Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combating antimicrobial resistance in malaria, HIV and tuberculosis

Abstract

Antimicrobial resistance poses a significant threat to the sustainability of effective treatments against the three most prevalent infectious diseases: malaria, human immunodeficiency virus (HIV) infection and tuberculosis. Therefore, there is an urgent need to develop novel drugs and treatment protocols capable of reducing the emergence of resistance and combating it when it does occur. In this Review, we present an overview of the status and underlying molecular mechanisms of drug resistance in these three diseases. We also discuss current strategies to address resistance during the research and development of next-generation therapies. These strategies vary depending on the infectious agent and the array of resistance mechanisms involved. Furthermore, we explore the potential for cross-fertilization of knowledge and technology among these diseases to create innovative approaches for minimizing drug resistance and advancing the discovery and development of new anti-infective treatments. In conclusion, we advocate for the implementation of well-defined strategies to effectively mitigate and manage resistance in all interventions against infectious diseases. 

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of drug resistance mechanisms across pathogens.
Fig. 2: Plasmodium life cycle and WHO-recommended antimalarial drugs.
Fig. 3: HIV intracellular replication cycle and most commonly used anti-HIV drugs.
Fig. 4: Mycobacterium tuberculosis life cycle and the WHO-recommended anti-tuberculosis drugs.
Fig. 5: Comparison of resistance management strategies for combating drug resistance.

Similar content being viewed by others

References

  1. ECDC, EFSA, EMA & OECD. Antimicrobial resistance in the EU/EEA—a One Health response. European Centre for Disease Prevention and Control https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-eueea-one-health-response (2022).

  2. O’Neill, J. An audience with Jim O’Neill. Nat. Rev. Drug. Discov. 15, 526 (2016).

    Google Scholar 

  3. World Health Organization. World Malaria Report 2021 (WHO, 2021).

  4. Wang, J. et al. Artemisinin, the magic drug discovered from traditional Chinese medicine. Engineering 5, 32–39 (2019).

    Article  CAS  Google Scholar 

  5. World Health Organization. The Mekong Malaria Elimination Programme: Countries of the Greater Mekong are Stepping Up to End Malaria Bulletin 7 (WHO, 2018).

  6. Fidock, D. A. & Rosenthal, P. J. Artemisinin resistance in Africa: how urgent is the threat? Med 2, 1287–1288 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. World Health Organization. WHO Consolidated Guidelines On Tuberculosis (WHO, 2022).

  8. World Health Organization. Global Tuberculosis Report 2022 (WHO, 2022).

  9. Conradie, F. et al. Bedaquiline–pretomanid–linezolid regimens for drug-resistant tuberculosis. N. Engl. J. Med. 387, 810–823 (2022). This study, enrolling participants with XDR TB, shows that treatment with bedaquiline–pretomanid–linezolid is efficacious and well tolerated in only 6 months, a breakthrough compared with previous TB therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Supply, P. et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat. Genet. 45, 172–179 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Tse, E. G., Korsik, M. & Todd, M. H. The past, present and future of anti-malarial medicines. Malar. J. 18, 93 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. World Health Organization. WHO Guidelines for Malaria (WHO, 2021).

  13. Cowman, A. F., Morry, M. J., Biggs, B. A., Cross, G. A. & Foote, S. J. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase–thymidylate synthase gene of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 85, 9109–9113 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peterson, D. S., Milhous, W. K. & Wellems, T. E. Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc. Natl Acad. Sci. USA 87, 3018–3022 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thaithong, S. et al. Pyrimethamine resistant mutations in Plasmodium falciparum. Mol. Biochem. Parasitol. 52, 149–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Sirawaraporn, W., Sathitkul, T., Sirawaraporn, R., Yuthavong, Y. & Santi, D. V. Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc. Natl Acad. Sci. USA 94, 1124–1129 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brooks, D. R. et al. Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine. Eur. J. Biochem. 224, 397–405 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Triglia, T. & Cowman, A. F. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 91, 7149–7153 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwartz, E., Bujanover, S. & Kain, K. C. Genetic confirmation of atovaquone–proguanil-resistant Plasmodium falciparum malaria acquired by a nonimmune traveler to East Africa. Clin. Infect. Dis. 37, 450–451 (2003).

    Article  PubMed  Google Scholar 

  20. Meshnick, S. R., Trumpower, B., Wichmann, O. & Jelinek, T. Multiple cytochrome b mutations may cause atovaquone resistance. J. Infect. Dis. 191, 822–823 (2005).

    Article  PubMed  Google Scholar 

  21. Djimdé, A. et al. A molecular marker for chloroquine-resistant falciparum malaria. N. Engl. J. Med. 344, 257–263 (2001). This pivotal study on drug resistance in malaria demonstrates that the pfcrt T76 mutation in P. falciparum is associated with clinical resistance to chloroquine, suggesting that this mutation can be used as a marker in surveillance for chloroquine-resistant P. falciparum malaria.

    Article  PubMed  Google Scholar 

  22. Sidhu, A. B. S., Verdier-Pinard, D. & Fidock, D. A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298, 210–213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lakshmanan, V. et al. A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance. EMBO J. 24, 2294–2305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dhingra, S. K., Small-Saunders, J. L., Ménard, D. & Fidock, D. A. Plasmodium falciparum resistance to piperaquine driven by PfCRT. Lancet Infect. Dis. 19, 1168–1169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ross, L. S. et al. Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat. Commun. 9, 1–13 (2018).

    Article  CAS  Google Scholar 

  26. Pickard, A. L. et al. Resistance to antimalarials in Southeast Asia and genetic polymorphisms in pfmdr1. Antimicrob. Agents Chemother. 47, 2418–2423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Price, R. N. et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364, 438–447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Witkowski, B. et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study. Lancet Infect. Dis. 17, 174–183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loesbanluechai, D. et al. Overexpression of plasmepsin II and plasmepsin III does not directly cause reduction in Plasmodium falciparum sensitivity to artesunate, chloroquine and piperaquine. Int. J. Parasitol. Drugs Drug. Resist. 9, 16–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, J., Xu, C., Lun, Z.-R. & Meshnick, S. R. Unpacking ‘artemisinin resistance’. Trends Pharmacol. Sci. 38, 506–511 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2013). This work identifies the molecular marker of the partial artemisinin resistance threatening the long-term clinical efficacy of current front-line antimalarials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. World Health Organization. Report on Antimalarial drug Efficacy, Resistance and Response: 10years of Surveillance (2010–2019) (WHO, 2020).

  33. Dondorp, A. M. & Fairhurst, R. M. Artemisinin-resistant Plasmodium falciparum Malaria. Microbiol. Spectrum 4, 409–429 (2016).

    Google Scholar 

  34. Balikagala, B. et al. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med. 385, 1163–1171 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Deeks, S. G., Overbaugh, J., Phillips, A. & Buchbinder, S. HIV infection. Nat. Rev. Dis. Prim. 1, 1–22 (2015).

    Google Scholar 

  36. Mansky, L. M. & Temin, H. M. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 69, 5087–5094 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abram, M. E., Ferris, A. L., Shao, W., Alvord, W. G. & Hughes, S. H. Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication. J. Virol. 84, 9864–9878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. An, W. & Telesnitsky, A. HIV-1 genetic recombination: experimental approaches and observations. AIDS Rev. 4, 195–212 (2022).

    Google Scholar 

  39. Song, H. et al. Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection. Nat. Commun. 9, 1928 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Coffin, J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267, 483–489 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Perelson, A. S. & Ribeiro, R. M. Modeling the within-host dynamics of HIV infection. BMC Biol. 11, 96 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rhee, S.-Y. et al. HIV-1 protease, reverse transcriptase, and integrase variation. J. Virol. 90, 6058–6070 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tzou, P. L. et al. Integrase strand transfer inhibitor (INSTI)-resistance mutations for the surveillance of transmitted HIV-1 drug resistance. J. Antimicrob. Chemother. 75, 170–182 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Marsden, M. D., Avancena, P., Kitchen, C. M. R., Hubbard, T. & Zack, J. A. Single mutations in HIV integrase confer high-level resistance to raltegravir in primary human macrophages. Antimicrob. Agents Chemother. 55, 3696–3702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feder, A. F., Harper, K. N., Brumme, C. J. & Pennings, P. S. Understanding patterns of HIV multi-drug resistance through models of temporal and spatial drug heterogeneity. eLife 10, e69032 (2021). This work analyses the evolution of HIV drug resistance from a spatial-temporal perspective during long-term drug treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harrigan, P. R. & Larder, B. A. Extent of cross-resistance between agents used to treat human immunodeficiency virus type 1 infection in clinically derived isolates. Antimicrob. Agents Chemother. 46, 909–912 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiao, T., Cai, Y. & Chen, B. HIV-1 entry and membrane fusion inhibitors. Viruses 13, 735 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Link, J. O. et al. Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature 584, 614–618 (2020). This work supports the need for studying and modelling temporal and spatial aspects of anti-HIV drug exposure to help better understand and mitigate drug resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh, K., Marchand, B., Kirby, K. A., Michailidis, E. & Sarafianos, S. G. Structural aspects of drug resistance and inhibition of HIV-1 reverse transcriptase. Viruses 2, 606–638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Menéndez-Arias, L. Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Res. 134, 124–146 (2008).

    Article  PubMed  Google Scholar 

  51. Fun, A., Wensing, A. M. J., Verheyen, J. & Nijhuis, M. Human immunodeficiency virus gag and protease: partners in resistance. Retrovirology 9, 63 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. World Health Organization. Consolidated Guidelines on HIV Prevention, Testing, Treatment, Service Delivery and Monitoring: Recommendations for a Public Health Approach (WHO, 2021).

  53. US Department of Health and Human Services. HIV clinical guidelines: adult and adolescent ARV. ClinicalIinfo.HIV.gov https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/whats-new (2024).

  54. Gandhi, R. T. et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2022 recommendations of the International Antiviral Society-USA panel. JAMA 329, 63–84 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Hu, M., Patel, S. K., Zhou, T. & Rohan, L. C. Drug transporters in tissues and cells relevant to sexual transmission of HIV: implications for drug delivery. J. Control. Rel. 219, 681–696 (2015).

    Article  CAS  Google Scholar 

  56. Zhang, Y. & Yew, W. W. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. Int. J. Tuberculosis Lung Dis. 19, 1276–1289 (2015).

    Article  CAS  Google Scholar 

  57. Gygli, S. M., Borrell, S., Trauner, A. & Gagneux, S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol. Rev. 41, 354–373 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Taniguchi, H. et al. Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiol. Lett. 144, 103–108 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Banerjee, A. et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Sreevatsan, S. et al. Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob. Agents Chemother. 41, 1677–1681 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Heym, B., Alzari, P. M., Honore, N. & Cole, S. T. Missense mutations in the catalase‐peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol. Microbiol. 15, 235–245 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Konno, K., Feldmann, F. M. & McDermott, W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis. 95, 461–469 (1967).

    CAS  PubMed  Google Scholar 

  63. Scorpio, A. & Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. 2, 662–667 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Manjunatha, U. H. et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Morlock, G. P., Metchock, B., Sikes, D., Crawford, J. T. & Cooksey, R. C. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 47, 3799–3805 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hazbón, M. H. et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 50, 2640–2649 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hartkoorn, R. C., Uplekar, S. & Cole, S. T. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58, 2979–2981 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bloemberg, G. V. et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N. Engl. J. Med. 373, 1986–1988 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nebenzahl-Guimaraes, H., Jacobson, K. R., Farhat, M. R. & Murray, M. B. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 69, 331–342 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Walker, T. M. et al. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe 3, e265–e273 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hjort, K. et al. Dynamics of extensive drug resistance evolution of Mycobacterium tuberculosis in a single patient during 9 years of disease and treatment. J. Infect. Dis. 225, 1011–1020 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Comas, I. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 44, 106–110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Boni, M. F., Smith, D. L. & Laxminarayan, R. Benefits of using multiple first-line therapies against malaria. Proc. Natl Acad. Sci. USA 105, 14216–14221 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boni, M. F., White, N. J. & Baird, J. K. The community as the patient in malaria-endemic areas: preempting drug resistance with multiple first-line therapies. PLoS Med 13, e1001984 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Siribie, M. et al. Protocol for a quasi-experimental study to assess the feasibility, acceptability and costs of multiple first-lines artemisinin-based combination therapies for uncomplicated malaria in the Kaya health district, Burkina Faso. BMJ Open 11, e040220 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pai, M. et al. Tuberculosis. Nat. Rev. Dis. Prim. 2, 1–23 (2016).

    Google Scholar 

  77. Furin, J., Cox, H. & Pai, M. Tuberculosis. Lancet 393, 1642–1656 (2019).

    Article  PubMed  Google Scholar 

  78. van der Pluijm, R. W., Amaratunga, C., Dhorda, M. & Dondorp, A. M. Triple artemisinin-based combination therapies for malaria—a new paradigm? Trends Parasitol. 37, 15–24 (2021).

    Article  PubMed  Google Scholar 

  79. Peto, T. J. et al. Triple therapy with artemether–lumefantrine plus amodiaquine versus artemether–lumefantrine alone for artemisinin-resistant, uncomplicated falciparum malaria: an open-label, randomised, multicentre trial. Lancet Infect. Dis. 22, 867–878 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hanboonkunupakarn, B., Tarning, J., Pukrittayakamee, S. & Chotivanich, K. Artemisinin resistance and malaria elimination: where are we now? Front. Pharmacol. 13, 876282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dondorp, A. M. et al. Artemisinin resistance: current status and scenarios for containment. Nat. Rev. Microbiol. 8, 272–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. McCarthy, J. S. et al. Safety, pharmacokinetics, and antimalarial activity of the novel Plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study. Lancet Infect. Dis. 21, 1713–1724 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Llanos-Cuentas, A. et al. Antimalarial activity of single-dose DSM265, a novel Plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase. Lancet Infect. Dis. 18, 874–883 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schmitt, E. K. et al. Efficacy of cipargamin (KAE609) in a randomized, phase II dose-escalation study in adults in sub-Saharan Africa with uncomplicated Plasmodium falciparum malaria. Clin. Infect. Dis. 74, 1831–1839 (2021).

    Article  PubMed Central  Google Scholar 

  85. Carlton, J. M. Malaria parasite evolution in a test tube. Science 359, 159–160 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cowell, A. & Winzeler, E. Exploration of the Plasmodium falciparum resistome and druggable genome reveals new mechanisms of drug resistance and antimalarial targets. Microbiol. Insights 11, 117863611880852 (2018).

    Article  Google Scholar 

  87. Corey, V. C. et al. A broad analysis of resistance development in the malaria parasite. Nat. Commun. 7, 11901 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, A. H. & Fidock, D. A. Evidence of a mild mutator phenotype in Cambodian Plasmodium falciparum malaria parasites. PLoS ONE 11, e0154166 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Duffey, M. et al. Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends Parasitol. 37, 709–721 (2021). This work presents a landmark proposition for a strategy to deprioritize compounds in the discovery phase of anti-infectious drugs on the basis of the prediction of their propensity to generate resistance in the clinic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mandt, R. E. K. et al. Diverse evolutionary pathways challenge the use of collateral sensitivity as a strategy to suppress resistance. eLife 12, e85023 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kanters, S. et al. Comparative efficacy and safety of first-line antiretroviral therapy for the treatment of HIV infection: a systematic review and network meta-analysis. Lancet Hiv. 3, e510–e520 (2016).

    Article  PubMed  Google Scholar 

  92. Tseng, A., Seet, J. & Phillips, E. J. The evolution of three decades of antiretroviral therapy: challenges, triumphs and the promise of the future. Br. J. Clin. Pharmacol. 79, 182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Boffito, M. et al. Perspectives on the barrier to resistance for dolutegravir + lamivudine, a two-drug antiretroviral therapy for HIV-1 infection. AIDS Res. Hum. Retroviruses 36, 13–18 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Yoshinaga, T., Miki, S., Kawauchi-Miki, S., Seki, T. & Fujiwara, T. Barrier to resistance of dolutegravir in two-drug combinations. Antimicrob. Agents Chemother. 63, e02104–e02118 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Das, K. et al. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem. 47, 2550–2560 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Cahn, P. et al. Dolutegravir plus lamivudine versus dolutegravir plus tenofovir disoproxil fumarate and emtricitabine in antiretroviral-naive adults with HIV-1 infection (GEMINI-1 and GEMINI-2): week 48 results from two multicentre, double-blind, randomised, non-inferiority, phase 3 trials. Lancet 393, 143–155 (2019). This work supports a new paradigm in drug combination by demonstrating the efficacy, non-inferiority and tolerability of a two-drug anti-HIV regimen over a three-drug regimen.

    Article  CAS  PubMed  Google Scholar 

  97. Whitcomb, J. M., Parkin, N. T., Chappey, C., Hellmann, N. S. & Petropoulos, C. J. Broad nucleoside reverse-transcriptase inhibitor cross-resistance in human immunodeficiency virus type 1 clinical isolates. J. Infect. Dis. 188, 992–1000 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Ramjan, R. et al. Systematic review and meta-analysis: patient and programme impact of fixed-dose combination antiretroviral therapy. Trop. Med. Int. Health 19, 501–513 (2014).

    Article  PubMed  Google Scholar 

  99. Orkin, C. et al. Long-acting cabotegravir and rilpivirine after oral induction for HIV-1 infection. N. Engl. J. Med. 382, 1124–1135 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Wensing, A. M. et al. 2019 update of the drug resistance mutations in HIV-1. Top. Antivir. Med. 27, 111 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. Bertagnolio, S. et al. Clinical impact of pretreatment human immunodeficiency virus drug resistance in people initiating nonnucleoside reverse transcriptase inhibitor–containing antiretroviral therapy: a systematic review and meta-analysis. J. Infect. Dis. 224, 377–388 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Bertagnolio, S., Jordan, M. R., Giron, A. & Inzaule, S. Epidemiology of HIV drug resistance in low- and middle-income countries and WHO global strategy to monitor its emergence. Curr. Opin. Hiv. AIDS 17, 229–239 (2022).

    Article  PubMed  Google Scholar 

  103. Fokam, J. et al. Alarming rates of virological failure and HIV-1 drug resistance amongst adolescents living with perinatal HIV in both urban and rural settings: evidence from the EDCTP READY-study in Cameroon. Hiv. Med. 22, 567–580 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Nyandiko, W. et al. HIV-1 treatment failure, drug resistance, and clinical outcomes in perinatally infected children and adolescents failing first-line antiretroviral therapy in western Kenya. J. Acquir. Immune Defic. Syndr. 89, 231–239 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Melku, M., Gesesew, H. A. & Ward, P. R. Magnitude and predictors of HIV-drug resistance in Africa: a protocol for systematic review and meta-analysis. PLoS ONE 17, e0267159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ramon, E., Belanche-Muñoz, L. & Pérez-Enciso, M. HIV drug resistance prediction with weighted categorical kernel functions. BMC Bioinforma. 20, 1–13 (2019).

    Article  CAS  Google Scholar 

  107. Llibre, J. M. et al. Resistance profile and genetic barrier of dolutegravir. AIDS Rev. 17, 56–64 (2015).

    PubMed  Google Scholar 

  108. Rübsamen-Waigmann, H. et al. Resistance mutations selected in vivo under therapy with anti-HIV drug HBY 097 differ from resistance pattern selected in vitro. Antivir. Res. 42, 15–24 (1999).

    Article  PubMed  Google Scholar 

  109. Anstett, K., Brenner, B., Mesplede, T. & Wainberg, M. A. HIV drug resistance against strand transfer integrase inhibitors. Retrovirology 14, 1–16 (2017).

    Article  Google Scholar 

  110. van Duyne, R., Kuo, L. S., Pham, P., Fujii, K. & Freed, E. O. Mutations in the HIV-1 envelope glycoprotein can broadly rescue blocks at multiple steps in the virus replication cycle. Proc. Natl Acad. Sci. USA 116, 9040–9049 (2019). This work shows how compensatory mutations in the envelope glycoprotein gene of HIV can provide growth advantage to the virus by rescuing replication defective mutants, a finding that can explain the evolution of HIV drug resistance.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wainberg, M. A. & Han, Y. S. Will drug resistance against dolutegravir in initial therapy ever occur? Front. Pharmacol. 6, 90 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhu, J., da, Meng, W., Wang, X. J. & Wang, H. C. R. Broad-spectrum antiviral agents. Front. Microbiol. 6, 517 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kálai, T., Pongrácz, J. E. & Mátyus, P. Recent advances in influenza, HIV and SARS-CoV-2 infection prevention and drug treatment—the need for precision medicine. Chemistry 4, 216–258 (2022).

    Article  Google Scholar 

  114. Parcella, K. et al. Discovery and preclinical profiling of GSK3839919, a potent HIV-1 allosteric integrase inhibitor. ACS Med. Chem. Lett. 13, 972–980 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dicker, I. et al. GSK3640254 is a novel HIV-1 maturation inhibitor with an optimized virology profile. Antimicrob. Agents Chemother. 66, e01876–e01921 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maehigashi, T. et al. A highly potent and safe pyrrolopyridine-based allosteric HIV-1 integrase inhibitor targeting host LEDGF/p75-integrase interaction site. PLoS Pathog. 17, e1009671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kerantzas, C. A. & Jacobs, W. R. Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. mBio 8, e01586–e01616 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dorman, S. E. et al. Four-month rifapentine regimens with or without moxifloxacin for tuberculosis. N. Engl. J. Med. 384, 1705–1718 (2021). This work, in the landscape of very long and sometimes inefficient TB treatments, shows for the first time that a 4-month treatment is non-inferior to the standard 6-month treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Alipanah, N. et al. Adherence interventions and outcomes of tuberculosis treatment: a systematic review and meta-analysis of trials and observational studies. PLoS Med. 15, e1002595 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Haver, H. L. et al. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 59, 5316–5323 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rifat, D. et al. Mutations in fbiD (Rv2983) as a novel determinant of resistance to pretomanid and delamanid in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 65, e01948–e02020 (2021).

    CAS  Google Scholar 

  122. Mudde, S. E., Upton, A. M., Lenaerts, A., Bax, H. I. & de Steenwinkel, J. E. M. Delamanid or pretomanid? A Solomonic judgement! J. Antimicrob. Chemother. 77, 880–902 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Ismail, N. A. et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. Lancet Infect. Dis. 22, 496–506 (2022). This work explains how an anti-TB drug used to treat patients infected with MDR Mtb can become inefficient because of novel resistance.

    Article  CAS  PubMed  Google Scholar 

  125. Timm Id, J. et al. Baseline and acquired resistance to bedaquiline, linezolid and pretomanid, and impact on treatment outcomes in four tuberculosis clinical trials containing pretomanid. PLOS Glob. Public. Health 3, e0002283 (2023).

    Article  Google Scholar 

  126. Witney, A. A. et al. Use of whole-genome sequencing to distinguish relapse from reinfection in a completed tuberculosis clinical trial. BMC Med 15, 71 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Farooq, H. Z. et al. Limited capability for testing Mycobacterium tuberculosis for susceptibility to new drugs. Emerg. Infect. Dis. 27, 985–987 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Crook, D. W. et al. A data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibiotics. PLoS Biol. 20, e3001721 (2022).

    Article  Google Scholar 

  129. Gröschel, M. I. et al. GenTB: a user-friendly genome-based predictor for tuberculosis resistance powered by machine learning. Genome Med. 13, 1–14 (2021).

    Article  Google Scholar 

  130. Deelder, W. et al. Machine learning predicts accurately Mycobacterium tuberculosis drug resistance from whole genome sequencing data. Front. Genet. 10, 922 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kuang, X., Wang, F., Hernandez, K. M., Zhang, Z. & Grossman, R. L. Accurate and rapid prediction of tuberculosis drug resistance from genome sequence data using traditional machine learning algorithms and CNN. Sci. Rep. 12, 1–10 (2022). This work demonstrates the power of machine learning for a rapid and accurate prediction of TB drug resistance based on genomic data.

    Article  Google Scholar 

  132. You, S. et al. Predicting resistance to fluoroquinolones among patients with rifampicin-resistant tuberculosis using machine learning methods. PLOS Digital Health 1, e0000059 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312, 1944–1946 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Loiseau, C. et al. The relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspot. Nat. Commun. 14, 1–11 (2023). This work demonstrates that the transmission fitness of resistant TB strains can be as high as that of drug-sensitive pathogens.

    Article  Google Scholar 

  135. Luciani, F., Sisson, S. A., Jiang, H., Francis, A. R. & Tanaka, M. M. The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 106, 14711–14715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yuthavong, Y. et al. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc. Natl Acad. Sci. USA 109, 16823–16828 (2012). This work demonstrates the structure-based design of next-generation antimalarials that counteract successive rounds of parasite resistance mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jorgensen, W. L. Computer-aided discovery of anti-HIV agents. Bioorg. Med. Chem. 24, 4768–4778 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Nalam, M. N. L. et al. Substrate envelope-designed potent HIV-1 protease inhibitors to avoid drug resistance. Chem. Biol. 20, 1116–1124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Marsden, M. D. Benefits and limitations of humanized mice in HIV persistence studies. Retrovirology 17, 1–6 (2020).

    Article  Google Scholar 

  140. Sá, J. M. et al. Artemisinin resistance phenotypes and K13 inheritance in a Plasmodium falciparum cross and Aotus model. Proc. Natl Acad. Sci. USA 115, 12513–12518 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Cowell, A. N. et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science 359, 191–199 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. D’Antonio, M., Tamayo, P., Mesirov, J. P. & Frazer, K. A. Kataegis expression signature in breast cancer is associated with late onset, better prognosis, and higher HER2 levels. Cell Rep. 16, 672–683 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gimode, W. R. et al. Fitness cost of resistance for lumefantrine and piperaquine-resistant Plasmodium berghei in a mouse model. Malar. J. 14, 38 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Arendse, L. B., Wyllie, S., Chibale, K. & Gilbert, I. H. Plasmodium kinases as potential drug targets for malaria: challenges and opportunities. ACS Infect. Dis. 7, 518–534 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Paul, D. et al. Artificial intelligence in drug discovery and development. Drug. Discov. Today 26, 80–93 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Bosch, B. et al. Genome-wide gene expression tuning reveals diverse vulnerabilities of M. tuberculosis. Cell 184, 4579–4592.e24 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Napier, G., Campino, S., Phelan, J. E. & Clark, T. G. Large-scale genomic analysis of Mycobacterium tuberculosis reveals extent of target and compensatory mutations linked to multi-drug resistant tuberculosis. Sci. Rep. 13, 623 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gill, J. & Sharma, A. Genomic analysis of single nucleotide polymorphisms in malaria parasite drug targets. Parasit. Vectors 15, 1–14 (2022).

    Article  Google Scholar 

  149. Waller, N. J. E., Cheung, C.-Y., Cook, G. M. & McNeil, M. B. The evolution of antibiotic resistance is associated with collateral drug phenotypes in Mycobacterium tuberculosis. Nat. Commun. 14, 1–15 (2023).

    Article  Google Scholar 

  150. Bopp, S. et al. Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation. Nat. Commun. 14, 1–15 (2023).

    Article  Google Scholar 

  151. Lukens, A. K. et al. Harnessing evolutionary fitness in Plasmodium falciparum for drug discovery and suppressing resistance. Proc. Natl Acad. Sci. USA 111, 799–804 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Imamovic, L. & Sommer, M. O. A. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl. Med. 5, 204ra132 (2013).

    Article  PubMed  Google Scholar 

  153. van der Pluijm, R. W. et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet 395, 1345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Dondorp, A. M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009). This work presents the first report of partial resistance to artemisinin, a key component of the current front-line antimalarial combination therapies saving millions of lives.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sawa, P. et al. Malaria transmission after artemether–lumefantrine and dihydroartemisinin–piperaquine: a randomized trial. J. Infect. Dis. 207, 1637–1645 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Stepniewska, K. et al. Efficacy of single-dose primaquine with artemisinin combination therapy on Plasmodium falciparum gametocytes and transmission: an individual patient meta-analysis. J. Infect. Dis. 225, 1215–1226 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Dartois, V. A. & Rubin, E. J. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat. Rev. Microbiol. 20, 685–701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Watson, O. J. et al. Pre-existing partner-drug resistance to artemisinin combination therapies facilitates the emergence and spread of artemisinin resistance: a consensus modelling study. Lancet Microbe 3, e701–e710 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Karmakar, M., Ragonnet, R., Ascher, D. B., Trauer, J. M. & Denholm, J. T. Estimating tuberculosis drug resistance amplification rates in high-burden settings. BMC Infect. Dis. 22, 1–12 (2022).

    Article  Google Scholar 

  160. Pascucci, M. et al. AI-based mobile application to fight antibiotic resistance. Nat. Commun. 12, 1–10 (2021).

    Article  Google Scholar 

  161. Singh, M. et al. Evolution of machine learning in tuberculosis diagnosis: a review of deep learning-based medical applications. Electronics 11, 2634 (2022).

    Article  Google Scholar 

  162. Nachega, J. B. et al. Long-acting antiretrovirals and HIV treatment adherence. Lancet HIV 10, e332–e342 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Overton, E. T. et al. Long-acting cabotegravir and rilpivirine dosed every 2 months in adults with HIV-1 infection (ATLAS-2M), 48-week results: a randomised, multicentre, open-label, phase 3b, non-inferiority study. Lancet 396, 1994–2005 (2021).

    Article  PubMed  Google Scholar 

  164. Segal-Maurer, S. et al. Capsid inhibition with lenacapavir in multidrug-resistant HIV-1 infection. N. Engl. J. Med. 386, 1793–1803 (2022). This work demonstrates clinical efficacy for a capsid inhibitor in patients infected with MDR HIV-1.

    Article  CAS  PubMed  Google Scholar 

  165. Weld, E. D. & Flexner, C. Long-acting implants to treat and prevent HIV infection. Curr. Opin. Hiv. AIDS 15, 33–41 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Delany-Moretlwe, S. et al. Cabotegravir for the prevention of HIV-1 in women: results from HPTN 084, a phase 3, randomised clinical trial. Lancet 399, 1779–1789 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Landovitz, R. J. et al. Cabotegravir for HIV prevention in cisgender men and transgender women. N. Engl. J. Med. 385, 595–608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Eron, J. J. et al. Lenacapavir with bNAbs GS-5423 and GS-2872 dosed every 6 months in people with HIV. In Conf. Retroviruses and Opportunistic Infections 193 (Univ. North Carolina at Chapel Hill, 2023).

  169. Flexner, C. The future of long-acting agents for preexposure prophylaxis. Curr. Opin. Hiv. AIDS 17, 192–198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kim, M. et al. A long-acting formulation of rifabutin is effective for prevention and treatment of Mycobacterium tuberculosis. Nat. Commun. 13, 1–16 (2022).

    Google Scholar 

  171. Deeks, S. G. et al. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat. Med. 27, 2085–2098 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Wu, R. L. et al. Low-dose subcutaneous or intravenous monoclonal antibody to prevent malaria. N. Engl. J. Med. 387, 397–407 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mohamed, H. et al. Targeting CCR5 as a component of an HIV-1 therapeutic strategy. Front. Immunol. 12, 5686 (2022).

    Article  Google Scholar 

  174. Huang, L. S. M., Snyder, E. Y. & Schooley, R. T. Strategies and progress in CXCR4-targeted anti-human immunodeficiency virus (HIV) therapeutic development. Clin. Infect. Dis. 73, 919–924 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Lamotte, S., Späth, G. F., Rachidi, N. & Prina, E. The enemy within: targeting host–parasite interaction for antileishmanial drug discovery. PLoS Negl. Trop. Dis. 11, e0005480 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Wei, L. et al. Host-directed therapy, an untapped opportunity for antimalarial intervention. Cell Rep. Med. 2, 100423 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Young, C., Walzl, G. & Du Plessis, N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol. 13, 190–204 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Kilinç, G., Saris, A., Ottenhoff, T. H. M. & Haks, M. C. Host-directed therapy to combat mycobacterial infections. Immunol. Rev. 301, 62–83 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Chien, H. D. et al. Imatinib augments standard malaria combination therapy without added toxicity. J. Exp. Med. 218, e20210724 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Chughlay, M. F. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of coadministered ruxolitinib and artemether–lumefantrine in healthy adults. Antimicrob. Agents Chemother. 66, 1584–1605 (2022).

    Article  Google Scholar 

  181. Meanwell, N. A. et al. Inhibitors of HIV-1 attachment: the discovery and development of temsavir and its prodrug fostemsavir. J. Med. Chem. 61, 62–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Sulkowski, M. et al. Potent viral suppression with all-oral combination of daclatasvir (NS5A inhibitor) and GS-7977 (NS5B Inhibitor), +/− ribavirin, in treatment-naive patients with chronic HCV GT1, 2, or 3. J. Hepatol. 56, S560 (2012).

    Google Scholar 

  183. Boeree, M. J. et al. UNITE4TB: a new consortium for clinical drug and regimen development for TB. Int. J. Tuberc. Lung Dis. 25, 886–889 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. World Health Organization. WHO Guidelines for Malaria 2022 (WHO, 2022).

  185. World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection (WHO, 2016).

  186. World Health Organization. Rapid Communication: Key Changes to the Treatment of Drug-Resistant Tuberculosis (WHO, 2022).

  187. Saito, M. et al. Pregnancy outcomes after first-trimester treatment with artemisinin derivatives versus non-artemisinin antimalarials: a systematic review and individual patient data meta-analysis. Lancet 401, 118–130 (2022).

    Article  PubMed  Google Scholar 

  188. Carr, W. et al. Interim guidance: 4-month rifapentine–moxifloxacin regimen for the treatment of drug-susceptible pulmonary tuberculosis—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 71, 285–289 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Prudêncio, M., Rodriguez, A. & Mota, M. M. The silent path to thousands of merozoites: the Plasmodium liver stage. Nat. Rev. Microbiol. 4, 849–856 (2006).

    Article  PubMed  Google Scholar 

  190. Chen, B. Molecular mechanism of HIV-1 entry. Trends Microbiol. 27, 878–891 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dharan, A., Bachmann, N., Talley, S., Zwikelmaier, V. & Campbell, E. M. Nuclear pore blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus. Nat. Microbiol. 5, 1088–1095 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zila, V. et al. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell 184, 1032–1046.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sundquist, W. I. & Kräusslich, H. G. HIV-1 assembly, budding, and maturation. Cold Spring Harb. Perspect. Med. 2, a006924 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  194. United Nations Joint Program on HIV/AIDS (UNAIDS). 90–90–90: An Ambitious Treatment Target to Help End the AIDS Epidemic 1–40 (UNAIDS, 2014).

  195. World Health Organization. Global Progress Report on HIV, Viral Hepatitis and Sexually Transmitted Infections, 2021 Vol. 53 1689–1699 (WHO, 2021).

  196. United Nations Joint Program on HIV/AIDS (UNAIDS). 2021 UNAIDS Global AIDS Update—Confronting Inequalities—Lessons for Pandemic Responses from 40 Years of AIDS 1–386 (UNAIDS, 2021).

  197. Gottlieb, G. S., Raugi, D. N. & Smith, R. A. 90–90–90 for HIV-2? Ending the HIV-2 epidemic by enhancing care and clinical management of patients infected with HIV-2. Lancet HIV 5, e390–e399 (2018).

    Article  PubMed  Google Scholar 

  198. Houben, R. M. G. J. & Dodd, P. J. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 13, e1002152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  199. World Health Organization. Global Tuberculosis Report (WHO, 2021).

  200. World Health Organization. Global Tuberculosis Report 2020 (WHO, 2020).

  201. Havlir, D. V., Getahun, H., Sanne, I. & Nunn, P. Opportunities and challenges for HIV care in overlapping HIV and TB epidemics. JAMA 300, 423–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Lönnroth, K. et al. Tuberculosis control and elimination 2010–50: cure, care, and social development. Lancet 375, 1814–1829 (2010).

    Article  PubMed  Google Scholar 

  203. Obore, N., Kawuki, J., Guan, J., Papabathini, S. S. & Wang, L. Association between indoor air pollution, tobacco smoke and tuberculosis: an updated systematic review and meta-analysis. Public. Health 187, 24–35 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Jeon, C. Y. & Murray, M. B. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 5, 1091–1101 (2008).

    Google Scholar 

  205. Bates, M. N. et al. Risk of tuberculosis from exposure to tobacco smoke: a systematic review and meta-analysis. Arch. Intern. Med. 167, 335–342 (2007).

    Article  PubMed  Google Scholar 

  206. Burusie, A., Enquesilassie, F., Addissie, A., Dessalegn, B. & Lamaro, T. Effect of smoking on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS ONE 15, e0239333 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Thu, A. M., Phyo, A. P., Landier, J., Parker, D. M. & Nosten, F. H. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J. 284, 2569–2578 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Blasco, B., Leroy, D. & Fidock, D. A. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat. Med. 23, 917–928 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. van der Pluijm, R. W. et al. Determinants of dihydroartemisinin–piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect. Dis. 19, 952–961 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Leang, R. et al. Evidence of Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine in western Cambodia: dihydroartemisinin–piperaquine open-label multicenter clinical assessment. Antimicrob. Agents Chemother. 59, 4719–4726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Tumwebaze, P. K. et al. Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda. Nat. Commun. 13, 1–12 (2022).

    Article  Google Scholar 

  212. World Health Organization. HIV Drug Resistance Report 2019 (WHO, 2019).

  213. World Health Organization. Global Action Plan on HIV Drug Resistance 2017–2021: 2018 Progress Report—HIV Drug Resistance 14 (WHO, 2018).

  214. World Health Organization. HIV Drug Resistance Report 2021 138 (WHO, 2021).

  215. Boerma, R. S. et al. Alarming increase in pretreatment HIV drug resistance in children living in sub-Saharan Africa: a systematic review and meta-analysis. J. Antimicrob. Chemother. 72, 365–371 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Pham, Q. D., Wilson, D. P., Law, M. G., Kelleher, A. D. & Zhang, L. Global burden of transmitted HIV drug resistance and HIV-exposure categories: a systematic review and meta-analysis. AIDS 28, 2751–2762 (2014).

    Article  PubMed  Google Scholar 

  217. Puertas, M. C. et al. Pan-resistant HIV-1 emergence in the era of integrase strand-transfer inhibitors: a case report. Artic. Lancet Microbe 1, 130–165 (2020).

    Article  Google Scholar 

  218. Gregson, J. et al. Global epidemiology of drug resistance after failure of WHO recommended first-line regimens for adult HIV-1 infection: a multicentre retrospective cohort study. Lancet Infect. Dis. 16, 565–575 (2016).

    Article  Google Scholar 

  219. McClung, R. P. et al. Transmitted drug resistance among human immunodeficiency virus (HIV)-1 diagnoses in the United States, 2014–2018. Clin. Infect. Dis. 74, 1055–1062 (2022).

    Article  CAS  PubMed  Google Scholar 

  220. Gupta, R. K. et al. Virological monitoring and resistance to first-line highly active antiretroviral therapy in adults infected with HIV-1 treated under WHO guidelines: a systematic review and meta-analysis. Lancet Infect. Dis. 9, 409–417 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. Rhee, S. Y. et al. HIV-1 transmitted drug resistance surveillance: shifting trends in study design and prevalence estimates. J. Int. AIDS Soc. 23, e25611 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Loewenberg, S. India reports cases of totally drug-resistant tuberculosis. Lancet 379, 205 (2012).

    Article  PubMed  Google Scholar 

  223. Velayati, A. A. et al. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136, 420–425 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Willis, S. Duparc and T. N. Wells for having carefully read and corrected the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.D. and D.L. developed the concept, wrote the article and created the figures. R.W.S. and J.T. had a major contribution to improving the HIV and tuberculosis (TB) sections, respectively. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Didier Leroy.

Ethics declarations

Competing interests

M.D. is an employee of the Global Antibiotic Research & Development Partnership (GARDP, Geneva) and was an employee of MMV when this Review was drafted. R.W.S. is professor of medicine at Stanford University. D.L. and J.N.B. are working for Medicines for Malaria Venture (MMV, Geneva). J.T. and N.F. are working for TB Alliance. M.C. is currently CEO & President of the company Alphina Therapeutics and consultant/adviser for Exavir Therapeutics. He is a former employee of ViiV Healthcare and a shareholder in GSK.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Richard Lee, Leann Tilley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Pf3k genome database: https://www.malariagen.net/project/pf3k/

Glossary

Fitness cost of resistance

The capacity, or lack thereof, for a mutated drug-resistant pathogen to outcompete susceptible pathogens in the absence of the drug.

Frequency of resistance

The frequency at which a detectable mutant cell emerges in a pathogen population in the presence of a drug.

Genetic barrier to resistance

The number of mutations required in a molecular target gene to confer a meaningful loss of susceptibility to a drug.

Irresistible drugs

In the context of antimalarial drug development, when all attempts to provoke resistance in vitro with a drug fail; that is, drugs with a low frequency of resistance and/or a high genetic barrier to resistance.

Partial resistance

(Also known as reduced parasite clearance). In the context of antimalarial drug resistance, particularly to artemisinin-based drugs, a delay in the clearance of malaria parasites due to a decrease of the parasite clearance rate after a properly administered treatment.

Phenotypic susceptibility testing association studies

Analyses of common mutations to determine their association with a specific phenotype or clinical outcome.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duffey, M., Shafer, R.W., Timm, J. et al. Combating antimicrobial resistance in malaria, HIV and tuberculosis. Nat Rev Drug Discov (2024). https://doi.org/10.1038/s41573-024-00933-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-024-00933-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research