Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis

Abstract

Over the past three decades, the mainstay of treatment for osteoporosis has been antiresorptive agents (such as bisphosphonates), which have been effective with continued administration in lowering fracture risk. However, the clinical landscape has changed as adherence to these medications has declined due to perceived adverse effects. As a result, decreases in hip fracture rates that followed the introduction of bisphosphonates have now levelled off, which is coincident with a decline in the use of the antiresorptive agents. In the past two decades, two types of anabolic agents (including three new drugs), which represent a novel approach to improving bone quality by increasing bone formation, have been approved. These therapies are expected to lead to a new clinical paradigm in which anabolic agents will be used either alone or in combination with antiresorptive agents to build new bone and reduce fracture risk. This Review examines the mechanisms of action for these anabolic agents by detailing their receptor-activating properties for key cell types in the bone and marrow niches. Using these advances in bone biology as context, the comparative effectiveness of these anabolic agents is discussed in relation to other therapeutic options for osteoporosis to better guide their clinical application in the future.

Key points

  • Antiresorptive agents, such as bisphosphonates, have been the mainstay of treatment for osteoporosis, but concerns regarding perceived adverse effects have resulted in a reduction in adherence.

  • Anabolic agents represent a novel approach to improving bone quality by increasing bone formation.

  • Alone, or in combination with antiresorptive agents, anabolic agents are expected to lead to a new clinical paradigm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular mechanisms of PTH signalling in bone.
Fig. 2: Key actions of PTH anabolic agents on cell types of the bone and marrow niche.
Fig. 3: Paradigm of synergistic effect of hormonal and mechanical stimulation on bone.
Fig. 4: Canonical WNT signalling pathway in bone cells, its inhibition by sclerostin and its restoration by sclerostin inhibition via romosozumab.
Fig. 5: Key actions of romosozumab-stimulated WNT signalling on cell types of the bone and marrow niche.

Similar content being viewed by others

References

  1. Vestergaard, P., Rejnmark, L. & Mosekilde, L. Increased mortality in patients with a hip fracture–effect of pre-morbid conditions and post-fracture complications. Osteoporos. Int. 18, 1583–159 (2007).

    CAS  PubMed  Google Scholar 

  2. Unnanuntana, A., Gladnick, B. P., Donnelly, E. & Lane, J. M. The assessment of fracture risk. J. Bone Jt. Surg. Am. 92, 743–753 (2010).

    Google Scholar 

  3. Wright, N. C. et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Min. Res. 29, 2520–2526 (2014).

    Google Scholar 

  4. Boskey, A. L. & Coleman, R. Aging and bone. J. Dent. Res. 89, 1333–1348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Blume, S. W. & Curtis, J. R. Medical costs of osteoporosis in the elderly Medicare population. Osteoporos. Int. 22, 1835–1844 (2011).

    CAS  PubMed  Google Scholar 

  6. Tsoumpra, M. K. et al. The inhibition of human farnesyl pyrophosphate synthase by nitrogen-containing bisphosphonates. Elucidating the role of active site threonine 201 and tyrosine 204 residues using enzyme mutants. Bone 81, 478–486 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Filleul, O., Crompot, E. & Saussez, S. Bisphosphonate-induced osteonecrosis of the jaw: a review of 2,400 patient cases. J. Cancer Res. Clin. Oncol. 136, 1117–1124 (2010).

    CAS  PubMed  Google Scholar 

  8. Kim, S. C. et al. Impact of the U.S. Food and Drug Administration’s Safety-Related Announcements on the Use of Bisphosphonates After Hip Fracture. J. Bone Miner. Res. 31, 1536–1540 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zanchetta, M. B. et al. Significant bone loss after stopping long-term denosumab treatment: a post FREEDOM study. Osteoporos. Int. 29, 41–47 (2018).

    CAS  PubMed  Google Scholar 

  10. Cummings, S. R. et al. Vertebral fractures after discontinuation of denosumab: a post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. J. Bone Miner. Res. 33, 188–189 (2018).

    Google Scholar 

  11. Bahar, H. et al. Six weeks of daily abaloparatide treatment increased vertebral and femoral bone mineral density, microarchitecture and strength in ovariectomized osteopenic rats. Calcif. Tissue Int. 99, 489–499 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Doyle, N. et al. Abaloparatide, a novel PTH receptor agonist, increased bone mass and strength in ovariectomized cynomolgus monkeys by increasing bone formation without increasing bone resorption. Osteoporos. Int. 29, 685–697 (2018).

    CAS  PubMed  Google Scholar 

  13. Ma, Y. L. et al. Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology 142, 4047–4054 (2001).

    CAS  PubMed  Google Scholar 

  14. Sato, M. et al. Teriparatide [PTH(1–34)] strengthens the proximal femur of ovariectomized nonhuman primates despite increasing porosity. J. Bone Miner. Res. 19, 623–629 (2004).

    CAS  PubMed  Google Scholar 

  15. Jerome, C. P., Burr, D. B., Van Bibber, T., Hock, J. M. & Brommage, R. Treatment with human parathyroid hormone (1–34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 28, 150–159 (2001).

    CAS  PubMed  Google Scholar 

  16. US Food and Drug Administration. Drug approval package: Forteo [teriparatide (rDNA origin)] injection (FDA, 2002).

  17. Lindsay, R., Krege, J. H., Marin, F., Jin, L. & Stepan, J. J. Teriparatide for osteoporosis: importance of the full course. Osteoporos. Int. 27, 2395–2410 (2016).

  18. US Food and Drug Administration. FDA-approved drugs: new drug application (NDA): 208743 (FDA, 2017).

  19. Health Canada. Patented medicine prices review board. Abaloparatide approval report (Government of Canada, 2017).

  20. European Medicines Agency. Eladynos: abaloparatide (EMA, 2018).

  21. US Food and Drug Administration. Drug approval package: Evenity (FDA, 2019).

  22. Health Canada. Summary basis of decision — Evenity (Government of Canada, 2019).

  23. European Medicines Agency. Assessment report: Evenity (romosozumab) (EMA, 2019).

  24. Yang, D. et al. Contributions of parathyroid hormone (PTH)/PTH-related peptide receptor signaling pathways to the anabolic effect of PTH on bone. Bone 40, 1453–1461 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheloha, R. W., Gellman, S. H., Vilardaga, J.-P. & Gardella, T. J. PTH receptor-1 signalling — mechanistic insights and therapeutic prospects. Nat. Rev. Endocrinol. 11, 712–724 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Silverberg, S. J. et al. Skeletal disease in primary hyperparathyroidism. J. Bone Miner. Res. 4, 283–291 (1989).

    CAS  PubMed  Google Scholar 

  27. Khosla, S. et al. Primary hyperparathyroidism and the risk of fracture: a population-based study. J. Bone Miner. Res. 14, 1700–1707 (1999).

    CAS  PubMed  Google Scholar 

  28. Sharpe, H. S. Hyperparathyroidism associated with osteitis fibrosa cystica. Can. Med. Assoc. J. 40, 164–165 (1939).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Selye, H. On the stimulation of new bone-formation with parathyroid extract and irradiated ergosterol. Endocrinology 16, 547–558 (1932).

    CAS  Google Scholar 

  30. Porcelli, T., Sessa, F., Caputo, A., Catalini, C. & Salvatore, D. Teriparatide replacement therapy for hypoparathyroidism during treatment with lenvatinib for advanced thyroid cancer: a case report. Front. Endocrinol. 9, 244–244 (2018).

    Google Scholar 

  31. Ott, S. M. in Materials for Bone Disorders (eds Bose, S. & Bandyopadhyay, A.) 29–82 (Academic, 2017).

  32. Tella, S. H., Kommalapati, A. & Correa, R. Profile of abaloparatide and its potential in the treatment of postmenopausal osteoporosis. Cureus 9, e1300 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Dean, T., Vilardaga, J. P., Potts, J. T. Jr & Gardella, T. J. Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol. Endocrinol. 22, 156–166 (2008).

    CAS  PubMed  Google Scholar 

  34. Hattersley, G., Dean, T., Corbin, B. A., Bahar, H. & Gardella, T. J. Binding selectivity of abaloparatide for PTH-type-1-receptor conformations and effects on downstream signaling. Endocrinology 157, 141–149 (2016).

    CAS  PubMed  Google Scholar 

  35. Heaney, R. P. in The Parathyroids: Basic and Clinical Concepts (ed. Bilezikian, J. P.) 633–640 (Academic, 2015).

  36. Rejnmark, L., Vestergaard, P., Brot, C. & Mosekilde, L. Increased fracture risk in normocalcemic postmenopausal women with high parathyroid hormone levels: a 16-year follow-up study. Calcif. Tissue Int. 88, 238–245 (2011).

    CAS  PubMed  Google Scholar 

  37. Ma, Y. L. et al. Teriparatide increases bone formation in modeling and remodeling osteons and enhances IGF-II immunoreactivity in postmenopausal women with osteoporosis. J. Bone Miner. Res. 21, 855–864 (2006).

    CAS  PubMed  Google Scholar 

  38. Datta, N. S. & Abou-Samra, A. B. PTH and PTHrP signaling in osteoblasts. Cell. Signal. 21, 1245–1254 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Augustine, M. & Horwitz, M. J. Parathyroid hormone and parathyroid hormone-related protein analogs as therapies for osteoporosis. Curr. Osteoporos. Rep. 11, 400–406 (2013).

    PubMed  Google Scholar 

  40. Qiu, T. et al. PTH receptor signaling in osteoblasts regulates endochondral vascularization in maintenance of postnatal growth plate. J. Bone Miner. Res. 30, 309–317 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nishida, S. et al. Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone 15, 717–723 (1994).

    CAS  PubMed  Google Scholar 

  42. Chan, G. K., Deckelbaum, R. A., Bolivar, I., Goltzman, D. & Karaplis, A. C. PTHrP inhibits adipocyte differentiation by down-regulating PPARγ activity via a MAPK-dependent pathway. Endocrinology 142, 4900–4909 (2001).

    CAS  PubMed  Google Scholar 

  43. Miao, D. et al. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1–34. J. Clin. Invest. 115, 2402–2411 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Balani, D. H., Ono, N. & Kronenberg, H. M. Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J. Clin. Invest. 127, 3327–3338 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Tang, Y. et al. Effects of intermittent parathyroid hormone 1–34 administration on circulating mesenchymal stem cells in postmenopausal osteoporotic women. Med. Sci. Monit. 25, 259–268 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu, B. et al. Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling. J. Bone Miner. Res. 27, 2001–2014 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng, Z.-Y. et al. Parathyroid hormone promotes osteoblastic differentiation of endothelial cells via the extracellular signal-regulated protein kinase 1/2 and nuclear factor‑κB signaling pathways. Exp. Ther. Med. 15, 1754–1760 (2018).

    CAS  PubMed  Google Scholar 

  48. Jilka, R. L. et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Invest. 104, 439–446 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schnoke, M., Midura, S. B. & Midura, R. J. Parathyroid hormone suppresses osteoblast apoptosis by augmenting DNA repair. Bone 45, 590–602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yakar, S. et al. Serum IGF-1 determines skeletal strength by regulating subperiosteal expansion and trait interactions. J. Bone Miner. Res. 24, 1481–1492 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Stabnov, L. et al. Effect of insulin-like growth factor-1 (IGF-1) plus alendronate on bone density during puberty in IGF-1-deficient MIDI mice. Bone 30, 909–916 (2002).

    CAS  PubMed  Google Scholar 

  52. Bikle, D. D. et al. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J. Bone Miner. Res. 17, 1570–1578 (2002).

    CAS  PubMed  Google Scholar 

  53. Bikle, D. D. et al. Role of IGF-I signaling in muscle bone interactions. Bone 80, 79–88 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamaguchi, M. et al. Insulin receptor substrate-1 is required for bone anabolic function of parathyroid hormone in mice. Endocrinology 146, 2620–2628 (2005).

    CAS  PubMed  Google Scholar 

  55. Swarthout, J. T., D’Alonzo, R. C., Selvamurugan, N. & Partridge, N. C. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene 282, 1–17 (2002).

    CAS  PubMed  Google Scholar 

  56. Tsourdi, E., Rijntjes, E., Kohrle, J., Hofbauer, L. C. & Rauner, M. Hyperthyroidism and hypothyroidism in male mice and their effects on bone mass, bone turnover, and the wnt inhibitors sclerostin and dickkopf-1. Endocrinology 156, 3517–3527 (2015).

    CAS  PubMed  Google Scholar 

  57. Tobimatsu, T. et al. Parathyroid hormone increases β-catenin levels through Smad3 in mouse osteoblastic cells. Endocrinology 147, 2583–2590 (2006).

    CAS  PubMed  Google Scholar 

  58. Wan, M. et al. Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev. 22, 2968–2979 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Xiao, L., Fei, Y. & Hurley, M. M. FGF2 crosstalk with Wnt signaling in mediating the anabolic action of PTH on bone formation. Bone Rep. 9, 136–144 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Li, J.-Y. et al. Microbiota dependent production of butyrate is required for the bone anabolic activity of PTH. J. Clin. Invest. 130, 1767–1781 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wojda, S. J. & Donahue, S. W. Parathyroid hormone for bone regeneration. J. Orthop. Res. 36, 2586–2594 (2018).

    CAS  PubMed  Google Scholar 

  62. Russow, G. et al. Anabolic therapies in osteoporosis and bone regeneration. Int. J. Mol. 20, 83 (2019).

    Google Scholar 

  63. Ben-awadh, A. N. et al. Parathyroid hormone receptor signaling induces bone resorption in the adult skeleton by directly regulating the RANKL gene in osteocytes. Endocrinology 155, 2797–2809 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    CAS  PubMed  Google Scholar 

  65. Tang, Y. et al. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu, X. et al. Inhibition of Sca-1-positive skeletal stem cell recruitment by alendronate blunts the anabolic effects of parathyroid hormone on bone remodeling. Cell Stem Cell 7, 571–580 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Xian, L. et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 18, 1095–1101 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wein, M. N. & Kronenberg, H. M. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb. Perspect. Med. 8, a031237 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Sims, N. A. et al. Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J. Clin. Invest. 113, 379–389 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Teti, A. Mechanisms of osteoclast-dependent bone formation. Bonekey Rep. 2, 449 (2013).

    PubMed  PubMed Central  Google Scholar 

  71. Takeshita, S. et al. Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J. Clin. Invest. 123, 3914–3924 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bellido, T., Saini, V. & Pajevic, P. D. Effects of PTH on osteocyte function. Bone 54, 250–257 (2013).

    CAS  PubMed  Google Scholar 

  73. Wysolmerski, J. J. Osteocytes remove and replace perilacunar mineral during reproductive cycles. Bone 54, 230–236 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Powell, W. F. et al. Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J. Endocrinol. 209, 21–32 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Delgado-Calle, J. et al. Control of bone anabolism in response to mechanical loading and PTH by distinct mechanisms downstream of the PTH receptor. J. Bone Miner. Res. 32, 522–535 (2017).

    CAS  PubMed  Google Scholar 

  76. Wein, M. N. et al. SIKs control osteocyte responses to parathyroid hormone. Nat. Commun. 7, 13176 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Keller, H. & Kneissel, M. SOST is a target gene for PTH in bone. Bone 37, 148–158 (2005).

    CAS  PubMed  Google Scholar 

  78. Bellido, T. et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146, 4577–4583 (2005).

    CAS  PubMed  Google Scholar 

  79. Terauchi, M. et al. T Lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell. Metab. 10, 229–240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lu, X. L., Huo, B., Chiang, V. & Guo, X. E. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J. Bone Miner. Res. 27, 563–574 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lewis, K. J. et al. Osteocyte calcium signals encode strain magnitude and loading frequency in vivo. Proc. Natl Acad. Sci. USA 114, 11775–11780 (2017).

    CAS  PubMed  Google Scholar 

  82. Spasic, M. & Jacobs, C. R. Lengthening primary cilia enhances cellular mechanosensitivity. Eur. Cell Mater. 33, 158–168 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Spasic, M. & Jacobs, C. R. Primary cilia: cell and molecular mechanosensors directing whole tissue function. Semin. Cell Dev. Biol. 71, 42–52 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Grosso, M. J. et al. Intermittent PTH administration and mechanical loading are anabolic for periprosthetic cancellous bone. J. Orthop. Res. 33, 163–173 (2015).

    CAS  PubMed  Google Scholar 

  85. Kohrt, W. M. et al. Maintenance of serum ionized calcium during exercise attenuates parathyroid hormone and bone resorption responses. J. Bone Miner. Res. 33, 1326–1334 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E. & Sul, H. S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27, 79–101 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sinha, T. K., Thajchayapong, P., Queener, S. F., Allen, D. O. & Bell, N. H. On the lipolytic action of parathyroid hormone in man. Metab. Clin. Exp. 25, 251–260 (1976).

    CAS  PubMed  Google Scholar 

  88. Esen, E. & Long, F. Aerobic glycolysis in osteoblasts. Curr. Osteoporos. Rep. 12, 433–438 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Karner, C. M. & Long, F. Glucose metabolism in bone. Bone 115, 2–7 (2018).

    CAS  PubMed  Google Scholar 

  90. Esen, E., Lee, S. Y., Wice, B. M. & Long, F. PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling. J. Bone Miner. Res. 30, 1959–1968 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Guntur, A. R. et al. Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. J. Bone Miner. Res. 33, 1052–1065 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, C.-T., Shih, Y.-R. V., Kuo, T. K., Lee, O. K. & Wei, Y.-H. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26, 960–968 (2008).

    CAS  PubMed  Google Scholar 

  93. Shum, L. C., White, N. S., Mills, B. N., Bentley, K. L. & Eliseev, R. A. Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cell Dev. 25, 114–122 (2016).

    CAS  Google Scholar 

  94. Forni, M. F., Peloggia, J., Trudeau, K., Shirihai, O. & Kowaltowski, A. J. Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics. Stem Cell 34, 743–755 (2016).

    CAS  Google Scholar 

  95. Fan, Y. et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 25, 661–672 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Maridas, D. E. et al. Progenitor recruitment and adipogenic lipolysis contribute to the anabolic actions of parathyroid hormone on the skeleton. FASEB J. 33, 2885–2898 (2019).

    CAS  PubMed  Google Scholar 

  97. Lee, W. C., Guntur, A. R., Long, F. & Rosen, C. J. Energy metabolism of the osteoblast: implications for osteoporosis. Endocr. Rev. 38, 255–266 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Macdonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Steinhart, Z. & Angers, S. Wnt signaling in development and tissue homeostasis. Development 145, dev146589 (2018).

    PubMed  Google Scholar 

  100. Kobayashi, Y., Maeda, K. & Takahashi, N. Roles of Wnt signaling in bone formation and resorption. Jpn. Dental Sci. Rev. 44, 76–82 (2008).

    Google Scholar 

  101. Houschyar, K. S. et al. Wnt pathway in bone repair and regeneration – what do we know so far. Front. Cell Dev. Biol. 6, 170 (2019).

    PubMed  PubMed Central  Google Scholar 

  102. Li, X. et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883–19887 (2005).

    CAS  PubMed  Google Scholar 

  103. Van Hul, W. et al. Van Buchem disease (hyperostosis corticalis generalisata) maps to chromosome 17q12-q21. Am. J. Hum. Genet. 62, 391–399 (1998).

    PubMed  PubMed Central  Google Scholar 

  104. Balemans, W. et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet. 39, 91–97 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537–543 (2001).

    CAS  PubMed  Google Scholar 

  106. Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002).

    CAS  PubMed  Google Scholar 

  107. Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).

    CAS  PubMed  Google Scholar 

  108. Van Wesenbeeck, L. et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am. J. Hum. Genet. 72, 763–771 (2003).

    PubMed  PubMed Central  Google Scholar 

  109. Biha, N., Ghaber, S. M., Hacen, M. M. & Collet, C. Osteoporosis-pseudoglioma in a Mauritanian child due to a novel mutation in LRP5. Case Rep. Genet. 2016, 9814928 (2016).

    PubMed  PubMed Central  Google Scholar 

  110. Marques-Pinheiro, A. et al. Novel LRP5 gene mutation in a patient with osteoporosis-pseudoglioma syndrome. Jt. Bone Spine 77, 151–153 (2010).

    CAS  Google Scholar 

  111. Pekkinen, M. et al. Novel mutations in the LRP5 gene in patients with osteoporosis-pseudoglioma syndrome. Am. J. Med. Genet. Part. A 173, 3132–3135 (2017).

    PubMed  Google Scholar 

  112. Delgado-Calle, J., Sato, A. Y. & Bellido, T. Role and mechanism of action of sclerostin in bone. Bone 96, 29–37 (2017).

    CAS  PubMed  Google Scholar 

  113. Li, X. et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res. 23, 860–869 (2008).

    PubMed  Google Scholar 

  114. Loots, G. G. et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res. 15, 928–935 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kramer, I., Loots, G. G., Studer, A., Keller, H. & Kneissel, M. Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J. Bone Miner. Res. 25, 178–189 (2010).

    CAS  PubMed  Google Scholar 

  116. Javaheri, B., Herbert, E., Hopkinson, M., Al-Jazzar, A. & Pitsillides, A. A. Sost haploinsufficiency provokes peracute lethal cardiac tamponade without rescuing the osteopenia in a mouse model of excess glucocorticoids. Am. J. Pathol. 189, 753–761 (2019).

    PubMed  PubMed Central  Google Scholar 

  117. Bouaziz, W. et al. Loss of sclerostin promotes osteoarthritis in mice via β-catenin-dependent and -independent Wnt pathways. Arthritis Res. Ther. 17, 24 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. Davis, L. A. & Zur Nieden, N. I. Mesodermal fate decisions of a stem cell: the Wnt switch. Cell Mol. Life Sci. 65, 2658–2674 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gaur, T. et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280, 33132–33140 (2005).

    CAS  PubMed  Google Scholar 

  120. Karner, C. M. & Long, F. Wnt signaling and cellular metabolism in osteoblasts. Cell Mol. Life Sci. 74, 1649–1657 (2017).

    CAS  PubMed  Google Scholar 

  121. Besschetnova, T. et al. Abaloparatide improves cortical geometry and trabecular microarchitecture and increases vertebral and femoral neck strength in a rat model of male osteoporosis. Bone 124, 148–157 (2019).

    CAS  PubMed  Google Scholar 

  122. Kobayashi, Y., Uehara, S., Koide, M. & Takahashi, N. The regulation of osteoclast differentiation by Wnt signals. Bonekey Rep. 4, 713 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Boyce, B. F., Xing, L. & Chen, D. Osteoprotegerin, the bone protector, is a surprising target for β-catenin signaling. Cell Metab. 2, 344–345 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wijenayaka, A. R. et al. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS ONE 6, e25900 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Albers, J. et al. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J. Cell Biol. 200, 537–549 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Weivoda, M. M. et al. Osteoclast TGF-β receptor signaling induces Wnt1 secretion and couples bone resorption to bone formation. J. Bone Miner. Res. 31, 76–85 (2016).

    CAS  PubMed  Google Scholar 

  127. Poole, K. E. S. et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 19, 1842–1844 (2005).

    CAS  PubMed  Google Scholar 

  128. Robling, A. G. et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283, 5866–5875 (2008).

    CAS  PubMed  Google Scholar 

  129. Holguin, N., Brodt, M. D. & Silva, M. J. Activation of Wnt signaling by mechanical loading is impaired in the bone of old mice. J. Bone Miner. Res. 31, 2215–2226 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen, X. et al. Cyclic compression stimulates osteoblast differentiation via activation of the Wnt/β-catenin signaling pathway. Mol. Med. Rep. 15, 2890–2896 (2017).

    CAS  PubMed  Google Scholar 

  131. Morse, A. et al. Sclerostin antibody augments the anabolic bone formation response in a mouse model of mechanical tibial loading. J. Bone Miner. Res. 33, 486–498 (2018).

    CAS  PubMed  Google Scholar 

  132. Morse, A. et al. Mechanical load increases in bone formation via a sclerostin-independent pathway. J. Bone Miner. Res. 29, 2456–2467 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Fairfield, H., Rosen, C. J. & Reagan, M. R. Connecting bone and fat: the potential role for sclerostin. Curr. Mol. Biol. Rep. 3, 114–121 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Kim, S. P. et al. Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proc. Natl Acad. Sci. USA 114, E11238–E11247 (2017).

    CAS  PubMed  Google Scholar 

  135. Fairfield, H. et al. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J. Cell. Physiol. 233, 1156–1167 (2018).

    CAS  PubMed  Google Scholar 

  136. Li, S. et al. Sclerostin antibody mitigates estrogen deficiency-inducted marrow lipid accumulation assessed by proton MR spectroscopy. Front. Endocrinol. 10, 159 (2019).

    CAS  Google Scholar 

  137. McDonald, M. M. et al. Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. Blood 129, 3452–3464 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rubin, M. R. & Bilezikian, J. P. Parathyroid hormone as an anabolic skeletal therapy. Drugs 65, 2481–2498 (2005).

    CAS  PubMed  Google Scholar 

  139. Neer, R. M. et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    CAS  PubMed  Google Scholar 

  140. Orwoll, E. S. et al. The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J. Bone Miner. Res. 18, 9–17 (2003).

    CAS  PubMed  Google Scholar 

  141. Rittmaster, R. S. et al. Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. J. Clin. Endocrinol. Metab. 85, 2129–2134 (2000).

    CAS  PubMed  Google Scholar 

  142. Greenspan, S. L. et al. Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann. Intern. Med. 146, 326–339 (2007).

    PubMed  Google Scholar 

  143. Andrews, E. B. et al. The US postmarketing surveillance study of adult osteosarcoma and teriparatide: study design and findings from the first 7 years. J. Bone Miner. Res. 27, 2429–2437 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Martin, T. & Suva, L. Parathyroid hormone-related protein: a novel gene product. Clin. Endocrinol. Metab. 2, 1003–1029 (1988).

    CAS  Google Scholar 

  145. Medill, N. J., Praul, C. A., Ford, B. C. & Leach, R. M. Parathyroid hormone-related peptide expression in the epiphyseal growth plate of the juvenile chicken: evidence for the origin of the parathyroid hormone-related peptide found in the epiphyseal growth plate. J. Cell. Biochem. 80, 504–511 (2001).

    CAS  PubMed  Google Scholar 

  146. Hens, J. R. et al. BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development 134, 1221–1230 (2007).

    CAS  PubMed  Google Scholar 

  147. Kronenberg, H. M. PTHrP and skeletal development. Ann. NY Acad. Sci. 1068, 1–13 (2006).

    CAS  PubMed  Google Scholar 

  148. Philbrick, W. M. et al. Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol. Rev. 76, 127–173 (1996).

    CAS  PubMed  Google Scholar 

  149. Horwitz, M. J. et al. Continuous PTH and PTHrP infusion causes suppression of bone formation and discordant effects on 1,25(OH)2 vitamin D. J. Bone Miner. Res. 20, 1792–1803 (2005).

    CAS  PubMed  Google Scholar 

  150. Horwitz, M. J. et al. A 7-day continuous infusion of PTH or PTHrP suppresses bone formation and uncouples bone turnover. J. Bone Miner. Res. 26, 2287–2297 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Miller, P. D. et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316, 722–733 (2016).

    CAS  PubMed  Google Scholar 

  152. Miller, P. D. et al. Bone mineral density response rates are greater in patients treated with abaloparatide compared with those treated with placebo or teriparatide: results from the ACTIVE phase 3 trial. Bone 120, 137–140 (2018).

    PubMed  Google Scholar 

  153. Reginster, J. Y. et al. Abaloparatide is an effective treatment option for postmenopausal osteoporosis: review of the number needed to treat compared with teriparatide. Calcif. Tissue Int. 103, 540–545 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Eastell, R. et al. Bone turnover markers to explain changes in lumbar spine BMD with abaloparatide and teriparatide: results from ACTIVE. Osteoporos. Int. 30, 667–673 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. McClung, M. R. et al. Effects of 24 months of treatment with romosozumab followed by 12 months of denosumab or placebo in postmenopausal women with low bone mineral density: a randomized, double-blind, phase 2, parallel group study. J. Bone Miner. Res. 33, 1397–1406 (2018).

    CAS  PubMed  Google Scholar 

  156. Cosman, F. et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375, 1532–1543 (2016).

    CAS  PubMed  Google Scholar 

  157. Saag, K. G. et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 377, 1417–1427 (2017).

    CAS  PubMed  Google Scholar 

  158. Lewiecki, E. M. et al. One year of romosozumab followed by two years of denosumab maintains fracture risk reductions: results of the FRAME extension study. J. Bone Miner. Res. 34, 419–428 (2018).

    PubMed  Google Scholar 

  159. McClung, M. R. et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370, 412–420 (2014).

    CAS  PubMed  Google Scholar 

  160. Keaveny, T. M. et al. Greater gains in spine and hip strength for romosozumab compared with teriparatide in postmenopausal women with low bone mass. J. Bone Miner. Res. 32, 1956–1962 (2017).

    CAS  PubMed  Google Scholar 

  161. Lewiecki, E. M. et al. A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J. Clin. Endocrinol. Metab. 103, 3183–3193 (2018).

    PubMed  Google Scholar 

  162. Nioi, P. et al. Transcriptional profiling of laser capture microdissected subpopulations of the osteoblast lineage provides insight into the early response to sclerostin antibody in rats. J. Bone Miner. Res. 30, 1457–1467 (2015).

    CAS  PubMed  Google Scholar 

  163. Chavassieux, P. et al. Bone-forming and antiresorptive effects of romosozumab in postmenopausal women with osteoporosis: bone histomorphometry and microcomputed tomography analysis after 2 and 12 months of treatment. J. Bone Miner. Res. 34, 1597–1608 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Florio, M. et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat. Commun. 7, 11505 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Holdsworth, G. et al. Dampening of the bone formation response following repeat dosing with sclerostin antibody in mice is associated with up-regulation of Wnt antagonists. Bone 107, 93–103 (2018).

    CAS  PubMed  Google Scholar 

  166. Finkelstein, J. S. et al. Effects of teriparatide retreatment in osteoporotic men and women. J. Clin. Endocrinol. Metab. 94, 2495–2501 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang, B., Yang, Y., Abou-Samra, A. B. & Friedman, P. A. NHERF1 regulates parathyroid hormone receptor desensitization: interference with β-arrestin binding. Mol. Pharmacol. 75, 1189–1197 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Bonafede, M. M. et al. Teriparatide treatment patterns in osteoporosis and subsequent fracture events: a US claims analysis. Osteoporos. Int. 26, 1203–1212 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Miller, P. D. et al. Early responsiveness of women with osteoporosis to teriparatide after therapy with alendronate or risedronate. J. Clin. Endocrinol. Metab. 93, 3785–3793 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ettinger, B., San Martin, J., Crans, G. & Pavo, I. Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. J. Bone Miner. Res. 19, 745–751 (2004).

    CAS  PubMed  Google Scholar 

  171. Langdahl, B. L. et al. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet 390, 1585–1594 (2017).

    CAS  PubMed  Google Scholar 

  172. Cosman, F. et al. Hip and spine strength effects of adding versus switching to teriparatide in postmenopausal women with osteoporosis treated with prior alendronate or raloxifene. J. Bone Miner. Res. 28, 1328–1336 (2013).

    CAS  PubMed  Google Scholar 

  173. Cosman, F. et al. Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1–34)] in postmenopausal osteoporosis. J. Bone Miner. Res. 26, 503–511 (2011).

    CAS  PubMed  Google Scholar 

  174. Black, D. M. et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N. Engl. J. Med. 349, 1207–1215 (2003).

    CAS  PubMed  Google Scholar 

  175. Cosman, F., Nieves, J. W. & Dempster, D. W. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J. Bone Miner. Res. 32, 198–202 (2017).

    CAS  PubMed  Google Scholar 

  176. Tsai, J. N. et al. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet 382, 50–56 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Eastell, R. et al. Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 104, 1595–1622 (2019).

    PubMed  Google Scholar 

  178. Leder, B. Z. et al. Effects of teriparatide treatment and discontinuation in postmenopausal women and eugonadal men with osteoporosis. J. Clin. Endocrinol. Metab. 94, 2915–2921 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Bone, H. G. et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J. Clin. Endocrinol. Metab. 96, 972–980 (2011).

    CAS  PubMed  Google Scholar 

  180. Ejersted, C., Oxlund, H., Eriksen, E. F. & Andreassen, T. T. Withdrawal of parathyroid hormone treatment causes rapid resorption of newly formed vertebral cancellous and endocortical bone in old rats. Bone 23, 43–52 (1998).

    CAS  PubMed  Google Scholar 

  181. Cosman, F. et al. Parathyroid hormone added to established hormone therapy: effects on vertebral fracture and maintenance of bone mass after parathyroid hormone withdrawal. J. Bone Miner. Res. 16, 925–931 (2001).

    CAS  PubMed  Google Scholar 

  182. Leder, B. Z. Optimizing sequential and combined anabolic and antiresorptive osteoporosis therapy. JBMR Plus 2, 62–68 (2018).

    PubMed  PubMed Central  Google Scholar 

  183. Rosen, C. J. & Khosla, S. Placebo-controlled trials in osteoporosis – proceeding with caution. N. Engl. J. Med. 363, 1365–1367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Claes, K. J. et al. Sclerostin: another vascular calcification inhibitor? J. Clin. Endocrinol. Metab. 98, 3221–3228 (2013).

    CAS  PubMed  Google Scholar 

  185. Brandenburg, V. M. et al. Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study. BMC Nephrol. 14, 1–10 (2013).

    Google Scholar 

  186. Lindsay, R. Risk of new vertebral fracture in the year following a fracture. JAMA 285, 320 (2001).

    CAS  PubMed  Google Scholar 

  187. Van Geel, T. A. C. M., Huntjens, K. M. B., Van Den Bergh, J. P. W., Dinant, G.-J. & Geusens, P. P. Timing of subsequent fractures after an initial fracture. Curr. Osteoporos. Rep. 8, 118–122 (2010).

    PubMed  PubMed Central  Google Scholar 

  188. Cosman, F. et al. Romosozumab FRAME study: a post hoc analysis of the role of regional background fracture risk on nonvertebral fracture outcome. J. Bone Miner. Res. 33, 1407–1416 (2018).

    CAS  PubMed  Google Scholar 

  189. Kanis, J. A. et al. Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporos. Int. 31, 1–12 (2020).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Clifford J. Rosen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks J.-Y. Reginster and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

T-score

A metric indicating the number of standard deviations or units of measurement by which a patient’s bone density differs from the average for a young, healthy adult of the same sex.

Bone remodelling units

A multicellular biological unit composed of bone cells including osteocytes, osteoclasts and osteoblasts, whose coordinated function removes and replaces bone in a given structural volume in the process of maintaining bone microarchitecture.

RG

The G protein-dependent conformation of PTH1R, distinguished from the G protein-independent R0 conformation by its sensitivity to GTPγS.

Cell non-autonomous

A cellular process that relies on a signalling factor or synthesis of a signalling factor, i.e. communication between multiple cells, as opposed to the independent action of a single cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estell, E.G., Rosen, C.J. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat Rev Endocrinol 17, 31–46 (2021). https://doi.org/10.1038/s41574-020-00426-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-00426-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing