Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Invasive candidiasis

Abstract

Invasive candidiasis is an important fungal disease caused by Candida albicans and, increasingly, non-albicans Candida pathogens. Invasive Candida infections originate most frequently from endogenous human reservoirs and are triggered by impaired host defences. Signs and symptoms of invasive candidiasis are non-specific; candidaemia is the most diagnosed manifestation, with disseminated candidiasis affecting single or multiple organs. Diagnosis poses many challenges, and conventional culture techniques are frequently supplemented by non-culture-based assays. The attributable mortality from candidaemia and disseminated infections is ~30%. Fluconazole resistance is a concern for Nakaseomyces glabratus, Candida parapsilosis, and Candida auris and less so in Candida tropicalis infection; acquired echinocandin resistance remains uncommon. The epidemiology of invasive candidiasis varies in different geographical areas and within various patient populations. Risk factors include intensive care unit stay, central venous catheter use, broad-spectrum antibiotics use, abdominal surgery and immune suppression. Early antifungal treatment and central venous catheter removal form the cornerstones to decrease mortality. The landscape of novel therapeutics is growing; however, the application of new drugs requires careful selection of eligible patients as the spectrum of activity is limited to a few fungal species. Unanswered questions and knowledge gaps define future research priorities and a personalized approach to diagnosis and treatment of invasive candidiasis is of paramount importance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographical variation in the distribution of Candida species and countries reporting the major species of concern.
Fig. 2: Virulence factors and immune evasion in Candida albicans.
Fig. 3: Phagocyte-led immune response to invasive candidiasis.
Fig. 4: Important receptors and signalling pathways against invasive candidiasis.
Fig. 5: Proposed pathomechanisms in the onset of an infection.

Similar content being viewed by others

References

  1. Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv113 (2012).

    Article  Google Scholar 

  2. Knoll, M. A., Steixner, S. & Lass-Flörl, C. How to use direct microscopy for diagnosing fungal infections. Clin. Microbiol. Infect. 29, 1031–1038 (2023). This article provides best practice recommendations for how to use direct microscopy in diagnosing invasive fungal infections.

    Article  PubMed  Google Scholar 

  3. Cuenca-Estrella, M. et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: diagnostic procedures. Clin. Microbiol. Infect. 18, 9–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. & Kullberg, B. J. Invasive candidiasis. Nat. Rev. Dis. Primers 4, 18026 (2018).

    Article  PubMed  Google Scholar 

  5. World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. WHO https://www.who.int/publications/i/item/9789240060241 (2022).

  6. Buetti, N. et al. Different epidemiology of bloodstream infections in COVID-19 compared to non-COVID-19 critically ill patients: a descriptive analysis of the Eurobact II study. Crit. Care 26, 319 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Timsit, J. F., Ruppe, E., Barbier, F., Tabah, A. & Bassetti, M. Bloodstream infections in critically ill patients: an expert statement. Intensive Care Med. 46, 266–284 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mamali, V. et al. Increasing incidence and shifting epidemiology of candidemia in Greece: results from the first nationwide 10-year survey. J. Fungi 8, 116 (2022).

    Article  CAS  Google Scholar 

  9. Pfaller, M. A., Diekema, D. J., Turnidge, J. D., Castanheira, M. & Jones, R. N. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997-2016. Open Forum Infect. Dis. 6, S79–S94 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lass-Flörl, C., Samardzic, E. & Knoll, M. Serology anno 2021 — fungal infections: from invasive to chronic. Clin. Microbiol. Infect. 27, 1230–1241 (2021).

    Article  PubMed  Google Scholar 

  11. Bourassa-Blanchette, S. et al. Incidence, susceptibility and outcomes of candidemia in adults living in Calgary, Alberta, Canada (2010-2018). BMC Infect. Dis. 23, 100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koehler, P. et al. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin. Microbiol. Infect. 25, 1200–1212 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Pfaller, M. A., Carvalhaes, C. G., Smith, C. J., Diekema, D. J. & Castanheira, M. Bacterial and fungal pathogens isolated from patients with bloodstream infection: frequency of occurrence and antimicrobial susceptibility patterns from the SENTRY Antimicrobial Surveillance Program (2012-2017). Diagn. Microbiol. Infect. Dis. 97, 115016 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Ricotta, E. E. et al. Invasive candidiasis species distribution and trends, United States, 2009-2017. J. Infect. Dis. 223, 1295–1302 (2021).

    Article  PubMed  Google Scholar 

  15. van Schalkwyk, E. et al. Epidemiologic Shift in candidemia driven by Candida auris, South Africa, 2016-20171. Emerg. Infect. Dis. 25, 1698–1707 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nucci, M. et al. Epidemiology of candidemia in Latin America: a laboratory-based survey. PLoS ONE 8, e59373 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bassetti, M. et al. Incidence and outcome of invasive candidiasis in intensive care units (ICUs) in Europe: results of the EUCANDICU project. Crit. Care 23, 219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shastri, P. S. et al. Candida auris candidaemia in an intensive care unit — prospective observational study to evaluate epidemiology, risk factors, and outcome. J. Crit. Care 57, 42–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Benedict, K. et al. Neonatal and pediatric candidemia: results from population-based active laboratory surveillance in four US locations, 2009-2015. J. Pediatr. Infect. Dis. Soc. 7, e78–e85 (2018).

    Article  Google Scholar 

  20. Shuping, L. et al. Epidemiology of culture-confirmed candidemia among hospitalized children in South Africa, 2012-2017. Pediatr. Infect. Dis. J. 40, 730–737 (2021).

    Article  PubMed  Google Scholar 

  21. Bassetti, M. et al. Risk factors for intra-abdominal candidiasis in intensive care units: results from EUCANDICU study. Infect. Dis. Ther. 11, 827–840 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Toda, M. et al. Population-based active surveillance for culture-confirmed candidemia — four sites, United States, 2012–2016. MMWR Surveill. Summ. 68, 1–15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Laster, M., Shen, J. I. & Norris, K. C. Kidney disease among African Americans: a population perspective. Am. J. Kidney Dis. 72, S3–S7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jenks, J. D. et al. Race and ethnicity: risk factors for fungal infections? PLoS Pathog. 19, e1011025 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsay, S. V. et al. Burden of candidemia in the United States, 2017. Clin. Infect. Dis. 71, E449–E453 (2020).

    PubMed  Google Scholar 

  26. Egger, M., Hoenigl, M., Thompson, G. R., Carvalho, A. & Jenks, J. D. Let’s talk about sex characteristics — as a risk factor for invasive fungal diseases. Mycoses 65, 599–612 (2022).

    Article  PubMed  Google Scholar 

  27. Atella, V. et al. Trends in age-related disease burden and healthcare utilization. Aging Cell 18, e12861 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Kan, B. et al. Cellular metabolism constrains innate immune responses in early human ontogeny. Nat. Commun. 9, 4822 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Weimer, K. E. D., Smith, P. B., Puia-Dumitrescu, M. & Aleem, S. Invasive fungal infections in neonates: a review. Pediatr. Res. 91, 404–412 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Cesaro, S. et al. Incidence, risk factors, and long-term outcome of acute leukemia patients with early candidemia after allogeneic stem cell transplantation: a study by the Acute Leukemia and Infectious Diseases Working Parties of European Society for Blood and Marrow Transplantation. Clin. Infect. Dis. 67, 564–572 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Eichenberger, E. M. et al. Candidemia in thoracic solid organ transplant recipients: characteristics and outcomes relative to matched uninfected and bacteremic thoracic organ transplant recipients. Clin. Transplant. 37, e15038 (2023).

    Article  PubMed  Google Scholar 

  32. Hoenigl, M. et al. Guideline adherence and survival of patients with candidaemia in Europe: results from the ECMM Candida III multinational European observational cohort study. Lancet Infect. Dis. 23, 751–761 (2023).

    Article  PubMed  Google Scholar 

  33. Bauer, K. A. et al. Morbidity and mortality of hospitalised patients with candidemia during the various severe acute respiratory syndrome coronavirus 2 pandemic waves: a multicentre evaluation of 248 US hospitals. Mycoses 66, 483–487 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Seagle, E. E. et al. The landscape of candidemia during the coronavirus disease 2019 (COVID-19) pandemic. Clin. Infect. Dis. 74, 802–811 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Netea, M. G., Joosten, L. A. B., van der Meer, J. W. M., Kullberg, B. J. & van de Veerdonk, F. L. Immune defence against Candida fungal infections. Nat. Rev. Immunol. 15, 630–642 (2015). This review gives a detailed overview of how innate sensing of fungi by pattern recognition receptors and the interplay of immune cells shapes host immunity to Candida.

    Article  CAS  PubMed  Google Scholar 

  36. Krassowski, T. et al. Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nat. Commun. 9, 1887 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Butler, G. et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Warris, A. et al. Etiology and outcome of candidemia in neonates and children in Europe: an 11-year multinational retrospective study. Pediatr. Infect. Dis. J. 39, 114–120 (2020).

    Article  PubMed  Google Scholar 

  39. Du, H. et al. Candida auris: epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 16, e1008921 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geremia, N., Brugnaro, P., Solinas, M., Scarparo, C. & Panese, S. Candida auris as an emergent public health problem: a current update on European outbreaks and cases. Healthcare 11, 425 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. El Zakhem, A. et al. The impact of COVID-19 on the epidemiology and outcomes of candidemia: a retrospective study from a tertiary care center in Lebanon. J. Fungi 9, 769 (2023).

    Article  CAS  Google Scholar 

  42. Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin. Microbiol. Infect. 20, 5–10 (2014).

    Article  PubMed  Google Scholar 

  43. Mashau, R. C. et al. Culture-confirmed neonatal bloodstream infections and meningitis in South Africa, 2014-19: a cross-sectional study. Lancet Glob. Health 10, e1170–e1178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adam, R. D. et al. Analysis of Candida auris fungemia at a single facility in Kenya. Int. J. Infect. Dis. 85, 182–187 (2019).

    Article  PubMed  Google Scholar 

  45. Ghazi, S. et al. The epidemiology of Candida species in the Middle East and North Africa. J. Mycol. Med. 29, 245–252 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Bongomin, F. et al. Invasive fungal diseases in Africa: a critical literature review. J. Fungi 8, 1236 (2022).

    Article  CAS  Google Scholar 

  47. Govrins, M. & Lass-Flörl, C. Candida parapsilosis complex in the clinical setting. Nat. Rev. Microbiol. 22, 46–59 (2023).

    Article  PubMed  Google Scholar 

  48. Hirayama, T. et al. Virulence assessment of six major pathogenic Candida species in the mouse model of invasive candidiasis caused by fungal translocation. Sci. Rep. 10, 3814 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bretagne, S. et al. No impact of fuconazole to echinocandins replacement as first-line therapy on the epidemiology of yeast fungemia (hospital-driven active surveillance, 2004-2017, Paris, France). Front. Med. 8, 641965 (2021).

    Article  Google Scholar 

  50. Cornely, F. B. et al. Attributable mortality of candidemia after introduction of echinocandins. Mycoses 63, 1373–1381 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. McCarty, T. P., White, C. M. & Pappas, P. G. Candidemia and invasive candidiasis. Infect. Dis. Clin. North Am. 35, 389–413 (2021).

    Article  PubMed  Google Scholar 

  52. Mba, I. E. & Nweze, E. I. Mechanism of pathogenesis: revisiting the vital drivers. Eur. J. Clin. Microbiol. 39, 1797–1819 (2020).

    Article  Google Scholar 

  53. Talapko, J. et al. Candida albicans-the virulence factors and clinical manifestations of infection. J. Fungi 7, 79 (2021).

    Article  CAS  Google Scholar 

  54. Chen, H., Zhou, X., Ren, B. & Cheng, L. The regulation of hyphae growth in Candida albicans. Virulence 11, 337–348 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Banerjee, M., Lazzell, A. L., Romo, J. A., Lopez-Ribot, J. L. & Kadosh, D. Filamentation is associated with reduced pathogenicity of multiple non-Candida species. mSphere 4, e00656-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nikou, S. A. et al. Candida albicans interactions with mucosal surfaces during health and disease. Pathogens 8, 53 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Santana, D. J. et al. A Candida auris-specific adhesin, Scf1, governs surface association, colonization, and virulence. Science 381, 1461–1467 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Wijaya, M., Halleyantoro, R. & Kalumpiu, J. F. Biofilm: the invisible culprit in catheter-induced candidemia. AIMS Microbiol. 9, 467–485 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pierce, C. G. et al. The Candida albicans biofilm matrix: composition, structure and function. J. Fungi 3, 14 (2017).

    Article  Google Scholar 

  60. Strickland, A. B. & Shi, M. Mechanisms of fungal dissemination. Cell Mol. Life Sci. 78, 3219–3238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grubb, S. E. et al. Candida albicans-endothelial cell interactions: a key step in the pathogenesis of systemic candidiasis. Infect. Immun. 76, 4370–4377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lim, S. J. et al. Opportunistic yeast pathogen Candida spp.: secreted and membrane-bound virulence factors. Med. Mycol. 59, 1127–1144 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Naglik, J. R., Gaffen, S. L. & Hube, B. Candidalysin: discovery and function in Candida albicans infections. Curr. Opin. Microbiol. 52, 100–109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tripathi, A., Liverani, E., Tsygankov, A. Y. & Puri, S. Iron alters the cell wall composition and intracellular lactate to affect Candida albicans susceptibility to antifungals and host immune response. J. Biol. Chem. 295, 10032–10044 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Oliver, J. C., Ferreira, C., Silva, N. C. & Dias, A. L. T. Candida spp. and phagocytosis: multiple evasion mechanisms. Antonie Van Leeuwenhoek 112, 1409–1423 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Westman, J., Moran, G., Mogavero, S., Hube, B. & Grinstein, S. Candida albicans hyphal expansion causes phagosomal membrane damage and luminal alkalinization. mBio 9, e01226-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lopes, J. P. & Lionakis, M. S. Pathogenesis and virulence of Candida albicans. Virulence 13, 89–121 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Bojang, E., Ghuman, H., Kumwenda, P. & Hall, R. A. Immune sensing of Candida albicans. J. Fungi 7, 119 (2021).

    Article  CAS  Google Scholar 

  69. Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Drummond, R. A. et al. CARD9+ microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil recruitment. Nat. Immunol. 20, 559–570 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Uzun, O. & Anaissie, E. J. Predictors of outcome in cancer patients with candidemia. Ann. Oncol. 11, 1517–1521 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Gazendam, R. P., van de Geer, A., Roos, D., van den Berg, T. K. & Kuijpers, T. W. How neutrophils kill fungi. Immunol. Rev. 273, 299–311 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Duggan, S., Leonhardt, I., Hünniger, K. & Kurzai, O. Host response to bloodstream infection and sepsis. Virulence 6, 316–326 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Henriet, S., Verweij, P. E., Holland, S. M. & Warris, A. Invasive fungal infections in patients with chronic granulomatous disease. Adv. Exp. Med. Biol. 764, 27–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Ngo, L. Y. et al. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J. Infect. Dis. 209, 109–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Vazquez, N., Walsh, T. J., Friedman, D., Chanock, S. J. & Lyman, C. A. Interleukin-15 augments superoxide production and microbicidal activity of human monocytes against Candida albicans. Infect. Immun. 66, 145–150 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lionakis, M. S. et al. CX3CR1-dependent renal macrophage survival promotes control and host survival. J. Clin. Invest. 123, 5035–5051 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tam, J. M. et al. Tetraspanin CD82 organizes dectin-1 into signaling domains to mediate cellular responses to Candida albicans. J. Immunol. 202, 3256–3266 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1578 (2014).

    Article  CAS  Google Scholar 

  80. Eberl, C. et al. Candida: platelet interaction and platelet activity in vitro. J. Innate Immun. 11, 52–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Khanna, N. et al. Host response to fungal infections — how immunology and host genetics could help to identify and treat patients at risk. Swiss Med. Wkly 146, w14350 (2016).

    PubMed  Google Scholar 

  82. Fidel, P. L., Yano, J., Esher, S. K. & Noverr, M. C. Applying the host-microbe damage response framework to pathogenesis: current and prospective strategies to reduce damage. J. Fungi 6, 35 (2020).

    Article  CAS  Google Scholar 

  83. Jae-Chen, S. et al. Mechanism underlying renal failure caused by pathogenic Candida albicans infection. Biomed. Rep. 3, 179–182 (2015).

    Article  PubMed  Google Scholar 

  84. Lionakis, M. S., Lim, J. K., Lee, C. C. & Murphy, P. M. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J. Innate Immun. 3, 180–199 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Lionakis, M. S. et al. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathog. 8, e1002865 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang, J. L. et al. IL-17C is required for lethal inflammation during systemic fungal infection. Cell. Mol. Immunol. 13, 474–483 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Rammaert, B., Desjardins, A. & Lortholary, O. New insights into hepatosplenic candidosis, a manifestation of chronic disseminated candidosis. Mycoses 55, e74–e84 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Legrand, F. et al. Adjuvant corticosteroid therapy for chronic disseminated candidiasis. Clin. Infect. Dis. 46, 696–702 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Kullberg, B. J. & Arendrup, M. C. Invasive candidiasis. N. Engl. J. Med. 374, 794–795 (2016).

    PubMed  Google Scholar 

  90. Kilpatrick, R., Scarrow, E., Hornik, C. & Greenberg, R. G. Neonatal invasive candidiasis: updates on clinical management and prevention. Lancet Child. Adolesc. Health 6, 60–70 (2022).

    Article  PubMed  Google Scholar 

  91. Phongkhun, K. et al. Prevalence of ocular candidiasis and Candida endophthalmitis in patients with candidemia: a systematic review and meta-analysis. Clin. Infect. Dis. 76, 1738–1749 (2023). This review summarizes current evidence on the prevalence of ocular candidiasis and Candida endophthalmitis. It tackles a hot and controversial clinical topic.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pappas, P. G. et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 62, e1–e50 (2016).

    Article  PubMed  Google Scholar 

  93. Cornely, O. A. et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin. Microbiol. Infect. 18, 19–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Breazzano, M. P. et al. American Academy of Ophthalmology recommendations on screening for endogenous Candida endophthalmitis. Ophthalmology 129, 73–76 (2022).

    Article  PubMed  Google Scholar 

  95. Rauseo, A. M. & Spec, A. Prevalence of ocular complications in candidemia: defining the “battlefield”. Clin. Infect. Dis. 76, 1750–1752 (2023).

    Article  PubMed  Google Scholar 

  96. Benjamin, D. K., Poole, C., Steinbach, W. J., Rowen, J. L. & Walsh, T. J. Neonatal candidemia and end-organ damage: a critical appraisal of the literature using meta-analytic techniques. Pediatrics 112, 634–640 (2003).

    Article  PubMed  Google Scholar 

  97. Benjamin, D. K. et al. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics 117, 84–92 (2006).

    Article  PubMed  Google Scholar 

  98. Hope, W. W. et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin. Microbiol. Infect. 18, 38–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Swerdloff, J. N., Filler, S. G. & Edwards, J. E. Jr. Severe candidal infections in neutropenic patients. Clin. Infect. Dis. 17 (Suppl. 2), S457–S467 (1993).

    Article  PubMed  Google Scholar 

  100. Vergidis, P. et al. Intra-abdominal candidiasis: the importance of early source control and antifungal treatment. PLoS ONE 11, e0153247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Nucci, M. & Anaissie, E. Revisiting the source of candidemia: skin or gut? Clin. Infect. Dis. 33, 1959–1967 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Leon, C. et al. A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit. Care Med. 34, 730–737 (2006).

    Article  PubMed  Google Scholar 

  103. Rolling, T. et al. Haematopoietic cell transplantation outcomes are linked to intestinal mycobiota dynamics and an expansion of Candida parapsilosis complex species. Nat. Microbiol. 6, 1505–1515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Proctor, D. M. et al. Integrated genomic, epidemiologic investigation of Candida auris skin colonization in a skilled nursing facility. Nat. Med. 27, 1401–1409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Giacobbe, D. R. et al. Performance of existing clinical scores and laboratory tests for the diagnosis of invasive candidiasis in critically ill, nonneutropenic, adult patients: a systematic review with qualitative evidence synthesis. Mycoses 65, 1073–1111 (2022).

    Article  PubMed  Google Scholar 

  106. Martinez-Jimenez, M. C. et al. Potential role of Candida albicans germ tube antibody in the diagnosis of deep-seated candidemia. Med. Mycol. 52, 270–275 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Arendrup, M. C. et al. How to interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clin. Microbiol. Infect. 26, 1464–1472 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Chakrabarti, A., Patel, A. K., Soman, R. & Todi, S. Overcoming clinical challenges in the management of invasive fungal infections in low- and middle-income countries (LMIC). Expert Rev. Anti Infect. Ther. 21, 1057–1070 (2023). This article highlights clinical challenges in the management of fungal infections in LMICs and highlights some approaches to solutions.

    Article  CAS  PubMed  Google Scholar 

  109. Lass-Flörl, C. et al. Clinical usefulness of susceptibility breakpoints for yeasts in the treatment of candidemia: a noninterventional study. J. Fungi 6, 76 (2020).

    Article  Google Scholar 

  110. Daneshnia, F. et al. Whole-genome sequencing confirms a persistent candidaemia clonal outbreak due to multidrug-resistant Candida parapsilosis. J. Antimicrob. Chemother. 78, 1488–1494 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Andes, D. R. et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin. Infect. Dis. 54, 1110–1122 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Raad, I. et al. Management of central venous catheters in patients with cancer and candidemia. Clin. Infect. Dis. 38, 1119–1127 (2004).

    Article  PubMed  Google Scholar 

  113. Thompson, G. R. III et al. Fungal endocarditis: pathophysiology, epidemiology, clinical presentation, diagnosis, and management. Clin. Microbiol. Rev. 36, e0001923 (2023).

    Article  PubMed  Google Scholar 

  114. Mellinghoff, S. C. et al. EQUAL Candida Score: an ECMM score derived from current guidelines to measure QUAlity of Clinical Candidaemia Management. Mycoses 61, 326–330 (2018).

    Article  PubMed  Google Scholar 

  115. Ostrosky-Zeichner, L. et al. Multicenter retrospective development and validation of a clinical prediction rule for nosocomial invasive candidiasis in the intensive care setting. Eur. J. Clin. Microbiol. Infect. Dis. 26, 271–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Alenazy, H., Alghamdi, A., Pinto, R. & Daneman, N. Candida colonization as a predictor of invasive candidiasis in non-neutropenic ICU patients with sepsis: a systematic review and meta-analysis. Int. J. Infect. Dis. 102, 357–362 (2021).

    Article  PubMed  Google Scholar 

  117. Clancy, C. J. & Nguyen, M. H. Diagnosing invasive candidiasis. J. Clin. Microbiol. 56, e01909–e01917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tissot, F. et al. Beta-glucan antigenemia anticipates diagnosis of blood culture-negative intraabdominal candidiasis. Am. J. Respir. Crit. Care Med. 188, 1100–1109 (2013).

    Article  PubMed  Google Scholar 

  119. Logan, C., Martin-Loeches, I. & Bicanic, T. Invasive candidiasis in critical care: challenges and future directions. Intensive Care Med. 46, 2001–2014 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Ahmad, S. & Asadzadeh, M. Strategies to prevent transmission of Candida auris in healthcare settings. Curr. Fungal Infect. Rep. 17, 36–48 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ku, T. S. N., Walraven, C. J. & Lee, S. A. Candida auris: disinfectants and implications for infection control. Front. Microbiol. 9, 726 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sahu, S. R. et al. Vaccines against candidiasis: status, challenges and emerging opportunity. Front. Cell Infect. Microbiol. 12, 1002406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rex, J. H. et al. A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin. Infect. Dis. 36, 1221–1228 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Thompson, G. R. 3rd et al. Rezafungin versus caspofungin for treatment of candidaemia and invasive candidiasis (ReSTORE): a multicentre, double-blind, double-dummy, randomised phase 3 trial. Lancet 401, 49–59 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Ullmann, A. J. et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin. Microbiol. Infect. 18, 53–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Maseda, E. et al. Critical appraisal beyond clinical guidelines for intraabdominal candidiasis. Crit. Care. 27, 382 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Richards, M. J., Edwards, J. R., Culver, D. H. & Gaynes, R. P. Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit. Care Med. 27, 887–892 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Sanchez-Portocarrero, J., Perez-Cecilia, E., Corral, O., Romero-Vivas, J. & Picazo, J. J. The central nervous system and infection by Candida species. Diagn. Microbiol. Infect. Dis. 37, 169–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Whaley, S. G. et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol. 7, 2173 (2016).

    PubMed  Google Scholar 

  130. Perea, S. et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 45, 2676–2684 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hassan, Y., Chew, S. Y. & Than, L. T. L. Candida glabrata: pathogenicity and resistance mechanisms for adaptation and survival. J. Fungi 7, 667 (2021).

    Article  CAS  Google Scholar 

  132. Bennett, J. E., Izumikawa, K. & Marr, K. A. Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob. Agents Chemother. 48, 1773–1777 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Thompson, G. R. 3rd et al. Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob. Agents Chemother. 52, 3783–3785 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Healey, K. R. et al. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat. Commun. 7, 11128 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jamiu, A. T., Albertyn, J., Sebolai, O. M. & Pohl, C. H. Update on Candida krusei, a potential multidrug-resistant pathogen. Med. Mycol. 59, 14–30 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Lass-Flörl, C. & Steixner, S. The changing epidemiology of fungal infections. Mol. Asp. Med. 94, 101215 (2023).

    Article  Google Scholar 

  137. Garcia-Effron, G., Katiyar, S. K., Park, S., Edlind, T. D. & Perlin, D. S. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob. Agents Chemother. 52, 2305–2312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chiotos, K. et al. Comparative effectiveness of echinocandins versus fluconazole therapy for the treatment of adult candidaemia due to Candida parapsilosis: a retrospective observational cohort study of the Mycoses Study Group (MSG-12). J. Antimicrob. Chemother. 71, 3536–3539 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Daneshnia, F. et al. Worldwide emergence of fluconazole-resistant Candida parapsilosis: current framework and future research roadmap. Lancet Microbe 4, e470–e480 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Stanciu, A. M. et al. First report of Candida auris in Romania: clinical and molecular aspects. Antimicrob. Resist. Infect. Control 12, 91 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lockhart, S. R. et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64, 134–140 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Lyman, M. et al. Notes from the field: transmission of pan-resistant and echinocandin-resistant Candida auris in health care facilities — Texas and the District of Columbia, January-April 2021. MMWR Morb. Mortal. Wkly Rep. 70, 1022–1023 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kilburn, S. et al. Antifungal resistance trends of Candida auris clinical isolates in New York and New Jersey from 2016 to 2020. Antimicrob. Agents Chemother. 66, e0224221 (2022).

    Article  PubMed  Google Scholar 

  144. Lockhart, S. R., Chowdhary, A. & Gold, J. A. W. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat. Rev. Microbiol. 21, 818–832 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Ceballos-Garzon, A. et al. Emergence and circulation of azole-resistant C. albicans, C. auris and C. parapsilosis bloodstream isolates carrying Y132F, K143R or T220L Erg11p substitutions in Colombia. Front. Cell Infect. Microbiol. 13, 1136217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mazi, P. B. et al. Attributable mortality of Candida bloodstream infections in the modern era: a propensity score analysis. Clin. Infect. Dis. 75, 1031–1036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kauffman, C. A. Complications of candidemia in ICU patients: endophthalmitis, osteomyelitis, endocarditis. Semin. Respir. Crit. Care Med. 36, 641–649 (2015).

    Article  PubMed  Google Scholar 

  148. Fukazawa, E. I. et al. Influence of recurrent vulvovaginal candidiasis on quality of life issues. Arch. Gynecol. Obstet. 300, 647–650 (2019).

    Article  PubMed  Google Scholar 

  149. Gebretekle, G. B. et al. Cost-utility analysis of caspofungin and fluconazole for primary treatment of invasive candidiasis and candidemia in Ethiopia. BMC Health Serv. Res. 22, 1302 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chen, D. et al. Cost-effectiveness of de-escalation from micafungin versus escalation from fluconazole for invasive candidiasis in China. J. Med. Econ. 21, 301–307 (2018).

    Article  PubMed  Google Scholar 

  151. Pang, Y. K., Ip, M. & You, J. H. S. Potential clinical and economic outcomes of active beta-D-glucan surveillance with preemptive therapy for invasive candidiasis at intensive care units: a decision model analysis. Eur. J. Clin. Microbiol. Infect. Dis. 36, 187–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Harrison, D. et al. Development and validation of a risk model for identification of non-neutropenic, critically ill adult patients at high risk of invasive Candida infection: the Fungal Infection Risk Evaluation (FIRE) Study. Health Technol. Assess. 17, 1–156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li, Y., Fang, D. & Wu, Q. Health-related quality of life among critically ill patients after discharge from the ICU — a systematic review protocol. PLoS ONE 18, e0278800 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Patsaki, I. et al. Post hospital discharge functional recovery of critical illness survivors. Systematic review. J. Crit. Care Med. 9, 87–96 (2023).

    Article  Google Scholar 

  155. Sano, T. et al. Ocular candidiasis in a tertiary hospital in Japan: a 10-year single-center retrospective study. J. Infect. Chemother. 29, 1081–1087 (2023).

    Article  PubMed  Google Scholar 

  156. Akar-Ghibril, N. Defects of the innate immune system and related immune deficiencies. Clin. Rev. Allergy Immunol. 63, 36–54 (2022).

    Article  PubMed  Google Scholar 

  157. Sharifinejad, N. et al. Clinical, immunological, and genetic features in 938 patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED): a systematic review. Expert Rev. Clin. Immunol. 17, 807–817 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Lietz, A., Eckel, F., Kiss, H., Noe-Letschnig, M. & Farr, A. Quality of life in women with chronic recurrent vulvovaginal candidosis: a sub-analysis of the prospective multicentre phase IIb/III Prof-001 study. Mycoses 66, 767–773 (2023).

    Article  PubMed  Google Scholar 

  159. Donders, G. et al. Management of recurrent vulvovaginal candidosis: narrative review of the literature and European expert panel opinion. Front. Cell Infect. Microbiol. 12, 934353 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Battistolo, J. et al. Increasing morbidity and mortality of candidemia over one decade in a Swiss university hospital. Mycoses 64, 1512–1520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wiseman, A. C. Immunosuppressive medications. Clin. J. Am. Soc. Nephrol. 11, 332–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Loechelt, B. J. et al. Screening and monitoring for infectious complications when immunosuppressive agents are studied in the treatment of autoimmune disorders. J. Pediatr. Infect. Dis. Soc. 4, 198–204 (2015).

    Article  Google Scholar 

  163. Gudiol, C., Hicklen, R. S., Okhyusen, P. C., Malek, A. E. & Kontoyiannis, D. P. Infections simulating immune checkpoint inhibitor toxicities: uncommon and deceptive. Open Forum Infect. Dis. 9, ofac570 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hoenigl, M. et al. COVID-19-associated fungal infections. Nat. Microbiol. 7, 1127–1140 (2022). This article provides an update on epidemiology, clinical risk factors and predisposed features of the host environment of COVID-19-associated fungal infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Adam, K. M. et al. Trends of the epidemiology of candidemia in Switzerland: a 15-year FUNGINOS survey. Open Forum Infect. Dis. 8, ofab471 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Song, N., Li, X. & Liu, W. Metagenomic next-generation sequencing (mNGS) for diagnosis of invasive fungal infectious diseases: a narrative review. J. Lab. Precis. Med. 6, 29 (2021).

    Article  Google Scholar 

  167. Blauwkamp, T. A. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 4, 663–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Friedman, D. Z. P. & Schwartz, I. S. Emerging diagnostics and therapeutics for invasive fungal infections. Infect. Dis. Clin. North Am. 37, 593–616 (2023).

    Article  PubMed  Google Scholar 

  169. Jin, Y. et al. Case report: proven diagnosis of culture-negative chronic disseminated candidiasis in a patient suffering from hematological malignancy: combined application of mNGS and CFW staining. Front. Med. 8, 627166 (2021).

    Article  Google Scholar 

  170. Wilson, M. R. et al. Chronic meningitis investigated via metagenomic next-generation sequencing. JAMA Neurol. 75, 947–955 (2018).

    Article  PubMed  Google Scholar 

  171. Breazzano, M. P. et al. Utility of ophthalmologic screening for patients with Candida bloodstream infections: a systematic review. JAMA Ophthalmol. 137, 698–710 (2019).

    Article  PubMed  Google Scholar 

  172. Vena, A. et al. Is routine ophthalmoscopy really necessary in candidemic patients? PLoS ONE 12, e0183485 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Azoulay, E. et al. Systemic antifungal therapy in critically ill patients without invasive fungal infection. Crit. Care Med. 40, 813–822 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Pyrpasopoulou, A., Iosifidis, E., Antachopoulos, C. & Roilides, E. Antifungal drug dosing adjustment in critical patients with invasive fungal infections. J. Emerg. Crit. Care Med. 3, 37 (2019).

    Article  Google Scholar 

  175. Verweij, P. E. et al. Dual use of antifungals in medicine and agriculture: how do we help prevent resistance developing in human pathogens? Drug Resist. Updat. 65, 100885 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hoenigl, M. et al. Invasive candidiasis: investigational drugs in the clinical development pipeline and mechanisms of action. Expert Opin. Investig. Drugs 31, 795–812 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hatamoto, M., Aizawa, R., Kobayashi, Y. & Fujimura, M. A novel fungicide aminopyrifen inhibits GWT-1 protein in glycosylphosphatidylinositol-anchor biosynthesis in Neurospora crassa. Pestic. Biochem. Physiol. 156, 1–8 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Fu, L. W. et al. Different efficacies of common disinfection methods against Candida auris and other Candida species. J. Infect. Public Health 13, 730–736 (2020).

    Article  PubMed  Google Scholar 

  179. Casadevall, A., Kontoyiannis, D. P. & Robert, V. Environmental Candida auris and the global warming emergence hypothesis. mBio 12, e00360-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Posteraro, B. et al. (1,3)-β-d-Glucan-based antifungal treatment in critically ill adults at high risk of candidaemia: an observational study. J. Antimcrob. Chemother. 71, 2262–2269 (2016).

    Article  CAS  Google Scholar 

  181. Monday, L. M., Parraga Acosta, T. & Alangaden, G. T2Candida for the diagnosis and management of invasive Candida infections. J. Fungi 7, 178 (2021).

    Article  Google Scholar 

  182. Carmo, A., Rocha, M., Pereirinha, P., Tome, R. & Costa, E. Antifungals: from pharmacokinetics to clinical practice. Antibiotics 12, 884 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Osman, M. et al. Update on invasive fungal infections in the Middle Eastern and North African region. Braz. J. Microbiol. 51, 1771–1789 (2020).

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  184. Tsai, Y. T. et al. The first invasive Candida auris infection in Taiwan. Emerg. Microbes Infect. 11, 1867–1875 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Henriques, J. et al. Candida auris in intensive care setting: the first case reported in Portugal. J. Fungi 9, 837 (2023).

    Article  Google Scholar 

  186. Chew, K. L., Achik, R., Osman, N. H., Octavia, S. & Teo, J. W. P. Genomic epidemiology of human candidaemia isolates in a tertiary hospital. Microb. Genom. 9, mgen001047 (2023).

    PubMed  PubMed Central  Google Scholar 

  187. Basmaciyan, L., Bon, F., Paradis, T., Lapaquette, P. & Dalle, F. Candida albicans interactions with the host: crossing the intestinal epithelial barrier. Tissue Barriers 7, 1612661 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Lima, R., Ribeiro, F. C., Colombo, A. L. & de Almeida, J. N. Jr. The emerging threat antifungal-resistant Candida tropicalis in humans, animals, and environment. Front. Fungal Biol. 3, 957021 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Megri, Y. et al. Candida tropicalis is the most prevalent yeast species causing candidemia in Algeria: the urgent need for antifungal stewardship and infection control measures. Antimicrob. Resist. Infect. Control. 9, 50 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Castrejón-Jiménez Nayeli, S., Castillo-Cruz, J., Baltierra-Uribe, S. L., Hernández-González, J. C. & García-Pérez, B. E. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol. Res. 260, 127038 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank L’Emir Wassim El Ayoubi for his contributions towards the creation of the figures related to the pathophysiology of invasive candidiasis.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.L.-F.); Epidemiology (M.A.G.); Mechanisms/pathophysiology (S.S.K.); Infections and manifestations (N.P.G.); Diagnosis, screening and prevention (C.L.-F.); Management (G.R.T.); Quality of life (L.O.-Z.); Outlook (C.L.-F.); overview of Primer (all authors). The authors contributed equally to this work and are listed alphabetically.

Corresponding author

Correspondence to Cornelia Lass-Flörl.

Ethics declarations

Competing interests

C.L.-F. has received institutional grants from Gilead Sciences and Astellas Pharma, personal consulting fees from Gilead Sciences and Merck Sharp and Dohme, and payments or honoraria for lectures/presentations from Gilead Sciences, Merck Sharp and Dohme, Pfizer, BioMerieux, F2G, Immy and Shionogi. S.S.K. reports honoraria as speaker and for participating in advisory boards for Pfizer, MSD, Basilea, Gilead and Hikma. G.R.T. reports consulting and research support from Astellas, Cidara, F2G, Mundipharma, Melinta, Mayne and Scynexis. L.O.-Z. has received institutional research grants and/or personal consulting honoraria from Merck, Astellas, Pfizer, Cidara, Melinta, Gilead, Scynexis, GSK, Octapharma, Pulmocide, F2G and Eurofins Viracor. M.A.G. and N.P.G. declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks R. Zaragoza, J.-F. Timsit and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lass-Flörl, C., Kanj, S.S., Govender, N.P. et al. Invasive candidiasis. Nat Rev Dis Primers 10, 20 (2024). https://doi.org/10.1038/s41572-024-00503-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00503-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing