Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Methanogenic archaea in the human gastrointestinal tract

Abstract

The human microbiome is strongly interwoven with human health and disease. Besides bacteria, viruses and eukaryotes, numerous archaea are located in the human gastrointestinal tract and are responsible for methane production, which can be measured in clinical methane breath analyses. Methane is an important readout for various diseases, including intestinal methanogen overgrowth. Notably, the archaea responsible for methane production are largely overlooked in human microbiome studies due to their non-bacterial biology and resulting detection issues. As such, their importance for health and disease remains largely unclear to date, in particular as not a single archaeal representative has been deemed to be pathogenic. In this Perspective, we discuss the current knowledge on the clinical relevance of methanogenic archaea. We explain the archaeal unique response to antibiotics and their negative and positive effects on human physiology, and present the current understanding of the use of methane as a diagnostic marker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Host–archaea–microbiota interaction in the gut.
Fig. 2: Overview of the association of methanogenic archaea and methane detection in breath with human diseases.

Similar content being viewed by others

References

  1. Laforest-Lapointe, I. & Arrieta, M.-C. Asymptomatic intestinal colonization with protist Blastocystis is strongly associated with distinct microbiome ecological patterns. mSystems 3, e00007-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109 (2021).

    PubMed  PubMed Central  Google Scholar 

  3. Geesink, P. & Ettema, T. J. G. The human archaeome in focus. Nat. Microbiol. 7, 10–11 (2022).

    PubMed  Google Scholar 

  4. Koskinen, K. et al. First insights into the diverse human archaeome: specific detection of archaea in the gastrointestinal tract, lung, and nose and on skin. mBio 8, e00824-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Probst, A. J. et al. Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species. PLoS ONE 9, e99801 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Miller, T. L., Wolin, M. J., de Macario, E. C. & Macario, A. J. Isolation of Methanobrevibacter smithii from human feces. Appl. Env. Microbiol. 43, 227–232 (1982).

    Google Scholar 

  7. Mahnert, A., Blohs, M., Pausan, M. R. & Moissl-Eichinger, C. The human archaeome: methodological pitfalls and knowledge gaps. Emerg. Top. Life Sci. 2, 469–482 (2018).

    PubMed  Google Scholar 

  8. Borrel, G., Brugère, J. F., Gribaldo, S., Schmitz, R. A. & Moissl-Eichinger, C. The host-associated archaeome. Nat. Rev. Microbiol. 18, 622–636 (2020).

    PubMed  Google Scholar 

  9. Gottlieb, K., Wacher, V., Sliman, J. & Pimentel, M. Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders. Aliment. Pharmacol. Ther. 43, 197–212 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Avgerinos, A. et al. Bowel preparation and the risk of explosion during colonoscopic polypectomy. Gut 25, 361–364 (1984).

    PubMed  PubMed Central  Google Scholar 

  11. Ladas, S. D., Karamanolis, G. & Ben-Soussan, E. Colonic gas explosion during therapeutic colonoscopy with electrocautery. World J. Gastroenterol. 13, 5295 (2007).

    PubMed  PubMed Central  Google Scholar 

  12. Bond, J. H., Engel, R. R. & Levitt, M. D. Factors influencing pulmonary methane excretion in man. An indirect method of studying the in situ metabolism of the methane-producing colonic bacteria. J. Exp. Med. 133, 572–588 (1971).

    PubMed  PubMed Central  Google Scholar 

  13. Rezaie, A. et al. Hydrogen and methane-based breath testing in gastrointestinal disorders: The North American Consensus. Am. J. Gastroenterol. 112, 775–784 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Taffner, J. et al. What is the role of Archaea in plants? New insights from the vegetation of Alpine Bogs. mSphere 3, e00122-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67, 437–457 (2013).

    PubMed  Google Scholar 

  16. Kumpitsch, C. et al. Reduced B12 uptake and increased gastrointestinal formate are associated with archaeome-mediated breath methane emission in humans. Microbiome 9, 193 (2021).

    PubMed  PubMed Central  Google Scholar 

  17. Pausan, M. R., Blohs, M., Mahnert, A. & Moissl-Eichinger, C. The sanitary indoor environment-a potential source for intact human-associated anaerobes. NPJ Biofilms Microbiomes 8, 44 (2022).

    PubMed  PubMed Central  Google Scholar 

  18. Blohs, M. et al. in Encyclopedia of Microbiology (ed. Schmidt, T.) 243–252 (Elsevier, 2019).

  19. Dridi, B., Fardeau, M.-L., Ollivier, B., Raoult, D. & Drancourt, M. The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea. J. Antimicrob. Chemother. 66, 2038–2044 (2011).

    PubMed  Google Scholar 

  20. Mohammadzadeh, R., Mahnert, A., Duller, S. & Moissl-Eichinger, C. Archaeal key-residents within the human microbiome: characteristics, interactions and involvement in health and disease. Curr. Opin. Microbiol. 67, 102146 (2022).

    PubMed  Google Scholar 

  21. Oxley, A. et al. Halophilic archaea in the human intestinal mucosa. Environ. Microbiol. 12, 2398–2410 (2010).

    PubMed  Google Scholar 

  22. Lepp, P. W. et al. Methanogenic Archaea and human periodontal disease. Proc. Natl Acad. Sci. USA 101, 6176–6181 (2004).

    PubMed  PubMed Central  Google Scholar 

  23. Belkacemi, S. et al. Peri-implantitis-associated methanogens: a preliminary report. Sci. Rep. 8, 9447 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    PubMed  Google Scholar 

  25. Vierbuchen, T., Bang, C., Rosigkeit, H., Schmitz, R. A. & Heine, H. The human-associated archaeon Methanosphaera stadtmanae is recognized through Its RNA and induces TLR8-dependent NLRP3 inflammasome activation. Front. Immunol. 8, 1535 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Hoffmann, C. et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE 8, e66019 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. Chibani, C. M. et al. A catalogue of 1167 genomes from the human gut archaeome. Nat. Microbiol. 7, 48–61 (2022).

    PubMed  Google Scholar 

  28. Ruaud, A. et al. Syntrophy via interspecies H2 transfer between Christensenella and Methanobrevibacter underlies their global cooccurrence in the human gut. mBio 11, e03235-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  29. Wang, C. & Sahay, P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors 9, 8230–8262 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. Polag, D. & Keppler, F. Global methane emissions from the human body: past, present and future. Atmos. Environ. 214, 116823 (2019).

    Google Scholar 

  31. Triantafyllou, K., Chang, C. & Pimentel, M. Methanogens, methane and gastrointestinal motility. J. Neurogastroenterol. Motil. 20, 31–40 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Pimentel, M. et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1089–G1095 (2006).

    PubMed  Google Scholar 

  33. Park, Y. M., Lee, Y. J., Hussain, Z., Lee, Y. H. & Park, H. The effects and mechanism of action of methane on ileal motor function. Neurogastroenterol. Motil. 29, e13077 (2017).

    Google Scholar 

  34. Singh, P. et al. Breath methane does not correlate with constipation severity or bloating in patients with constipation. J. Clin. Gastroenterol. 54, 365–369 (2020).

    PubMed  Google Scholar 

  35. Hammer, H. F., Petritsch, W., Pristautz, H. & Krejs, G. Assessment of the influence of hydrogen nonexcretion on the usefulness of the hydrogen breath test and lactose tolerance test. Wien. Klin. Wochenschr. 108, 137–141 (1996).

    PubMed  Google Scholar 

  36. Bjorneklett, A. & Jenssen, E. Relationships between hydrogen (H2) and methane (CH4) production in man. Scand. J. Gastroenterol. 17, 985–992 (1982).

    PubMed  Google Scholar 

  37. Houben, E., De Preter, V., Billen, J., Van Ranst, M. & Verbeke, K. Additional value of CH4 measurement in a combined (13)C/H2 lactose malabsorption breath test: a retrospective analysis. Nutrients 7, 7469–7485 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Oliphant, K. & Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7, 91 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Gibson, G. R., Macfarlane, G. T. & Cummings, J. H. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut 34, 437–439 (1993).

    PubMed  PubMed Central  Google Scholar 

  40. Hansen, E. E. et al. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc. Natl Acad. Sci. USA 108, 4599–4606 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. Hammer, K., Hasanagic, H., Memaran, N., Huber, W.-D. & Hammer, J. Relevance of methane and carbon dioxide evaluation in breath tests for carbohydrate malabsorption in a paediatric cohort. J. Pediatr. Gastroenterol. Nutr. 72, e71–e77 (2021).

    PubMed  Google Scholar 

  42. Hammer, H. F. et al. European guideline on indications, performance, and clinical impact of hydrogen and methane breath tests in adult and pediatric patients: European Association for gastroenterology, endoscopy and nutrition, European Society of Neurogastroenterology and Motility, and European Society for Paediatric Gastroenterology Hepatology and Nutrition consensus. U. Eur. Gastroenterol. J. 10, 15–40 (2022).

    Google Scholar 

  43. De Lacy Costello, B. P. J., Ledochowski, M. & Ratcliffe, N. M. The importance of methane breath testing: a review. J. Breath Res. 7, 024001 (2013).

    PubMed  Google Scholar 

  44. Quigley, E. M. M., Murray, J. A. & Pimentel, M. AGA clinical practice update on small intestinal bacterial overgrowth: expert review. Gastroenterology 159, 1526–1532 (2020).

    PubMed  Google Scholar 

  45. Rezaie, A., Pimentel, M. & Rao, S. S. How to test and treat small intestinal bacterial overgrowth: an evidence-based approach. Curr. Gastroenterol. Rep. 18, 8 (2016).

    PubMed  Google Scholar 

  46. Madigan, K. E., Bundy, R. & Weinberg, R. B. Distinctive clinical correlates of small intestinal bacterial overgrowth with methanogens. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2021.09.035 (2021).

    Article  PubMed  Google Scholar 

  47. Pimentel, M., Saad, R. J., Long, M. D. & Rao, S. S. C. ACG clinical guideline: small intestinal bacterial overgrowth. Am. J. Gastroenterol. 115, 165–178 (2020).

    PubMed  Google Scholar 

  48. Gandhi, A. et al. Methane positive small intestinal bacterial overgrowth in inflammatory bowel disease and irritable bowel syndrome: a systematic review and meta-analysis. Gut Microbes 13, 1933313 (2021).

    PubMed  PubMed Central  Google Scholar 

  49. Ford, A. C., Spiegel, B. M. R., Talley, N. J. & Moayyedi, P. Small intestinal bacterial overgrowth in irritable bowel syndrome: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 7, 1279–1286 (2009).

    PubMed  Google Scholar 

  50. Takakura, W. et al. A single fasting exhaled methane level correlates with fecal methanogen load, clinical symptoms and accurately detects intestinal methanogen overgrowth. Am. J. Gastroenterol. 117, 470–477 (2022).

    PubMed  Google Scholar 

  51. Donaldson, R. M. Studies on the pathogenesis of steatorrhea in the blind loop syndrome. J. Clin. Invest. 44, 1815–1825 (1965).

    PubMed  PubMed Central  Google Scholar 

  52. Shah, A. et al. Small intestinal bacterial overgrowth in irritable bowel syndrome: a systematic review and meta-analysis of case-control studies. Am. J. Gastroenterol. 115, 190–201 (2020).

    PubMed  Google Scholar 

  53. Chatterjee, S., Park, S., Low, K., Kong, Y. & Pimentel, M. The degree of breath methane production in IBS correlates with the severity of constipation. Am. J. Gastroenterol. 102, 837 (2007).

    PubMed  Google Scholar 

  54. Soares, A. C. F., Lederman, H. M., Fagundes-Neto, U. & de Morais, M. B. Breath methane associated with slow colonic transit time in children with chronic constipation. J. Clin. Gastroenterol. 39, 512–515 (2005).

    PubMed  Google Scholar 

  55. Attaluri, A., Jackson, M., Valestin, J. & Rao, S. S. C. Breath methane associated with slow colonic transit time in children with chronic constipation. Am. J. Gastroenterol. 105, 1407 (2010).

    PubMed  Google Scholar 

  56. Khelaifia, S., Raoult, D. & Drancourt, M. A versatile medium for cultivating methanogenic archaea. PLoS ONE 8, e61563 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. Ghoshal, U. C., Srivastava, D. & Misra, A. A randomized double-blind placebo-controlled trial showing rifaximin to improve constipation by reducing methane production and accelerating colon transit: a pilot study. Indian J. Gastroenterol. 37, 416–423 (2018).

    PubMed  Google Scholar 

  58. Pimentel, M., Chatterjee, S., Chow, E. J., Park, S. & Kong, Y. Neomycin improves constipation-predominant irritable bowel syndrome in a fashion that is dependent on the presence of methane gas: subanalysis of a double-blind randomized controlled study. Dig. Dis. Sci. 51, 1297–1301 (2006).

    PubMed  Google Scholar 

  59. World Cancer Research Fund International. Colorectal Cancer Statistics https://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/ (2020).

  60. Cullin, N., Azevedo Antunes, C., Straussman, R., Stein-Thoeringer, C. K. & Elinav, E. Microbiome and cancer. Cancer Cell 39, 1317–1341 (2021).

    PubMed  Google Scholar 

  61. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).

    PubMed  PubMed Central  Google Scholar 

  62. Chattopadhyay, I. et al. Exploring the role of gut microbiome in colon cancer. Appl. Biochem. Biotechnol. 193, 1780–1799 (2021).

    PubMed  Google Scholar 

  63. Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).

    PubMed  Google Scholar 

  64. Coker, O. O., Wu, W. K. K., Wong, S. H., Sung, J. J. Y. & Yu, J. Altered gut archaea composition and interaction with bacteria are associated with colorectal cancer. Gastroenterology 159, 1459–1470.e5 (2020).

    PubMed  Google Scholar 

  65. Altermann, E., Schofield, L. R., Ronimus, R. S., Beattie, A. K. & Reilly, K. Inhibition of Rumen methanogens by a novel archaeal lytic enzyme displayed on tailored bionanoparticles. Front. Microbiol. 9, 2378 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Boros, M. et al. The anti-inflammatory effects of methane. Crit. Care Med. 40, 1269–1278 (2012).

    PubMed  Google Scholar 

  69. Xin, L., Sun, X. & Lou, S. Effects of methane-rich saline on the capability of one-time exhaustive exercise in male SD rats. PLoS ONE 11, e0150925 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Laverdure, R., Mezouari, A., Carson, M. A., Basiliko, N. & Gagnon, J. A role for methanogens and methane in the regulation of GLP-1. Endocrinol. Diabetes Metab. 1, e00006 (2018).

    PubMed  Google Scholar 

  71. Boros, M. & Keppler, F. Methane production and bioactivity-a link to oxido-reductive stress. Front. Physiol. 10, 1244 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Geng, J. et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed. Pharmacother. 97, 941–947 (2018).

    PubMed  Google Scholar 

  73. Borrel, G. et al. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15, 679 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Ramezani, A. et al. Gut colonization with methanogenic archaea lowers plasma trimethylamine N-oxide concentrations in Apolipoprotein e–/– mice. Sci. Rep. 8, 14752 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Brugère, J. F. et al. Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5, 5–10 (2013).

    PubMed  PubMed Central  Google Scholar 

  76. Nguyen, R., Khanna, N. R., Safadi, A. O. & Sun, Y. Bacitracin Topical. StatPearls [online] https://www.ncbi.nlm.nih.gov/books/NBK536993/ (updated 5 Nov 2021).

  77. Khelaifia, S. & Drancourt, M. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology. Clin. Microbiol. Infect. 18, 841–848 (2012).

    PubMed  Google Scholar 

  78. Werth, B. J. et al. Overview of Antibiotics. MSD Manual https://www.msdmanuals.com (2022).

  79. Londei, P. et al. Unique antibiotic sensitivity of archaebacterial polypeptide elongation factors. J. Bacteriol. 167, 265–271 (1986).

    PubMed  PubMed Central  Google Scholar 

  80. Sanz, J. L., Rodríguez, N. & Amils, R. The action of antibiotics on the anaerobic digestion process. Appl. Microbiol. Biotechnol. 46, 587–592 (1996).

    PubMed  Google Scholar 

  81. Moore, K. S. et al. Squalamine: an aminosterol antibiotic from the shark. Proc. Natl Acad. Sci. USA 90, 1354–1358 (1993).

    PubMed  PubMed Central  Google Scholar 

  82. Low, K. et al. A combination of rifaximin and neomycin is most effective in treating irritable bowel syndrome patients with methane on lactulose breath test. J. Clin. Gastroenterol. 44, 547–550 (2010).

    PubMed  Google Scholar 

  83. Ramos-Morales, E. et al. Antiprotozoal effect of saponins in the rumen can be enhanced by chemical modifications in their structure. Front. Microbiol. 8, 399 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Kates, M., Kushner, D. & Metheson, A. The Biochemistry of Archae (Archaebacteria) (Elsevier, 1993).

  85. Friend, T. The Third Domain: The Untold Stoy of Archaea and the Future of Biotechnology (National Academies Press, 2007).

  86. Nkamga, V. D., Henrissat, B. & Drancourt, M. Archaea: essential inhabitants of the human digestive microbiota. Hum. Microbiome J. 3, 1–8 (2017).

    Google Scholar 

  87. Broucek, J. Options to methane production abatement in ruminants: a review. J. Anim. Plant Sci. 28, 348–364 (2018).

    Google Scholar 

  88. Hook, S. E., Wright, A.-D. G. & McBride, B. W. Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010, 945785 (2010).

    PubMed  PubMed Central  Google Scholar 

  89. Nguyen-Hieu, T., Khelaifia, S., Aboudharam, G. & Drancourt, M. Methanogenic archaea in subgingival sites: a review. APMIS 121, 467–477 (2013).

    PubMed  Google Scholar 

  90. Lurie-Weinberger, M. N. & Gophna, U. Archaea in and on the human body: health implications and future directions. PLoS Pathog. 11, e1004833 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

    PubMed  Google Scholar 

  92. Moissl-Eichinger, C. Association of methanogens and different human host phenotypes_Table. Mendeley Data https://doi.org/10.17632/njn6x2kjhg.1 (2022).

  93. Leonel, A. J. & Alvarez-Leite, J. I. Butyrate: implications for intestinal function. Curr. Opin. Clin. Nutr. Metab. Care 15, 474–479 (2012).

    PubMed  Google Scholar 

  94. Cushing, K., Alvarado, D. M. & Ciorba, M. A. Butyrate and mucosal inflammation: new scientific evidence supports clinical observation. Clin. Transl. Gastroenterol. 6, e108 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Mortensen, P. B. & Clausen, M. R. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand. J. Gastroenterol. 31, 132–148 (1996).

    Google Scholar 

  96. Gaci, N., Borrel, G., Tottey, W., O’Toole, P. W. & Brugère, J.-F. Archaea and the human gut: new beginning of an old story. World J. Gastroenterol. 20, 16062 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Gottlieb, K., Wacher, V., Sliman, J. & Pimentel, M. Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders. Aliment. Pharmacol. Ther. 43, 197–212 (2016).

    PubMed  Google Scholar 

  98. Marsh, E. et al. Lovastatin lactone inhibits methane production in human stool homogenates [abstract]. Presented at ACG 2016 (2016).

  99. Muskal, S. M. et al. Lovastatin lactone may improve irritable bowel syndrome with constipation (IBS-C) by inhibiting enzymes in the archaeal methanogenesis pathway. F1000Res 5, 606 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. Garcia, P. S., Gribaldo, S. & Borrel, G. Diversity and evolution of methane-related pathways in archaea. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-041020-024935 (2022).

    Article  PubMed  Google Scholar 

  101. Lyu, Z. & Lu, Y. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J. 12, 411–423 (2018).

    PubMed  Google Scholar 

  102. Roccarina, D. et al. The role of methane in intestinal diseases. Am. J. Gastroenterol. 105, 1250–1256 (2010).

    PubMed  Google Scholar 

  103. Wibowo, M. C. et al. Reconstruction of ancient microbial genomes from the human gut. Nature 594, 234–239 (2021).

    PubMed  PubMed Central  Google Scholar 

  104. Youngblut, N. D. et al. Vertebrate host phylogeny influences gut archaeal diversity. Nat. Microbiol. 6, 1443–1454 (2021).

    PubMed  PubMed Central  Google Scholar 

  105. Miquel, S. et al. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 16, 255–261 (2013).

    PubMed  Google Scholar 

  106. Lecours, P. B. et al. Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases. PLoS ONE 9, e87734 (2014).

    Google Scholar 

  107. Barnett, D. J. M., Mommers, M., Penders, J., Arts, I. C. W. & Thijs, C. Intestinal archaea inversely associated with childhood asthma. J. Allergy Clin. Immunol. 143, 2305–2307 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Mohammadzadeh (Diagnostic and Research Department of Microbiology, Hygiene and Environmental Medicine, Medical University of Graz) for the correction of and discussion on the manuscript. They gratefully acknowledge research funding by the Austrian Science Fund FWF (P 32697) given to C.M.-E.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Christine Moissl-Eichinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Cancer Microbiome: http://cancermicrobiome.ucsd.edu/

DrugBank: https://go.drugbank.com/

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoegenauer, C., Hammer, H.F., Mahnert, A. et al. Methanogenic archaea in the human gastrointestinal tract. Nat Rev Gastroenterol Hepatol 19, 805–813 (2022). https://doi.org/10.1038/s41575-022-00673-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00673-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing