Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism

Abstract

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, with many GPCRs having crucial roles in endocrinology and metabolism. Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly regarding GPCRs, over the past decade. Since the first pair of GPCR structures resolved by cryo-EM were published in 2017, the number of GPCR structures resolved by cryo-EM has surpassed the number resolved by X-ray crystallography by 30%, reaching >650, and the number has doubled every ~0.63 years for the past 6 years. At this pace, it is predicted that the structure of 90% of all human GPCRs will be completed within the next 5–7 years. This Review highlights the general structural features and principles that guide GPCR ligand recognition, receptor activation, G protein coupling, arrestin recruitment and regulation by GPCR kinases. The Review also highlights the diversity of GPCR allosteric binding sites and how allosteric ligands could dictate biased signalling that is selective for a G protein pathway or an arrestin pathway. Finally, the authors use the examples of glycoprotein hormone receptors and glucagon-like peptide 1 receptor to illustrate the effect of cryo-EM on understanding GPCR biology in endocrinology and metabolism, as well as on GPCR-related endocrine diseases and drug discovery.

Key points

  • Cryogenic electron microscopy (cryo-EM) has revolutionized G protein-coupled receptor (GPCR) drug discovery, providing detailed insights into GPCR structures, allosteric modulation and biased signalling, and advancing precision medicine for metabolic disorders.

  • Biased ligands enable precise modulation of GPCR signalling, offering the possibility of tailored therapeutic strategies in the discovery of drugs for endocrine and metabolic diseases.

  • Ligand binding to GPCRs induces key structural changes, activating GPCRs for signal transduction via G proteins and arrestins, as determined by transmembrane helix 6 movement and phosphorylation states.

  • GPCRs are modulated by diverse allosteric ligands at various sites, offering insights into drug development and therapeutic strategies.

  • GPCRs have a pivotal role in endocrine diseases and metabolic conditions, making them promising therapeutic targets; cryo-EM has provided a better understanding of GPCRs that will enhance the development of precision drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative GPCR structures interacting with various downstream proteins.
Fig. 2: The basis of GPCR ligand recognition and signal transduction.
Fig. 3: Allosteric binding sites in GPCRs.
Fig. 4: Structural features of the glycoprotein hormone system.
Fig. 5: Structural features of the incretin peptide receptors.

Similar content being viewed by others

References

  1. Oliveira de Souza, C., Sun, X. & Oh, D. Metabolic functions of G protein-coupled receptors and β-arrestin-mediated signaling pathways in the pathophysiology of type 2 diabetes and obesity. Front. Endocrinol. 12, 715877 (2021).

    Article  Google Scholar 

  2. Bockaert, J. & Pin, J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723–1729 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garcia-Nafria, J. & Tate, C. G. Structure determination of GPCRs: cryo-EM compared with X-ray crystallography. Biochem. Soc. Trans. 49, 2345–2355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, D. et al. G protein-coupled receptors: structure- and function-based drug discovery. Signal. Transduct. Target. Ther. 6, 7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng, Z. et al. Luciferase reporter assay system for deciphering GPCR pathways. Curr. Chem. Genomics 4, 84–91 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tomas, A., Jones, B. & Leech, C. New insights into beta-cell GLP-1 receptor and cAMP signaling. J. Mol. Biol. 432, 1347–1366 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Feng, X. T. et al. GPR40: a therapeutic target for mediating insulin secretion (review). Int. J. Mol. Med. 30, 1261–1266 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Bologna, Z. et al. Protein-coupled receptor signaling: new player in modulating physiology and pathology. Biomol. Ther. 25, 12–25 (2017).

    Article  Google Scholar 

  11. Gurevich, V. V. & Gurevich, E. V. Structural determinants of arrestin functions. Prog. Mol. Biol. Transl. Sci. 118, 57–92 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kang, D. S., Tian, X. & Benovic, J. L. Role of β-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking. Curr. Opin. Cell Biol. 27, 63–71 (2014).

    Article  PubMed  Google Scholar 

  13. Schoneberg, T. & Liebscher, I. Mutations in G protein-coupled receptors: mechanisms, pathophysiology and potential therapeutic approaches. Pharmacol. Rev. 73, 89–119 (2021).

    Article  PubMed  Google Scholar 

  14. Pitcher, J. A., Freedman, N. J. & Lefkowitz, R. J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Gurevich, V. V. & Gurevich, E. V. GPCR signaling regulation: the role of GRKs and arrestins. Front. Pharmacol. 10, 125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shukla, A. K., Xiao, K. & Lefkowitz, R. J. Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem. Sci. 36, 457–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hodavance, S. Y., Gareri, C., Torok, R. D. & Rockman, H. A. G protein-coupled receptor biased agonism. J. Cardiovasc. Pharmacol. 67, 193–202 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rankovic, Z., Brust, T. F. & Bohn, L. M. Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorg. Med. Chem. Lett. 26, 241–250 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Violin, J. D., Crombie, A. L., Soergel, D. G. & Lark, M. W. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol. Sci. 35, 308–316 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Bermudez, M., Nguyen, T. N., Omieczynski, C. & Wolber, G. Strategies for the discovery of biased GPCR ligands. Drug. Discov. Today 24, 1031–1037 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Laeremans, T. et al. Accelerating GPCR drug discovery with conformation-stabilizing VHHs. Front. Mol. Biosci. 9, 863099 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawai, T. et al. Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist. Proc. Natl Acad. Sci. USA 117, 29959–29967 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones, B. et al. Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nat. Commun. 9, 1602 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Coskun, T. et al. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: from discovery to clinical proof of concept. Cell Metab. 34, 1234–1247.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Willard, F. S. et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 5, e140532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rasmussen, S. G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zhang, X. et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl Acad. Sci. USA 105, 1867–1872 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Y., Gonen, S., Gonen, T. & Yeates, T. O. Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system. Proc. Natl Acad. Sci. USA 115, 3362–3367 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Robertson, M. J. et al. Structure determination of inactive-state GPCRs with a universal nanobody. Nat. Struct. Mol. Biol. 29, 1188–1195 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Josephs, T. M. et al. Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science 372, eabf7258 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Cong, Z. et al. Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor. Nat. Commun. 12, 3763 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, X. et al. Evolving cryo-EM structural approaches for GPCR drug discovery. Structure 29, 963–974.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Papasergi-Scott, M. M. et al. Time-resolved cryo-EM of G protein activation by a GPCR. bioRxiv https://doi.org/10.1101/2023.03.20.533387 (2023).

  37. Chen, Q. et al. Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1. Nature 595, 600–605 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duan, J. et al. GPCR activation and GRK2 assembly by a biased intracellular agonist. Nature 620, 676–681 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Krumm, B. E. et al. Neurotensin receptor allosterism revealed in complex with a biased allosteric modulator. Biochemistry 62, 1233–1248 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi, K. et al. Class B1 GPCR activation by an intracellular agonist. Nature 618, 1085–1093 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao, L. H. et al. Conserved class B GPCR activation by a biased intracellular agonist. Nature 621, 635–641 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Hilger, D., Masureel, M. & Kobilka, B. K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 4–12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, K., Wu, H., Hoppe, N., Manglik, A. & Cheng, Y. Fusion protein strategies for cryo-EM study of G protein-coupled receptors. Nat. Commun. 13, 4366 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garcia-Nafria, J., Lee, Y., Bai, X., Carpenter, B. & Tate, C. G. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. Elife 7, e35946 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Staus, D. P. et al. Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc. Nature 579, 297–302 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, Y. et al. Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor. Nature 583, 862–866 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, H. et al. Structural insights into ligand recognition and activation of the medium-chain fatty acid-sensing receptor GPR84. Nat. Commun. 14, 3271 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wasilko, D. J. et al. Structural basis for chemokine receptor CCR6 activation by the endogenous protein ligand CCL20. Nat. Commun. 11, 3031 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, H. et al. Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren. Nat. Commun. 12, 6410 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cary, B. P. et al. Structural and functional diversity among agonist-bound states of the GLP-1 receptor. Nat. Chem. Biol. 18, 256–263 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, Q. et al. Common activation mechanism of class A GPCRs. Elife 8, e50279 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang, S. et al. GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors. Mol. Cell 82, 2681–2695.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Duan, J. et al. Molecular basis for allosteric agonism and G protein subtype selectivity of galanin receptors. Nat. Commun. 13, 1364 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duan, J. et al. Insights into divalent cation regulation and G13-coupling of orphan receptor GPR35. Cell Discov. 8, 135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kang, Y. et al. Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Nature 558, 553–558 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang, W. et al. Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 579, 303–308 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yin, W. et al. A complex structure of arrestin-2 bound to a G protein-coupled receptor. Cell Res. 29, 971–983 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kato, H. E. et al. Conformational transitions of a neurotensin receptor 1-Gi1 complex. Nature 572, 80–85 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grimes, J. et al. Plasma membrane preassociation drives β-arrestin coupling to receptors and activation. Cell 186, 2238–2255.e20 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou, X. E. et al. Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170, 457–469.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, F. et al. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR. Nat. Commun. 6, 8202 (2015).

    Article  ADS  PubMed  Google Scholar 

  63. Chen, K. et al. Tail engagement of arrestin at the glucagon receptor. Nature 620, 904–910 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thomsen, A. R. B. et al. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell 166, 907–919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mushegian, A., Gurevich, V. V. & Gurevich, E. V. The origin and evolution of G protein-coupled receptor kinases. PLoS ONE 7, e33806 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Murga, C. et al. G protein-coupled receptor kinase 2 (GRK2) as a potential therapeutic target in cardiovascular and metabolic diseases. Front. Pharmacol. 10, 112 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ahn, S. et al. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library. Proc. Natl Acad. Sci. USA 114, 1708–1713 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Knudsen, L. B. et al. Small-molecule agonists for the glucagon-like peptide 1 receptor. Proc. Natl Acad. Sci. USA 104, 937–942 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Srivastava, A. et al. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513, 124–127 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Ho, J. D. et al. Structural basis for GPR40 allosteric agonism and incretin stimulation. Nat. Commun. 9, 1645 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  72. Kaku, K., Enya, K., Nakaya, R., Ohira, T. & Matsuno, R. Efficacy and safety of fasiglifam (TAK-875), a G protein-coupled receptor 40 agonist, in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise: a randomized, double-blind, placebo-controlled, phase III trial. Diabetes Obes. Metab. 17, 675–681 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu, J. et al. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat. Struct. Mol. Biol. 24, 570–577 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, X. et al. An allosteric modulator binds to a conformational hub in the β2 adrenergic receptor. Nat. Chem. Biol. 16, 749–755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu, H. et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344, 58–64 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dore, A. S. et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511, 557–562 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Oswald, C. et al. Intracellular allosteric antagonism of the CCR9 receptor. Nature 540, 462–465 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Zheng, Y. et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540, 458–461 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hollenstein, K. et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499, 438–443 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Krishna Kumar, K. et al. Negative allosteric modulation of the glucagon receptor by RAMP2. Cell 186, 1465–1477.e18 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Servant, G., Tachdjian, C., Li, X. & Karanewsky, D. S. The sweet taste of true synergy: positive allosteric modulation of the human sweet taste receptor. Trends Pharmacol. Sci. 32, 631–636 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Gershengorn, M. C. & Neumann, S. Update in TSH receptor agonists and antagonists. J. Clin. Endocrinol. Metab. 97, 4287–4292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hiller-Sturmhofel, S. & Bartke, A. The endocrine system: an overview. Alcohol. Health Res. World 22, 153–164 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Szkudlinski, M. W., Fremont, V., Ronin, C. & Weintraub, B. D. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol. Rev. 82, 473–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Ulloa-Aguirre, A. & Zarinan, T. The follitropin receptor: matching structure and function. Mol. Pharmacol. 90, 596–608 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Johnson, G. P. & Jonas, K. C. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling. Biol. Reprod. 102, 773–783 (2020).

    Article  PubMed  Google Scholar 

  88. Jeschke, U., Toth, B., Scholz, C., Friese, K. & Makrigiannakis, A. Glycoprotein and carbohydrate binding protein expression in the placenta in early pregnancy loss. J. Reprod. Immunol. 85, 99–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Allgeier, A. et al. The human thyrotropin receptor activates G-proteins Gs and Gq/11. J. Biol. Chem. 269, 13733–13735 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Kleinau, G. et al. Structural-functional features of the thyrotropin receptor: a class A G-protein-coupled receptor at work. Front. Endocrinol. 8, 86 (2017).

    Article  Google Scholar 

  91. Segaloff, D. L., Sprengel, R., Nikolics, K. & Ascoli, M. Structure of the lutropin/choriogonadotropin receptor. Recent. Prog. Horm. Res. 46, 261–301 (1990).

    CAS  PubMed  Google Scholar 

  92. Hebrant, A., van Staveren, W. C., Maenhaut, C., Dumont, J. E. & Leclere, J. Genetic hyperthyroidism: hyperthyroidism due to activating TSHR mutations. Eur. J. Endocrinol. 164, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Cangul, H. et al. Novel TSHR mutations in consanguineous families with congenital nongoitrous hypothyroidism. Clin. Endocrinol. 73, 671–677 (2010).

    Article  CAS  Google Scholar 

  94. Ando, T., Latif, R. & Davies, T. F. Thyrotropin receptor antibodies: new insights into their actions and clinical relevance. Best. Pract. Res. Clin. Endocrinol. Metab. 19, 33–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Wiersinga, W. M. & Bartalena, L. Epidemiology and prevention of Graves’ ophthalmopathy. Thyroid 12, 855–860 (2002).

    Article  PubMed  Google Scholar 

  96. Jaschke, H. et al. A low molecular weight agonist signals by binding to the transmembrane domain of thyroid-stimulating hormone receptor (TSHR) and luteinizing hormone/chorionic gonadotropin receptor (LHCGR). J. Biol. Chem. 281, 9841–9844 (2006).

    Article  PubMed  Google Scholar 

  97. Neumann, S. et al. A low-molecular-weight antagonist for the human thyrotropin receptor with therapeutic potential for hyperthyroidism. Endocrinology 149, 5945–5950 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Duan, J. et al. Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature 609, 854–859 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Duan, J. et al. Structures of full-length glycoprotein hormone receptor signalling complexes. Nature 598, 688–692 (2021).

    Article  ADS  PubMed  Google Scholar 

  100. Duan, J. et al. Mechanism of hormone and allosteric agonist mediated activation of follicle stimulating hormone receptor. Nat. Commun. 14, 519 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Faust, B. et al. Autoantibody mimicry of hormone action at the thyrotropin receptor. Nature 609, 846–853 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schulze, A. et al. The intramolecular agonist is obligate for activation of glycoprotein hormone receptors. FASEB J. 34, 11243–11256 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Bruser, A. et al. The activation mechanism of glycoprotein hormone receptors with implications in the cause and therapy of endocrine diseases. J. Biol. Chem. 291, 508–520 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Sanders, J. et al. Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid 17, 395–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Cong, Z. et al. Structural perspective of class B1 GPCR signaling. Trends Pharmacol. Sci. 43, 321–334 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Ma, H. et al. Structural insights into the activation of GLP-1R by a small molecule agonist. Cell Res. 30, 1140–1142 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhang, H. et al. Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546, 259–264 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhao, F. et al. Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor. eLife 10, e68719 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yuliantie, E. et al. Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochem. Pharmacol. 177, 114001 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Zhao, F. et al. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat. Commun. 13, 1057 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brandt, S. J., Müller, T. D., DiMarchi, R. D., Tschöp, M. H. & Stemmer, K. Peptide-based multi-agonists: a new paradigm in metabolic pharmacology. J. Intern. Med. 284, 581–602 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Gallwitz, B. Clinical perspectives on the use of the GIP/GLP-1 receptor agonist tirzepatide for the treatment of type-2 diabetes and obesity. Front. Endocrinol. 13, 1004044 (2022).

    Article  Google Scholar 

  113. Brandt, S. J., Götz, A., Tschöp, M. H. & Müller, T. D. Gut hormone polyagonists for the treatment of type 2 diabetes. Peptides 100, 190–201 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, L. et al. Adipocyte Gi signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nat. Commun. 11, 2995 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Offermanns, S. Hydroxy-carboxylic acid receptor actions in metabolism. Trends Endocrinol. Metab. 28, 227–236 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Ahmed, K., Tunaru, S. & Offermanns, S. GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol. Sci. 30, 557–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Jain, S. et al. Lack of adipocyte purinergic P2Y6 receptor greatly improves whole body glucose homeostasis. Proc. Natl Acad. Sci. USA 117, 30763–30774 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Amisten, S. et al. A comparative analysis of human and mouse islet G-protein coupled receptor expression. Sci. Rep. 7, 46600 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Meidute Abaraviciene, S., Muhammed, S. J., Amisten, S., Lundquist, I. & Salehi, A. GPR40 protein levels are crucial to the regulation of stimulated hormone secretion in pancreatic islets. Lessons from spontaneous obesity-prone and non-obese type 2 diabetes in rats. Mol. Cell Endocrinol. 381, 150–159 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Flodgren, E. et al. GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochem. Biophys. Res. Commun. 354, 240–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Janah, L. et al. Glucagon receptor signaling and glucagon resistance. Int. J. Mol. Sci. 20, 3314 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Boland, M. L. et al. Resolution of NASH and hepatic fibrosis by the GLP-1R/GcgR dual-agonist cotadutide via modulating mitochondrial function and lipogenesis. Nat. Metab. 2, 413–431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dax, E. M., Partilla, J. S., Pineyro, M. A. & Gregerman, R. I. Beta-adrenergic receptors, glucagon receptors, and their relationship to adenylate cyclase in rat liver during aging. Endocrinology 120, 1534–1541 (1987).

    Article  CAS  PubMed  Google Scholar 

  124. Maccarrone, M. et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol. Sci. 36, 277–296 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Howl, J. et al. Characterization of the human liver vasopressin receptor. Profound differences between human and rat vasopressin-receptor-mediated responses suggest only a minor role for vasopressin in regulating human hepatic function. Biochem. J. 276, 189–195 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Keppens, S. & de Wulf, H. The activation of liver glycogen phosphorylase by vasopressin. FEBS Lett. 51, 29–32 (1975).

    Article  CAS  PubMed  Google Scholar 

  127. Pydi, S. P. et al. Adipocyte β-arrestin-2 is essential for maintaining whole body glucose and energy homeostasis. Nat. Commun. 10, 2936 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  128. Ceddia, R. P. & Collins, S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin. Sci. 134, 473–512 (2020).

    Article  CAS  Google Scholar 

  129. Collins, S. β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front. Endocrinol. (Lausanne) 2, 102 (2011).

    Article  PubMed  Google Scholar 

  130. Suchy, T. et al. The repertoire of adhesion G protein-coupled receptors in adipocytes and their functional relevance. Int. J. Obes. 44, 2124–2136 (2020).

    Article  CAS  Google Scholar 

  131. Rossi, F., Punzo, F., Umano, G. R., Argenziano, M. & Miraglia Del Giudice, E. Role of cannabinoids in obesity. Int. J. Mol. Sci. 19, 2690 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sidibeh, C. O. et al. Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance. Endocrine 55, 839–852 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Ulloa-Aguirre, A., Zarinan, T., Jardon-Valadez, E., Gutierrez-Sagal, R. & Dias, J. A. Structure-function relationships of the follicle-stimulating hormone receptor. Front. Endocrinol. 9, 707 (2018).

    Article  Google Scholar 

  134. Rivero-Muller, A. & Huhtaniemi, I. Genetic variants of gonadotrophins and their receptors: impact on the diagnosis and management of the infertile patient. Best. Pract. Res. Clin. Endocrinol. Metab. 36, 101596 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Yeo, G. S. et al. Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum. Mol. Genet. 12, 561–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Yu, J. et al. Determination of the melanocortin-4 receptor structure identifies Ca2+ as a cofactor for ligand binding. Science 368, 428–433 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. Runge, S., Thogersen, H., Madsen, K., Lau, J. & Rudolph, R. Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. J. Biol. Chem. 283, 11340–11347 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Parthier, C. et al. Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor. Proc. Natl Acad. Sci. USA 104, 13942–13947 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pal, K., Melcher, K. & Xu, H. E. Structure and mechanism for recognition of peptide hormones by class B G-protein-coupled receptors. Acta Pharmacol. Sin. 33, 300–311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhao, P. et al. Activation of the GLP-1 receptor by a non-peptidic agonist. Nature 577, 432–436 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  141. Zhang, X. et al. Differential GLP-1R binding and activation by peptide and non-peptide agonists. Mol. Cell 80, 485–500.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Cong, Z. et al. Structural basis of peptidomimetic agonism revealed by small-molecule GLP-1R agonists Boc5 and WB4-24. Proc. Natl Acad. Sci. USA 119, e2200155119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang, D. et al. Structural insights into angiotensin receptor signaling modulation by balanced and biased agonists. EMBO J. 42, e112940 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Guo, Q. et al. A method for structure determination of GPCRs in various states. Nat. Chem. Biol. 20, 74–82 (2024).

    Article  CAS  PubMed  Google Scholar 

  145. Ji, Y. et al. Structural basis of peptide recognition and activation of endothelin receptors. Nat. Commun. 14, 1268 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  146. Su, M. et al. Structural basis of the activation of heterotrimeric Gs-protein by isoproterenol-bound β1-adrenergic receptor. Mol. Cell 80, 59–71.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang, Y. Structure, function and regulation of the melanocortin receptors. Eur. J. Pharmacol. 660, 125–130 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yin, Y., Li, Y. & Zhang, W. The growth hormone secretagogue receptor: its intracellular signaling and regulation. Int. J. Mol. Sci. 15, 4837–4855 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Collu, R. et al. A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropin-releasing hormone receptor gene. J. Clin. Endocrinol. Metab. 82, 1561–1565 (1997).

    CAS  PubMed  Google Scholar 

  150. Tuncel, M. Thyroid stimulating hormone receptor. Mol. Imaging Radionucl. Ther. 26, 87–91 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ascoli, M. et al. The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr. Rev. 23, 141–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Galsgaard, K. D., Pedersen, J., Knop, F. K., Holst, J. J. & Wewer Albrechtsen, N. J. Glucagon receptor signaling and lipid metabolism. Front. Physiol. 10, 413 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Seino, Y. & Yabe, D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: incretin actions beyond the pancreas. J. Diabetes Investig. 4, 108–130 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cheloha, R. W., Gellman, S. H., Vilardaga, J. P. & Gardella, T. J. PTH receptor-1 signalling – mechanistic insights and therapeutic prospects. Nat. Rev. Endocrinol. 11, 712–724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gorvin, C. M. Molecular and clinical insights from studies of calcium-sensing receptor mutations. J. Mol. Endocrinol. 63, R1–R16 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Hirabayashi, Y. & Kim, Y. J. Roles of GPRC5 family proteins: focusing on GPRC5B and lipid-mediated signalling. J. Biochem. 167, 541–547 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Arensdorf, A. M., Marada, S. & Ogden, S. K. Smoothened regulation: a tale of two signals. Trends Pharmacol. Sci. 37, 62–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Wang, Y., Chang, H., Rattner, A. & Nathans, J. Frizzled receptors in development and disease. Curr. Top. Dev. Biol. 117, 113–139 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Clark, A., Grossman, A. & McLoughlin, L. Familial glucocorticoid deficiency associated with point mutation in the adrenocorticotropin receptor. Lancet 341, 461–462 (1993).

    Article  CAS  PubMed  Google Scholar 

  161. Chung, T. et al. The majority of adrenocorticotropin receptor (melanocortin 2 receptor) mutations found in familial glucocorticoid deficiency type 1 lead to defective trafficking of the receptor to the cell surface. J. Clin. Endocrinol. Metab. 93, 4948–4954 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Lee, Y. S., Poh, L. K. S., Kek, B. L. K. & Loke, K. Y. The role of melanocortin 3 receptor gene in childhood obesity. Diabetes 56, 2622 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Tao, Y.-X., Johnson, N. B. & Segaloff, D. L. Constitutive and agonist-dependent self-association of the cell surface human lutropin receptor. J. Biol. Chem. 279, 5904–5914 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Pantel, J. et al. Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. J. Clin. Invest. 116, 760–768 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pantel, J. et al. Recessive isolated growth hormone deficiency and mutations in the ghrelin receptor. J. Clin. Endocrinol. Metab. 94, 4334–4341 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Schott, M., Scherbaum, W. A. & Morgenthaler, N. G. Thyrotropin receptor autoantibodies in Graves’ disease. Trends Endocrinol. Metab. 16, 243–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Camacho, P. et al. A Phe 486 thyrotropin receptor mutation in an autonomously functioning follicular carcinoma that was causing hyperthyroidism. Thyroid 10, 1009–1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Clifton-Bligh, R. et al. Two novel mutations in the thyrotropin (TSH) receptor gene in a child with resistance to TSH. J. Clin. Endocrinol. Metab. 82, 1094–1100 (1997).

    CAS  PubMed  Google Scholar 

  170. Marx, S. J. Distinguishing typical primary hyperparathyroidism from familial hypocalciuric hypercalcemia by using an index of urinary calcium. J. Clin. Endocrinol. Metab. 100, L29–L30 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Watanabe, S. et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 360, 692–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Dong, B. et al. Calcilytic ameliorates abnormalities of mutant calcium‐sensing receptor (CaSR) knock‐in mice mimicking autosomal dominant hypocalcemia (ADH). J. Bone Miner. Res. 30, 1980–1993 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Amizuka, N. et al. Cell-specific expression of the parathyroid hormone (PTH)/PTH-related peptide receptor gene in kidney from kidney-specific and ubiquitous promoters. Endocrinology 138, 469–481 (1997).

    Article  CAS  PubMed  Google Scholar 

  174. Kousteni, S. & Bilezikian, J. P. The cell biology of parathyroid hormone in osteoblasts. Curr. Osteoporos. Rep. 6, 72–76 (2008).

    Article  PubMed  Google Scholar 

  175. Lee, S. et al. A homozygous [Cys25]PTH(1‐84) mutation that impairs PTH/PTHrP receptor activation defines a novel form of hypoparathyroidism. J. Bone Miner. Res. 30, 1803–1813 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Drucker, D. J. et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372, 1240–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Fujii, Y. et al. Somatostatin receptor subtype SSTR2 mediates the inhibition of high‐voltage‐activated calcium channels by somatostatin and its analogue SMS 201‐995. FEBS Lett. 355, 117–120 (1994).

    Article  CAS  PubMed  Google Scholar 

  178. Cakir, M., Dworakowska, D. & Grossman, A. Somatostatin receptor biology in neuroendocrine and pituitary tumours: part 1 – molecular pathways. J. Cell. Mol. Med. 14, 2570–2584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gatto, F. et al. Low beta-arrestin expression correlates with the responsiveness to long-term somatostatin analog treatment in acromegaly. Eur. J. Endocrinol. 174, 651–662 (2016).

    Article  PubMed  Google Scholar 

  180. Zhao, Y. et al. PROKR2 mutations in idiopathic hypogonadotropic hypogonadism: selective disruption of the binding to a Gα‐protein leads to biased signaling. FASEB J. 33, 4538–4546 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. de Roux, N. et al. A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N. Engl. J. Med. 337, 1597–1603 (1997).

    Article  PubMed  Google Scholar 

  182. Aittomäki, K. et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 82, 959–968 (1995).

    Article  PubMed  Google Scholar 

  183. Smits, G. et al. Ovarian hyperstimulation syndrome due to a mutation in the follicle-stimulating hormone receptor. N. Engl. J. Med. 349, 760–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  184. Laue, L. et al. A nonsense mutation of the human luteinizing hormone receptor gene in Leydig cell hypoplasia. Hum. Mol. Genet. 4, 1429–1433 (1995).

    Article  CAS  PubMed  Google Scholar 

  185. Shenker, A. et al. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 365, 652–654 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  186. Teles, M. G. et al. A GPR54-activating mutation in a patient with central precocious puberty. N. Engl. J. Med. 358, 709–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Feldman, B. J. et al. Nephrogenic syndrome of inappropriate antidiuresis. N. Engl. J. Med. 352, 1884–1890 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Erdélyi, L. S. et al. Mutation in the V2 vasopressin receptor gene, AVPR2, causes nephrogenic syndrome of inappropriate diuresis. Kidney Int. 88, 1070–1078 (2015).

    Article  PubMed  Google Scholar 

  189. Carpentier, E. et al. Identification and characterization of an activating F229V substitution in the V2 vasopressin receptor in an infant with NSIAD. J. Am. Soc. Nephrol. 23, 1635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Powlson, A. S., Challis, B. G., Halsall, D. J., Schoenmakers, E. & Gurnell, M. Nephrogenic syndrome of inappropriate antidiuresis secondary to an activating mutation in the arginine vasopressin receptor AVPR2. Clin. Endocrinol. 85, 306–312 (2016).

    Article  CAS  Google Scholar 

  191. Daly, A., Trivellin, G. & Stratakis, C. Gigantism, acromegaly, and GPR101 mutations. N. Engl. J. Med. 372, 1265 (2015).

    PubMed  Google Scholar 

  192. Beckers, A. et al. X-linked acrogigantism syndrome: clinical profile and therapeutic responses. Endocr. Relat. Cancer 22, 353–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhang, Y., Scislowski, P. W., Prevelige, R., Phaneuf, S. & Cincotta, A. H. Bromocriptine/SKF38393 treatment ameliorates dyslipidemia in obob mice. Metabolism 48, 1033–1040 (1999).

    Article  CAS  PubMed  Google Scholar 

  194. Lefebvre, E. et al. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS ONE 11, e0158156 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Wasmuth, H. E. et al. Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans. Gastroenterology 137, 309–319.e3 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Bar-Yehuda, S. et al. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-κB signal transduction pathways. Int. J. Oncol. 33, 287–295 (2008).

    CAS  PubMed  Google Scholar 

  197. Kwon, H. et al. Inhibition of hedgehog signaling ameliorates hepatic inflammation in mice with nonalcoholic fatty liver disease. Hepatology 63, 1155–1169 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Jiang, F., Parsons, C. J. & Stefanovic, B. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J. Hepatol. 45, 401–409 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Ruddell, R. G. et al. A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am. J. Pathol. 169, 861–876 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hansson, B., Medina, A., Fryklund, C., Fex, M. & Stenkula, K. G. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells. Biochem. Biophys. Res. Commun. 474, 357–363 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Nolan, C., Madiraju, M. S., Delghingaro-Augusto, V., Peyot, M. L. & Prentki, M. Fatty acid signaling in the β-cell and insulin secretion. Diabetes 55, S16–S23 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Gao, J. et al. Stimulating beta cell replication and improving islet graft function by GPR119 agonists. Transpl. Int. 24, 1124–1134 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Leibiger, B. et al. Glucagon regulates its own synthesis by autocrine signaling. Proc. Natl Acad. Sci. USA 109, 20925–20930 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gelling, R. W. et al. Pancreatic β-cell overexpression of the glucagon receptor gene results in enhanced β-cell function and mass. Am. J. Physiol. Endocrinol. Metab. 297, E695–E707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Cornu, M. et al. Glucagon-like peptide-1 protects β-cells against apoptosis by increasing the activity of an IGF-2/IGF-1 receptor autocrine loop. Diabetes 58, 1816–1825 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Timper, K. et al. Glucose-dependent insulinotropic peptide stimulates glucagon-like peptide 1 production by pancreatic islets via interleukin 6, produced by α cells. Gastroenterology 151, 165–179 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. Mieczkowska, A., Baslé, M. F., Chappard, D. & Mabilleau, G. Thiazolidinediones induce osteocyte apoptosis by a G protein-coupled receptor 40-dependent mechanism. J. Biol. Chem. 287, 23517–23526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Song, T., Yang, Y., Zhou, Y., Wei, H. & Peng, J. GPR120: a critical role in adipogenesis, inflammation, and energy metabolism in adipose tissue. Cell. Mol. Life Sci. 74, 2723–2733 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang, J., Carrillo, J. J. & Lin, H. V. GPR142 agonists stimulate glucose-dependent insulin secretion via Gq-dependent signaling. PLoS ONE 11, e0154452 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Vettor, R. & Pagano, C. The role of the endocannabinoid system in lipogenesis and fatty acid metabolism. Best. Pract. Res. Clin. Endocrinol. Metab. 23, 51–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Rohrer, D. K. et al. Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc. Nat. Acad. Sci. 93, 7375–7380 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  213. Chruscinski, A. J. et al. Targeted disruption of the β2 adrenergic receptor gene. J. Biol. Chem. 274, 16694–16700 (1999).

    Article  CAS  PubMed  Google Scholar 

  214. Revelli, J.-P. et al. Targeted gene disruption reveals a leptin-independent role for the mouse beta3-adrenoceptor in the regulation of body composition. J. Clin. Invest. 100, 1098–1106 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kageyama, Y. et al. Antagonism of sphingosine 1‐phosphate receptor 2 causes a selective reduction of portal vein pressure in bile duct‐ligated rodents. Hepatology 56, 1427–1438 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Gnad, T. et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516, 395–399 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  217. Niemann, B. et al. Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine. Nature 609, 361–368 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the CAS Strategic Priority Research Program (XDB37030103 to H.E.X.); Shanghai Municipal Science and Technology Major Project (2019SHZDZX02 to H.E.X.); Shanghai Municipal Science and Technology Major Project (H.E.X.); The National Natural Science Foundation of China (32130022 and 82121005 to H.E.X.); the Lingang Laboratory (grant no. LG-GG-202204-01 to H.E.X.); and the National Key R&D Program of China (2022YFC2703105 to H.E.X.); The National Natural Science Foundation of China (82373881 to J.D.); Young Elite Scientists Sponsorship Program by CAST (2022QNRC001 to J.D.); Shanghai Sailing Program (23YF1456800 to J.D.); and the Youth Innovation Promotion Association of Chinese Academy of Sciences (to J.D.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for article and wrote the article. H.E.X. and J.D. contributed substantially to the discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Jia Duan or H. Eric Xu.

Ethics declarations

Competing interests

H.E.X. is the founder and stakeholder of Cascade Pharmaceuticals. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks David Hodson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The RCSB Protein Data Bank: https://www.rcsb.org/

The TSHR mutation database: https://www.tsh-receptor-mutation-database.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, J., He, XH., Li, SJ. et al. Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-00957-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-00957-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing