Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neutrophils: from IBD to the gut microbiota

Abstract

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract that results from dysfunction in innate and/or adaptive immune responses. Impaired innate immunity, which leads to lack of control of an altered intestinal microbiota and to activation of the adaptive immune system, promotes a secondary inflammatory response that is responsible for tissue damage. Neutrophils are key players in innate immunity in IBD, but their roles have been neglected compared with those of other immune cells. The latest studies on neutrophils in IBD have revealed unexpected complexities, with heterogeneous populations and dual functions, both deleterious and protective, for the host. In parallel, interconnections between disease development, intestinal microbiota and neutrophils have been highlighted. Numerous IBD susceptibility genes (such as NOD2, NCF4, LRRK2, CARD9) are involved in neutrophil functions related to defence against microorganisms. Moreover, severe monogenic diseases involving dysfunctional neutrophils, including chronic granulomatous disease, are characterized by intestinal inflammation that mimics IBD and by alterations in the intestinal microbiota. This observation demonstrates the dialogue between neutrophils, gut inflammation and the microbiota. Neutrophils affect microbiota composition and function in several ways. In return, microbial factors, including metabolites, regulate neutrophil production and function directly and indirectly. It is crucial to further investigate the diverse roles played by neutrophils in host–microbiota interactions, both at steady state and in inflammatory conditions, to develop new IBD therapies. In this Review, we discuss the roles of neutrophils in IBD, in light of emerging evidence proving strong interconnections between neutrophils and the gut microbiota, especially in an inflammatory context.

Key points

  • The study of neutrophils in inflammatory bowel disease (IBD) has revealed unexpected complexities, with heterogeneous populations and dual functions, both deleterious and protective, for the host.

  • Strong evidence supports an association between defects in neutrophil functions, alterations of the gut microbiota and intestinal inflammation.

  • Neutrophils influence microbiota composition and function, especially in inflammatory conditions.

  • The intestinal microbiota regulates neutrophil production and function, from activation to maturation.

  • Several microbiota-derived metabolites have been identified as modulators of neutrophil activity.

  • It is crucial to elucidate the roles played by neutrophils in host–microbiota interactions to develop new ways to tackle complex diseases associated with microbiota alterations, such as IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of neutrophils in the development of an IBD-like phenotype.
Fig. 2: Expression levels of IBD susceptibility genes in immune cells.
Fig. 3: Overview of the dialogue between neutrophils and the microbiota.

Similar content being viewed by others

References

  1. Plichta, D. R., Graham, D. B., Subramanian, S. & Xavier, R. J. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host–microbiome relationships. Cell 178, 1041–1056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Graham, D. B. & Xavier, R. J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578, 527–539 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fernandes, F. P., Leal, V. N. C., Souza de Lima, D., Reis, E. C. & Pontillo, A. Inflammasome genetics and complex diseases: a comprehensive review. Eur. J. Hum. Genet. 28, 1307–1321 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wéra, O., Lancellotti, P. & Oury, C. The dual role of neutrophils in inflammatory bowel diseases. J. Clin. Med. 5, 118 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Drury, B., Hardisty, G., Gray, R. D. & Ho, G. Neutrophil extracellular traps in inflammatory bowel disease: pathogenic mechanisms and clinical translation. Cell. Mol. Gastroenterol. Hepatol. 12, 321–333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hugot, J.-P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411, 599–603 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411, 603–606 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Deshmukh, H. S. et al. Critical role of NOD2 in regulating the immune response to Staphylococcus aureus. Infect. Immun. 77, 1376–1382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wouters, C. H., Maes, A., Foley, K. P., Bertin, J. & Rose, C. D. Blau syndrome, the prototypic auto-inflammatory granulomatous disease. Pediatr. Rheumatol. Online J. 12, 33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Magro, F. et al. European consensus on the histopathology of inflammatory bowel disease. J. Crohns Colitis 7, 827–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Lopez, R. N. et al. Fecal biomarkers in inflammatory bowel disease: faecal biomarkers. J. Gastroenterol. Hepatol. 32, 577–582 (2017).

    Article  PubMed  Google Scholar 

  13. Mortensen, J. H. et al. A specific calprotectin neo-epitope [CPa9-HNE] in serum from inflammatory bowel disease patients is associated with neutrophil activity and endoscopic severity. J. Crohns Colitis 16, 1447–1460 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Swaminathan, A. et al. Faecal myeloperoxidase as a biomarker of endoscopic activity in inflammatory bowel disease. J. Crohns Colitis 16, 1862–1873 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mortha, A. et al. Neutralizing anti-granulocyte-macrophage–colony-stimulating factor autoantibodies recognize post-translational glycosylations on granulocyte-macrophage–colony-stimulating factor years before diagnosis and predict complicated Crohn’s disease. Gastroenterology 163, 659–670 (2022). This study shows that the detection of autoantibodies directed against GM-CSF could predict complicated ileal Crohn’s disease long before disease diagnosis.

    Article  CAS  PubMed  Google Scholar 

  16. Hamilton, J. A. GM-CSF in inflammation. J. Exp. Med. 217, e20190945 (2020).

    Article  PubMed  Google Scholar 

  17. Deniset, J. F. & Kubes, P. Neutrophil heterogeneity: bona fide subsets or polarization states? J. Leukoc. Biol. 103, 829–838 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Hidalgo, A. & Casanova-Acebes, M. Dimensions of neutrophil life and fate. Semin. Immunol. 57, 101506 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Garratt, L. W. Current understanding of the neutrophil transcriptome in health and disease. Cells 10, 2406 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ng, L. G., Ostuni, R. & Hidalgo, A. Heterogeneity of neutrophils. Nat. Rev. Immunol. 19, 255–265 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Silvestre-Roig, C., Fridlender, Z. G., Glogauer, M. & Scapini, P. Neutrophil diversity in health and disease. Trends Immunol. 40, 565–583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burn, G. L., Foti, A., Marsman, G., Patel, D. F. & Zychlinsky, A. The neutrophil. Immunity 54, 1377–1391 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, D. & Frenette, P. S. Cross talk between neutrophils and the microbiota. Blood 133, 2168–2177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosales, C. Neutrophil: a cell with many roles in inflammation or several cell types? Front. Physiol. 9, 113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hardisty, G. R. et al. High purity isolation of low density neutrophils casts doubt on their exceptionality in health and disease. Front. Immunol. 12, 625922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou, G. et al. CD177+ neutrophils as functionally activated neutrophils negatively regulate IBD. Gut 67, 1052–1063 (2018). This study identified a unique IBD-specific neutrophil population.

    Article  CAS  PubMed  Google Scholar 

  27. Hoogendijk, A. J. et al. Dynamic transcriptome–proteome correlation networks reveal human myeloid differentiation and neutrophil-specific programming. Cell Rep. 29, 2505–2519.e4 (2019). This study combines interesting high-throughput approaches to elucidate neutrophil biology.

    Article  CAS  PubMed  Google Scholar 

  28. Marini, O. et al. Mature CD10+ and immature CD10 neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood 129, 1343–1356 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, G. X. & Liu, Z. J. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease: role of neutrophils in IBD. J. Dig. Dis. 18, 495–503 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Buckley, C. D. et al. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J. Leukoc. Biol. 79, 303–311 (2005).

    Article  PubMed  Google Scholar 

  31. Xu, Q., Zhao, W., Yan, M. & Mei, H. Neutrophil reverse migration. J. Inflamm. 19, 22 (2022).

    Article  CAS  Google Scholar 

  32. Sullivan, D. P., Bui, T., Muller, W. A., Butin-Israeli, V. & Sumagin, R. In vivo imaging reveals unique neutrophil transendothelial migration patterns in inflamed intestines. Mucosal Immunol. 11, 1571–1581 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1119–1133 (2020). This is an interesting study as it is one of the first to use single-cell transcriptomics to elucidate neutrophil biology at steady-state and during bacterial infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wigerblad, G. et al. Single-cell analysis reveals the range of transcriptional states of circulating human neutrophils. J. Immunol. 209, 772–782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montaldo, E. et al. Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress. Nat. Immunol. 23, 1470–1483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garrido-Trigo, A. et al. Macrophage neutrophil heterogeneity single-cell spatial resolution in hunam inflammatory bowel disease. Nat. Commun. 14, 4506 (2022).

    Article  ADS  Google Scholar 

  37. Isles, H. M. et al. The CXCL12/CXCR4 signaling axis retains neutrophils at inflammatory sites in zebrafish. Front. Immunol. 10, 1784 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Hartl, D. et al. Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. J. Immunol. 181, 8053–8067 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, H., Wu, X., Xu, C., Lin, J. & Liu, Z. Dichotomous roles of neutrophils in modulating pathogenic and repair processes of inflammatory bowel diseases. Precis. Clin. Med. 4, 246–257 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kang, L. et al. Neutrophil–epithelial crosstalk during intestinal inflammation. Cell. Mol. Gastroenterol. Hepatol. 14, 1257–1267 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tarlton, J. F. et al. The role of up-regulated serine proteases and matrix metalloproteinases in the pathogenesis of a murine model of colitis. Am. J. Pathol. 157, 1927–1935 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Denson, L. A. et al. Clinical and genomic correlates of neutrophil reactive oxygen species production in pediatric patients with crohn’s disease. Gastroenterology 154, 2097–2110 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Biasi, F., Leonarduzzi, G., Oteiza, P. I. & Poli, G. Inflammatory bowel disease: mechanisms, redox considerations, and therapeutic targets. Antioxid. Redox Signal. 19, 1711–1747 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karmakar, M. et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat. Commun. 11, 2212 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tecchio, C. & Cassatella, M. A. Neutrophil-derived chemokines on the road to immunity. Semin. Immunol. 28, 119–128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pelletier, M. et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 115, 335–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, D., Chen, Q., Chertov, O. & Oppenheim, J. J. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J. Leukoc. Biol. 68, 9–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, S. et al. S100A8/A9 in inflammation. Front. Immunol. 9, 1298 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li, T. et al. Neutrophil extracellular traps induce intestinal damage and thrombotic tendency in inflammatory bowel disease. J. Crohns Colitis 14, 240–253 (2020).

    Article  PubMed  Google Scholar 

  51. Leppkes, M. et al. Neutrophils prevent rectal bleeding in ulcerative colitis by peptidyl-arginine deiminase-4-dependent immunothrombosis. Gut 71, 2414–2429 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Kühl, A. A. et al. Aggravation of different types of experimental colitis by depletion or adhesion blockade of neutrophils. Gastroenterology 133, 1882–1892 (2007).

    Article  PubMed  Google Scholar 

  53. Zhang, R. et al. Up-regulation of Gr1+CD11b+ population in spleen of dextran sulfate sodium administered mice works to repair colitis. Inflamm. Allergy Drug. Targets 10, 39–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Nemoto, Y. et al. Negative feedback regulation of colitogenic CD4+ T cells by increased granulopoiesis. Inflamm. Bowel Dis. 14, 1491–1503 (2008).

    Article  PubMed  Google Scholar 

  55. Phillipson, M. & Kubes, P. The healing power of neutrophils. Trends Immunol. 40, 635–647 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Seo, D. H. et al. Triggering receptor expressed on myeloid cells-1 agonist regulates intestinal inflammation via Cd177+ neutrophils. Front. Immunol. 12, 650864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schwab, J. M., Chiang, N., Arita, M. & Serhan, C. N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447, 869–874 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ardi, V. C., Kupriyanova, T. A., Deryugina, E. I. & Quigley, J. P. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc. Natl Acad. Sci. USA 104, 20262–20267 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Christoffersson, G. et al. VEGF-A recruits a proangiogenic MMP-9–delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 120, 4653–4662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin, J. et al. Monocyte chemotactic protein 1-induced protein 1 is highly expressed in inflammatory bowel disease and negatively regulates neutrophil activities. Mediators Inflamm. 2020, 8812020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kienle, K. et al. Neutrophils self-limit swarming to contain bacterial growth in vivo. Science 372, eabe7729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bressenot, A. et al. Comparing histological activity indexes in UC. Gut 64, 1412–1418 (2015).

    Article  PubMed  Google Scholar 

  63. Demir, A. K. et al. The relationship between the neutrophil–lymphocyte ratio and disease activity in patients with ulcerative colitis. Kaohsiung J. Med. Sci. 31, 585–590 (2015).

    Article  PubMed  Google Scholar 

  64. Langley, B. O. et al. Inflammatory bowel disease and neutrophil–lymphocyte ratio: a systematic scoping review. J. Clin. Med. 10, 4219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dinallo, V. et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis. J. Crohns Colitis 13, 772–784 (2019).

    Article  PubMed  Google Scholar 

  66. Herrero-Cervera, A., Soehnlein, O. & Kenne, E. Neutrophils in chronic inflammatory diseases. Cell. Mol. Immunol. 19, 177–191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sedghi, S. et al. Increased production of luminol enhanced chemiluminescence by the inflamed colonic mucosa in patients with ulcerative colitis. Gut 34, 1191–1197 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, T. et al. MK2 is required for neutrophil-derived ROS production and inflammatory bowel disease. Front. Med. 7, 207 (2020).

    Article  ADS  CAS  Google Scholar 

  69. Liu, C. et al. Twist1 contributes to developing and sustaining corticosteroid resistance in ulcerative colitis. Theranostics 11, 7797–7812 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu, H. et al. Cyclosporine modulates neutrophil functions via the SIRT6–HIF‐1α–glycolysis axis to alleviate severe ulcerative colitis. Clin. Transl. Med. 11, e334 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Korzenik, J. R. & Dieckgraefe, B. K. Is Crohn’s disease due to defective immunity? Dig. Dis. Sci. 45, 1121–1129 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Hayee, B. et al. The neutrophil respiratory burst and bacterial digestion in Crohn’s disease. Dig. Dis. Sci. 56, 1482–1488 (2011).

    Article  PubMed  Google Scholar 

  73. Smith, A. M. et al. Disruption of macrophage pro-inflammatory cytokine release in Crohn’s disease is associated with reduced optineurin expression in a subset of patients. Immunology 144, 45–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Segal, A. W. The role of neutrophils in the pathogenesis of Crohn’s disease. Eur. J. Clin. Invest. 48, e12983 (2018).

    Article  PubMed  Google Scholar 

  75. Marks, D. J. B., Rahman, F. Z., Sewell, G. W. & Segal, A. W. Crohn’s disease: an immune deficiency state. Clin. Rev. Allergy Immunol. 38, 20–31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu, H.-H., Yang, Y.-H. & Chiang, B.-L. Chronic granulomatous disease: a comprehensive review. Clin. Rev. Allergy Immunol. 61, 101–113 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Visser, G. et al. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease Type I. J. Pediatr. 137, 187–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Britton, G. J. et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50, 212–224.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Benech, N. & Sokol, H. Fecal microbiota transplantation in gastrointestinal disorders: time for precision medicine. Genome Med. 12, 58 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Danne, C., Rolhion, N. & Sokol, H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat. Rev. Gastroenterol. Hepatol. 18, 503–513 (2021).

    Article  PubMed  Google Scholar 

  82. Sokol, H. et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 8, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. D’Haens, G. R. & Jobin, C. Fecal microbial transplantation for diseases beyond recurrent Clostridium difficile infection. Gastroenterology 157, 624–636 (2019).

    Article  PubMed  Google Scholar 

  84. Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127, 412–421 (2004).

    Article  PubMed  Google Scholar 

  85. Knights, D. et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 6, 107 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Martín, R. et al. Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol. 15, 67 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Miquel, S. et al. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio 6, e00300–e00315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Quévrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65, 415–425 (2016).

    Article  PubMed  Google Scholar 

  95. Touch, S. et al. Human CD4+CD8α+ Tregs induced by Faecalibacterium prausnitzii protect against intestinal inflammation. JCI Insight 7, e154722 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. GEM Project Research Consortium. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48, 1413–1417 (2016).

    Article  Google Scholar 

  98. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Wang, J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 1396–1406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Aschard, H. et al. Genetic effects on the commensal microbiota in inflammatory bowel disease patients. PLOS Genet. 15, e1008018 (2019). This study highlights how genetics influence intestinal microbiota in IBD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chu, H. et al. Gene–microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020). This review helps us to understand the role of microbial metabolites in IBD.

    Article  PubMed  Google Scholar 

  105. Roberts, R. L. et al. Confirmation of association of IRGM and NCF4 with ileal Crohn’s disease in a population-based cohort. Genes Immun. 9, 561–565 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Nuij, V. J. A. A., Peppelenbosch, M. P., van der Woude, C. J. & Fuhler, G. M. Genetic polymorphism in ATG16L1 gene is associated with adalimumab use in inflammatory bowel disease. J. Transl. Med. 15, 248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wright, M. et al. Early onset granulomatous colitis associated with a mutation in NCF4 resolved with hematopoietic stem cell transplantation. J. Pediatr. 210, 220–225 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Glennon-Alty, L., Moots, R. J., Edwards, S. W. & Wright, H. L. Type I interferon regulates cytokine-delayed neutrophil apoptosis, reactive oxygen species production and chemokine expression. Clin. Exp. Immunol. 203, 151–159 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Liu, Z. et al. Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries. Nat. Genet. 55, 796–806 (2023). Recent GWAS study in IBD that integrates individuals from non-European ancestries (specifically, individuals from East Asian ancestries).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, H., Meng, F., Chu, C.-L., Takai, T. & Lowell, C. A. The Src family kinases Hck and Fgr negatively regulate neutrophil and dendritic cell chemokine signaling via PIR-B. Immunity 22, 235–246 (2005).

    Article  PubMed  Google Scholar 

  111. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet. 40, 955–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Anderson, C. A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, Z. et al. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat. Immunol. 12, 1063–1070 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ahmadi Rastegar, D. & Dzamko, N. Leucine rich repeat kinase 2 and innate immunity. Front. Neurosci. 14, 193 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Panopoulos, A. D. et al. STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood 108, 3682–3690 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sazonovs, A. et al. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility. Nat. Genet. 54, 1275–1283 (2022). A recent study that analysed sequence data from more than 30,000 patients with Crohn’s disease and 80,000 population controls and identified new Crohn’s disease susceptibility genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Turpin, W., Goethel, A., Bedrani, L. & Croitoru, Mdcm,K. Determinants of IBD heritability: genes, bugs, and more. Inflamm. Bowel Dis. 24, 1133–1148 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Russo, I., Bubacco, L. & Greggio, E. LRRK2 as a target for modulating immune system responses. Neurobiol. Dis. 169, 105724 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Le, N. P. K., Channabasappa, S., Hossain, M., Liu, L. & Singh, B. Leukocyte-specific protein 1 regulates neutrophil recruitment in acute lung inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 309, L995–L1008 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. O’Sullivan, S., Gilmer, J. F. & Medina, C. Matrix metalloproteinases in inflammatory bowel disease: an update. Mediators Inflamm. 2015, 964131 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wang, Y. & Jönsson, F. Expression, role, and regulation of neutrophil Fcγ receptors. Front. Immunol. 10, 1958 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Miyauchi, M. et al. Efficient production of human neutrophils from iPSCs that prevent murine lethal infection with immune cell recruitment. Blood 138, 2555–2569 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Danne, C. et al. CARD9 in neutrophils protects from colitis and controls mitochondrial metabolism and cell survival. Gut 72, 1081–1092 (2022). A study that demonstrates new roles for CARD9, an IBD susceptibility gene, in neutrophil functionality.

    Article  PubMed  Google Scholar 

  125. Mirkov, M. U., Verstockt, B. & Cleynen, I. Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol. Hepatol. 2, 224–234 (2017).

    Article  PubMed  Google Scholar 

  126. Sokol, H. et al. Intestinal dysbiosis in inflammatory bowel disease associated with primary immunodeficiency. J. Allergy Clin. Immunol. 143, 775–778.e6 (2019).

    Article  PubMed  Google Scholar 

  127. Castagnoli, R. et al. Gut microbiota–host interactions in inborn errors of immunity. Int. J. Mol. Sci. 22, 1416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Molloy, M. J. et al. Intraluminal containment of commensal outgrowth in the gut during infection-induced dysbiosis. Cell Host Microbe 14, 318–328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Spehlmann, M. E. et al. CXCR2-dependent mucosal neutrophil influx protects against colitis-associated diarrhea caused by an attaching/effacing lesion-forming bacterial pathogen. J. Immunol. 183, 3332–3343 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Watanabe, K. et al. Microbiome-mediated neutrophil recruitment via CXCR2 and protection from amebic colitis. PLoS Pathog. 13, e1006513 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Flannigan, K. L. et al. IL-17A-mediated neutrophil recruitment limits expansion of segmented filamentous bacteria. Mucosal Immunol. 10, 673–684 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Waldschmitt, N. et al. The regenerating family member 3β instigates IL-17A-mediated neutrophil recruitment downstream of NOD1/2 signalling for controlling colonisation resistance independently of microbiota community structure. Gut 68, 1190–1199 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Jee, J. et al. Cxcr2 signaling and the microbiome suppress inflammation, bile duct injury, and the phenotype of experimental biliary atresia. PLoS ONE 12, e0182089 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Mei, J. et al. Cxcr2 and Cxcl5 regulate the IL-17/G-CSF axis and neutrophil homeostasis in mice. J. Clin. Invest. 122, 974–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zindl, C. L. et al. IL-22–producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc. Natl Acad. Sci. USA 110, 12768–12773 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kamada, N. & Núñez, G. Role of the gut microbiota in the development and function of lymphoid cells. J. Immunol. 190, 1389–1395 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zechner, E. L. Inflammatory disease caused by intestinal pathobionts. Curr. Opin. Microbiol. 35, 64–69 (2017).

    Article  PubMed  Google Scholar 

  141. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gubatan, J. et al. Antimicrobial peptides and the gut microbiome in inflammatory bowel disease. World J. Gastroenterol. 27, 7402–7422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cullen, T. W. et al. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347, 170–175 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yoshimura, T. et al. The antimicrobial peptide CRAMP is essential for colon homeostasis by maintaining microbiota balance. J. Immunol. 200, 2174–2185 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Gill, N. et al. Neutrophil elastase alters the murine gut microbiota resulting in enhanced salmonella colonization. PLoS ONE 7, e49646 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  146. Raffatellu, M. et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5, 476–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, J. Z. et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11, 227–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fischbach, M. A., Lin, H., Liu, D. R. & Walsh, C. T. How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat. Chem. Biol. 2, 132–138 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Deriu, E. et al. Probiotic bacteria reduce Salmonella Typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14, 26–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Loh, J. T. et al. DOK3 maintains intestinal homeostasis by suppressing JAK2/STAT3 signaling and S100a8/9 production in neutrophils. Cell Death Dis. 12, 1054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ilott, N. E. et al. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling. ISME J. 10, 2389–2404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928–943.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Martini, E., Krug, S. M., Siegmund, B., Neurath, M. F. & Becker, C. Mend your fences. Cell. Mol. Gastroenterol. Hepatol. 4, 33–46 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Nishida, A. et al. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 11, 1–10 (2018).

    Article  PubMed  Google Scholar 

  155. Fang, X., Li, F. & Hong, D. Potential role of Akkermansia muciniphila in Parkinson’s disease and other neurological/autoimmune diseases. Curr. Med. Sci. 41, 1172–1177 (2021).

    Article  PubMed  Google Scholar 

  156. Goris, H., de Boer, F. & van der Waaij, D. Myelopoiesis in experimentally contaminated specific-pathogen-free and germfree mice during oral administration of polymyxin. Infect. Immun. 50, 437–441 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tada, T., Yamamura, S., Kuwano, Y. & Abo, T. Level of myelopoiesis in the bone marrow is influenced by intestinal flora. Cell. Immunol. 173, 155–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, H., Sparks, J. B., Karyala, S. V., Settlage, R. & Luo, X. M. Host adaptive immunity alters gut microbiota. ISME J. 9, 770–781 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Khosravi, A. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15, 374–381 (2014).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  160. Deshmukh, H. S. et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 20, 524–530 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Josefsdottir, K. S., Baldridge, M. T., Kadmon, C. S. & King, K. Y. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood 129, 729–739 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Balmer, M. L. et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J. Immunol. 193, 5273–5283 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Brenchley, J. M. & Douek, D. C. Microbial translocation across the GI tract. Annu. Rev. Immunol. 30, 149–173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Iwamura, C., Bouladoux, N., Belkaid, Y., Sher, A. & Jankovic, D. Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood 129, 171–176 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Burgess, S. L. et al. Gut microbiome communication with bone marrow regulates susceptibility to amebiasis. J. Clin. Invest. 130, 4019–4024 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Murdoch, C. C. et al. Intestinal serum amyloid A suppresses systemic neutrophil activation and bactericidal activity in response to microbiota colonization. PLOS Pathog. 15, e1007381 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Ascher, S. et al. Gut microbiota restricts NETosis in acute mesenteric ischemia-reperfusion injury. Arterioscler. Thromb. Vasc. Biol. 40, 2279–2292 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pieterse, E., Rother, N., Yanginlar, C., Hilbrands, L. B. & van der Vlag, J. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Front. Immunol. 7, 484 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Vong, L., Lorentz, R. J., Assa, A., Glogauer, M. & Sherman, P. M. Probiotic Lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps. J. Immunol. 192, 1870–1877 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Roselli, M., Finamore, A., Britti, M. S. & Mengheri, E. Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88. Br. J. Nutr. 95, 1177–1184 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Martin, C. et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–593 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Rankin, S. M. The bone marrow: a site of neutrophil clearance. J. Leukoc. Biol. 88, 241–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50, 432–445.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Íñiguez-Gutiérrez, L. et al. Physiological concentrations of short-chain fatty acids induce the formation of neutrophil extracellular traps in vitro. Int. J. Immunopathol. Pharmacol. 34, 205873842095894 (2020).

    Article  Google Scholar 

  176. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009). One of the first studies to show the effect of a SCFA on neutrophil function.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  177. Aoyama, M., Kotani, J. & Usami, M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition 26, 653–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Li, G. et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes 13, 1968257 (2021). An interesting study that focuses on a microbial metabolite and neutrophils in IBD.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Vinolo, M. A. R. et al. Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin. Sci. 117, 331–338 (2009).

    Article  CAS  Google Scholar 

  180. Vinolo, M. A. R., Hatanaka, E., Lambertucci, R. H., Newsholme, P. & Curi, R. Effects of short chain fatty acids on effector mechanisms of neutrophils. Cell Biochem. Funct. 27, 48–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Alexeev, E. E. et al. Microbial‐derived indoles inhibit neutrophil myeloperoxidase to diminish bystander tissue damage. FASEB J. 35, e21552 (2021). This study reveals an inhibiting effect of indoles on neutrophil MPO activity.

    Article  CAS  PubMed  Google Scholar 

  182. Santoro, P. et al. Unconjugated bile acids modulate adult and neonatal neutrophil chemotaxis induced in vitro by N-formyl-Met-Leu-Phe-peptide. Pediatr. Res. 51, 392–396 (2002).

    Article  CAS  PubMed  Google Scholar 

  183. Balazs, I. et al. Serum bile acids in liver cirrhosis promote neutrophil dysfunction. Clin. Transl. Med. 12, e735 (2022). This human study highlights the effect of microbiota-derived bile acids on neutrophil function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Ye, J. et al. The aryl hydrocarbon receptor preferentially marks and promotes gut regulatory T cells. Cell Rep. 21, 2277–2290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Koeth, R. A. et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  187. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. José Fábrega, M. et al. Activation of immune and defense responses in the intestinal mucosa by outer membrane vesicles of commensal and probiotic escherichia coli strains. Front. Microbiol. 7, 705 (2016).

    Article  Google Scholar 

  190. Lajqi, T. et al. Gut microbiota-derived small extracellular vesicles endorse memory-like inflammatory responses in murine neutrophils. Biomedicines 10, 442 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Brok-Volchanskaya, V. S. et al. Effective and rapid generation of functional neutrophils from induced pluripotent stem cells using ETV2-modified mRNA. Stem Cell Rep. 13, 1099–1110 (2019).

    Article  CAS  Google Scholar 

  192. Németh, T., Sperandio, M. & Mócsai, A. Neutrophils as emerging therapeutic targets. Nat. Rev. Drug. Discov. 19, 253–275 (2020).

    Article  PubMed  Google Scholar 

  193. Krupa, A. et al. Silencing Bruton’s tyrosine kinase in alveolar neutrophils protects mice from LPS/immune complex-induced acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L435–L448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Reshetnikov, V. et al. Chemical tools for targeted amplification of reactive oxygen species in neutrophils. Front. Immunol. 9, 1827 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Han, X. et al. Loss of GM-CSF signalling in non-haematopoietic cells increases NSAID ileal injury. Gut 59, 1066–1078 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Däbritz, J. Granulocyte macrophage colony-stimulating factor and the intestinal innate immune cell homeostasis in Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G455–G465 (2014).

    Article  PubMed  Google Scholar 

  197. Dieckgraefe, B. K. & Korzenik, J. R. Treatment of active Crohn’s disease with recombinant human granulocyte-macrophage colony-stimulating factor. Lancet 360, 1478–1480 (2002).

    Article  PubMed  Google Scholar 

  198. Korzenik, J. R., Dieckgraefe, B. K., Valentine, J. F., Hausman, D. F. & Gilbert, M. J. Sargramostim for active Crohn’s disease. N. Engl. J. Med. 352, 2193–2201 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Roth, L., MacDonald, J. K., McDonald, J. W. D. & Chande, N. Sargramostim (GM-CSF) for Induction of remission in Crohnʼs disease: a cochrane inflammatory bowel disease and functional bowel disorders systematic review of randomized trials. Inflamm. Bowel Dis. 18, 1333–1339 (2012).

    Article  PubMed  Google Scholar 

  200. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Sandborn, W. J. et al. Andecaliximab [anti-matrix metalloproteinase-9] induction therapy for ulcerative colitis: a randomised, double-blind, placebo-controlled, phase 2/3 study in patients with moderate to severe disease. J. Crohns Colitis 12, 1021–1029 (2018).

    PubMed  PubMed Central  Google Scholar 

  202. Schreiber, S. et al. A phase 2, randomized, placebo-controlled study evaluating matrix metalloproteinase-9 inhibitor, andecaliximab, in patients with moderately to severely active crohn’s disease. J. Crohns Colitis 12, 1014–1020 (2018).

    PubMed  PubMed Central  Google Scholar 

  203. Rahman et al. Phagocyte dysfunction and inflammatory bowel disease. Inflamm. Bowel Dis. 14, 1443–1452 (2008).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Camille Danne.

Ethics declarations

Competing interests

H.S. reports lecture fees, board membership or consultancy from Amgen, Fresenius, IPSEN, Actial, Astellas, Danone, THAC, Biose, BiomX, Eligo, Immusmol, Adare, Nestlé, Ferring, MSD, Bledina, Pfizer, Biocodex, BMS, Bromatech, Gilead, Janssen, Mayoli, Roche, Sanofi, Servier, Takeda, AbbVie, has stocks from Enterome Bioscience and is co-founder of Exeliom Biosciences. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Zhanju Liu, Britta Siegmund and Andrew Gewirtz for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Ensembl version 103.38: http://www.ensembl.org/index.html

Human Protein Atlas version 22.0: https://www.proteinatlas.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danne, C., Skerniskyte, J., Marteyn, B. et al. Neutrophils: from IBD to the gut microbiota. Nat Rev Gastroenterol Hepatol 21, 184–197 (2024). https://doi.org/10.1038/s41575-023-00871-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00871-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing