 (1989).

    Article  CAS  PubMed  Google Scholar 

  154. Adams, A. E., Johnson, D. I., Longnecker, R. M., Sloat, B. F. & Pringle, J. R. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111, 131–142 (1990).

    Article  CAS  PubMed  Google Scholar 

  155. Johnson, D. I. & Pringle, J. R. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol. 111, 143–152 (1990).

    Article  CAS  PubMed  Google Scholar 

  156. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992). This study is the first to show a role for RHOA in actin polymerization.

    Article  CAS  PubMed  Google Scholar 

  157. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992). This article shows that RAC1 generates actin filaments that are organized in ruffles.

    Article  CAS  PubMed  Google Scholar 

  158. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995). This report establishes that the three most common members of the RHO GTPase family can polymerize actin filaments and organize them in different types of array.

    Article  CAS  PubMed  Google Scholar 

  159. Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role T cell actin cytoskeleton. J. Exp. Med. 181, 577–584 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Delon, J., Bercovici, N., Liblau, R. & Trautmann, A. Imaging antigen recognition by naive CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response. Eur. J. Immunol. 28, 716–729 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Acuto, O. & Cantrell, D. T cell activation and the cytoskeleton. Annu. Rev. Immunol. 18, 165–184 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Inserm, CNRS, Université de Paris, the French Agence Nationale de la Recherche, Société Française de Dermatologie, Programme Germaine de Stael and Fondation ARC. The authors thank E. Bloch-Gallego, M. Mangeney and C. Randriamampita for critical reading of the manuscript. The authors apologize to colleagues whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jérôme Delon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks I. Meyts and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

SCAR/WAVE proteins

Suppressor of cAMP receptor/Wiskott–Aldrich syndrome protein (WASp) family verprolin homology proteins. A complex of WASp family-related proteins that are implicated in the regulation of cytoskeletal organization, lamellipodium formation, actin dynamics and cell motility through the activation of actin-related protein 2/3 (ARP2/3) complex-dependent actin nucleation.

Pseudopod

A filamentous actin-rich projection of the cell membrane of leukocytes formed to trigger cell migration and to direct their movement in response to a chemoattractive stimulus.

Ezrin/radixin/moesin proteins

(ERM proteins). Highly homologous proteins involved in multiple cellular processes, notably cell migration and activation, by crosslinking plasma membrane proteins to the underlying cortical actin cytoskeleton when they adopt an open conformation upon phosphorylation.

Marginal zone B cells

A subpopulation of B cells localized in the spleen and lymph nodes at the site of exposure to antigens, where they can rapidly proliferate and differentiate into IgM+ plasmablasts.

RNA processing bodies

(P-bodies). Cytoplasmic aggregates composed of mRNA and proteins that are involved in mRNA decay and translation repression.

Septins

Guanosine triphosphate (GTP)-binding, membrane-interacting proteins that are highly conserved components of the cytoskeletal system and are involved in multiple cellular processes, including cytokinesis, cell polarity and membrane dynamics, through their capacity to adopt variable architectures.

TCR excision circles

Small circular DNA fragments generated by developing T cells in the thymus as a product of the rearrangement of gene segments encoding the variable domains of the T cell receptor (TCR).

Wiskott–Aldrich syndrome protein

(WASp). A cytoplasmic signalling protein expressed in haematopoietic cells that regulates the actin cytoskeleton through the control of actin-related protein 2/3 (ARP2/3) complex activity and that participates in both innate and adaptive immune responses.

Somatic reversion

Genetic mechanism by which a DNA mutation is repaired to give back a normal protein.

Switch II domain

A region of the Ras homology (RHO) GTPases that has the capacity to change its conformation according to the nature of the bound phosphate group (guanosine diphosphate (GDP) or guanosine triphosphate (GTP)), which switches the activity state of the protein and affects its interaction with regulator and effector proteins.

Noonan syndrome

A common genetic multisystem disorder characterized by variable phenotypes, including typical facial features, developmental delay, short stature, congenital heart defects, renal anomalies, lymphatic malformations, bleeding difficulties and learning disabilities, caused by mutations in the genes encoding proteins involved in the RAS–mitogen-activated protein kinase signalling pathway.

Familial Mediterranean fever syndrome

An autoinflammatory disease caused by mutations in MEFV, which encodes a 781 amino acid protein known as pyrin.

Actin-related protein 2/3 complex

(ARP2/3 complex). A seven-subunit conserved protein complex that nucleates branched actin filament networks and finely regulates their organization in crucial cellular functions, including cell migration, endocytosis, phagocytosis, vesicular trafficking and cytokinesis, through its interaction with nucleation-promoting factors such as Wiskott–Aldrich syndrome protein (WASp) and the SCAR/WAVE proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Masri, R., Delon, J. RHO GTPases: from new partners to complex immune syndromes. Nat Rev Immunol 21, 499–513 (2021). https://doi.org/10.1038/s41577-021-00500-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00500-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing