Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Cryptococcal meningitis

Abstract

Cryptococcus neoformans and Cryptococcus gattii species complexes cause meningoencephalitis with high fatality rates and considerable morbidity, particularly in persons with deficient T cell-mediated immunity, most commonly affecting people living with HIV. Whereas the global incidence of HIV-associated cryptococcal meningitis (HIV–CM) has decreased over the past decade, cryptococcosis still accounts for one in five AIDS-related deaths globally due to the persistent burden of advanced HIV disease. Moreover, mortality remains high (~50%) in low-resource settings. The armamentarium to decrease cryptococcosis-associated mortality is expanding: cryptococcal antigen screening in the serum and pre-emptive azole therapy for cryptococcal antigenaemia are well established, whereas enhanced pre-emptive combination treatment regimens to improve survival of persons with cryptococcal antigenaemia are in clinical trials. Short courses (≤7 days) of amphotericin-based therapy combined with flucytosine are currently the preferred options for induction therapy of cryptococcal meningitis. Whether short-course induction regimens improve long-term morbidity such as depression, reduced neurocognitive performance and physical disability among survivors is the subject of further study. Here, we discuss underlying immunology, changing epidemiology, and updates on the management of cryptococcal meningitis with emphasis on HIV-associated disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global map of estimated incidence of HIV-associated cryptococcal meningitis in 2020.
Fig. 2: Host response to Cryptococcus neoformans infection.
Fig. 3: Cryptococcal antigen screening in HIV–CM.

Similar content being viewed by others

References

  1. Brizendine, K. D., Baddley, J. W. & Pappas, P. G. Predictors of mortality and differences in clinical features among patients with Cryptococcosis according to immune status. PLoS ONE 8, e60431 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chau, T. T. et al. A prospective descriptive study of cryptococcal meningitis in HIV uninfected patients in Vietnam – high prevalence of Cryptococcus neoformans var grubii in the absence of underlying disease. BMC Infect. Dis. 10, 199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen, J. et al. Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China. Emerg. Infect. Dis. 14, 755–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Freij, J. B. et al. Conservation of intracellular pathogenic strategy among distantly related cryptococcal species. Infect. Immun. 86, e00946-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Casadevall, A. & Pirofski, L. A. The damage-response framework of microbial pathogenesis. Nat. Rev. Microbiol. 1, 17–24 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baddley, J. W. et al. MSG07: an international cohort study comparing epidemiology and outcomes of patients with Cryptococcus neoformans or Cryptococcus gattii infections. Clin. Infect. Dis. 73, 1133–1141 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rajasingham, R. et al. The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect. Dis. 22, 1748–1755 (2022).

    Article  PubMed  Google Scholar 

  8. Patel, R. K. K. et al. High mortality in HIV-associated cryptococcal meningitis patients treated with amphotericin B-based therapy under routine care conditions in Africa. Open Forum Infect. Dis. 5, ofy267 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Finkelstein, A. & Holz, R. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. Membranes 2, 377–408 (1973).

    CAS  PubMed  Google Scholar 

  10. Vermes, A., Guchelaar, H. J. & Dankert, J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 46, 171–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, W. & Lee, D. G. A novel mechanism of fluconazole: fungicidal activity through dose-dependent apoptotic responses in Candida albicans. Microbiology 164, 194–204 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Molloy, S. F. et al. Antifungal combinations for treatment of cryptococcal meningitis in Africa. N. Engl. J. Med. 378, 1004–1017 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Jarvis, J. N. et al. Single-dose liposomal amphotericin b treatment for cryptococcal meningitis. N. Engl. J. Med. 386, 1109–1120 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jarvis, J. N. et al. Cost effectiveness of cryptococcal antigen screening as a strategy to prevent HIV-associated cryptococcal meningitis in South Africa. PLoS ONE 8, e69288 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cogliati, M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Scientifica 2013, 675213 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Montoya, M. C., Magwene, P. M. & Perfect, J. R. Associations between Cryptococcus genotypes, phenotypes, and clinical parameters of human disease: a review. J. Fungi. 7, 260 (2021).

    Article  CAS  Google Scholar 

  17. Chen, S. C., Meyer, W. & Sorrell, T. C. Cryptococcus gattii infections. Clin. Microbiol. Rev. 27, 980–1024 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kidd, S. E. et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc. Natl Acad. Sci. USA 101, 17258–17263 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fraser, J. A. et al. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437, 1360–1364 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Rajasingham, R. et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect. Dis. 17, 873–881 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ellis, J. et al. The changing epidemiology of HIV-associated adult meningitis, Uganda 2015-2017. Open Forum Infect. Dis. 6, ofz419 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Flynn, A. G. et al. Evolving failures in the delivery of human immunodeficiency virus care: lessons from a Ugandan meningitis cohort 2006-2016. Open Forum Infect. Dis. 4, ofx077 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Okwir, M. et al. High burden of cryptococcal meningitis among antiretroviral therapy-experienced human immunodeficiency virus-infected patients in Northern Uganda in the era of “test and treat”: implications for cryptococcal screening programs. Open Forum Infect. Dis. 9, ofac004 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chang, B. et al. Timing of antiretroviral therapy prior to diagnosis of cryptococcal meningitis [abstract 2361]. Open Forum Infect. Dis. 9 (Suppl. 2), ofac492.168 (2022).

    Article  Google Scholar 

  25. Kalata, N. et al. Short-term mortality outcomes of HIV-associated cryptococcal meningitis in antiretroviral therapy-naive and -experienced patients in sub-Saharan Africa. Open Forum Infect. Dis. 8, ofab397 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rhein, J. et al. Detrimental outcomes of unmasking cryptococcal meningitis with recent art initiation. Open Forum Infect. Dis. 5, ofy122 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ford, N. et al. CD4 cell count threshold for cryptococcal antigen screening of HIV-infected individuals: a systematic review and meta-analysis. Clin. Infect. Dis. 66, S152–S159 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jarvis, J. N. et al. Screening for cryptococcal antigenemia in patients accessing an antiretroviral treatment program in South Africa. Clin. Infect. Dis. 48, 856–862 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. French, N. et al. Cryptococcal infection in a cohort of HIV-1-infected Ugandan adults. AIDS 16, 1031–1038 (2002).

    Article  PubMed  Google Scholar 

  30. Sungkanuparph, S. et al. Cryptococcal immune reconstitution inflammatory syndrome after antiretroviral therapy in AIDS patients with cryptococcal meningitis: a prospective multicenter study. Clin. Infect. Dis. 49, 931–934 (2009).

    Article  PubMed  Google Scholar 

  31. Shelburne, S. A. 3rd et al. The role of immune reconstitution inflammatory syndrome in AIDS-related Cryptococcus neoformans disease in the era of highly active antiretroviral therapy. Clin. Infect. Dis. 40, 1049–1052 (2005).

    Article  PubMed  Google Scholar 

  32. Kambugu, A. et al. Outcomes of cryptococcal meningitis in Uganda before and after the availability of highly active antiretroviral therapy. Clin. Infect. Dis. 46, 1694–1701 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Lortholary, O. et al. Incidence and risk factors of immune reconstitution inflammatory syndrome complicating HIV-associated cryptococcosis in France. AIDS 19, 1043–1049 (2005).

    Article  PubMed  Google Scholar 

  34. Boulware, D. R. et al. Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N. Engl. J. Med. 370, 2487–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhao, T. et al. The effect of early vs. deferred antiretroviral therapy initiation in HIV-infected patients with cryptococcal meningitis: a multicenter prospective randomized controlled analysis in China. Front. Med. 8, 779181 (2021).

    Article  Google Scholar 

  36. Sereti, I. et al. Prospective international study of incidence and predictors of immune reconstitution inflammatory syndrome and death in people with HIV and severe lymphopenia. Clin. Infect. Dis. 27, 652–660 (2020).

    Article  Google Scholar 

  37. Han, X. et al. A nomogram for predicting paradoxical immune reconstitution inflammatory syndrome associated with cryptococcal meningitis among HIV-infected individuals in China. AIDS Res. Ther. 19, 20 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brienze, V. M. S., André, J. C., Liso, E. & Vlasova-St Louis, I. Cryptococcal immune reconstitution inflammatory syndrome: from blood and cerebrospinal fluid biomarkers to treatment approaches. Life 11, 95 (2020).

    Article  Google Scholar 

  39. Jarvis, J. N. et al. Determinants of mortality in a combined cohort of 501 patients with HIV-associated cryptococcal meningitis: implications for improving outcomes. Clin. Infect. Dis. 58, 736–745 (2014).

    Article  PubMed  Google Scholar 

  40. Pasquier, E. et al. Long-term mortality and disability in cryptococcal meningitis: a systematic literature review. Clin. Infect. Dis. 66, 1122–1132 (2018).

    PubMed  Google Scholar 

  41. Boulware, D. R. et al. Clinical features and serum biomarkers in HIV immune reconstitution inflammatory syndrome after cryptococcal meningitis: a prospective cohort study. PLoS Med. 7, e1000384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chaiwarith, R., Vongsanim, S. & Supparatpinyo, K. Cryptococcal meningitis in HIV-infected patients at Chiang Mai University Hospital: a retrospective study. Southeast. Asian J. Trop. Med. Public Health 45, 636–646 (2014).

    PubMed  Google Scholar 

  43. Day, J. N. et al. Combination antifungal therapy for cryptococcal meningitis. N. Engl. J. Med. 368, 1291–1302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lortholary, O. et al. Long-term outcome of AIDS-associated cryptococcosis in the era of combination antiretroviral therapy. AIDS 20, 2183–2191 (2006).

    Article  PubMed  Google Scholar 

  45. Vidal, J. E. et al. HIV-associated cryptococcal meningitis patients treated with amphotericin B deoxycholate plus flucytosine under routine care conditions in a referral center in São Paulo, Brazil. Mycopathologia 186, 93–102 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Longley, N. et al. Cryptococcal antigen screening in patients initiating ART in South Africa: a prospective cohort study. Clin. Infect. Dis. 62, 581–587 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Mfinanga, S. et al. Cryptococcal meningitis screening and community-based early adherence support in people with advanced HIV infection starting antiretroviral therapy in Tanzania and Zambia: an open-label, randomised controlled trial. Lancet 385, 2173–2182 (2015).

    Article  PubMed  Google Scholar 

  48. Wake, R. M. et al. Cryptococcal-related mortality despite fluconazole preemptive treatment in a cryptococcal antigen screen-and-treat program. Clin. Infect. Dis. 70, 1683–1690 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Rajasingham, R. et al. Cryptococcal meningitis diagnostics and screening in the era of point-of-care laboratory testing. J. Clin. Microbiol. 57, e01238-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bicanic, T. et al. Independent association between rate of clearance of infection and clinical outcome of HIV-associated cryptococcal meningitis: analysis of a combined cohort of 262 patients. Clin. Infect. Dis. 49, 702–709 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Pullen, M. F. et al. Cerebrospinal fluid early fungicidal activity as a surrogate endpoint for cryptococcal meningitis survival in clinical trials. Clin. Infect. Dis. 71, e45–e49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Coussement, J. et al. Current epidemiology and clinical features of Cryptococcus infection in patients without HIV infection: a multicentre study in 46 hospitals from Australia and New Zealand. Clin. Infect. Dis. 77, 976–986 (2023).

    Article  PubMed  Google Scholar 

  53. Pappas, P. G. et al. Cryptococcosis in human immunodeficiency virus-negative patients in the era of effective azole therapy. Clin. Infect. Dis. 33, 690–699 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Rosen, L. B. et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J. Immunol. 190, 3959–3966 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Kuo, C. Y. et al. Disseminated cryptococcosis due to anti-granulocyte-macrophage colony-stimulating factor autoantibodies in the absence of pulmonary alveolar proteinosis. J. Clin. Immunol. 37, 143–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Arango-Franco, C. A. et al. Anti-GM-CSF neutralizing autoantibodies in Colombian patients with disseminated cryptococcosis. J. Clin. Immunol. 43, 921–932 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ahmad, D. S., Esmadi, M. & Steinmann, W. C. Idiopathic CD4 lymphocytopenia: spectrum of opportunistic infections, malignancies, and autoimmune diseases. Avicenna J. Med. 3, 37–47 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Browne, S. K. et al. Adult-onset immunodeficiency in Thailand and Taiwan. N. Engl. J. Med. 367, 725–734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, J. et al. Analysis of the association of HLA subtypes with cryptococcal meningitis in HIV-negative immunocompetent patients. Future Microbiol. 17, 1231–1240 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Wu, U. I. et al. Incorrect diagnoses in patients with neutralizing anti-interferon-gamma-autoantibodies. Clin. Microbiol. Infect. 26, 1684.e1–1684.e6 (2020).

    Article  PubMed  Google Scholar 

  61. Su, X. H. et al. Comparison of features and outcomes between HIV-negative patients with Cryptococcus gattii meningitis and Cryptococcus neoformans meningitis in South China. Mycoses 65, 887–896 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Day, J. N. et al. Comparative genomics of Cryptococcus neoformans var. grubii associated with meningitis in HIV infected and uninfected patients in Vietnam. PLoS Negl. Trop. Dis. 11, e0005628 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Thanh, L. T. et al. Assessing the virulence of Cryptococcus neoformans causing meningitis in HIV infected and uninfected patients in Vietnam. Med. Mycol. 58, 1149–1161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, D. H. et al. Cryptococcus gattii species complex as an opportunistic pathogen: underlying medical conditions associated with the infection. mBio 12, e0270821 (2021).

    Article  PubMed  Google Scholar 

  65. Saijo, T. et al. Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. mBio 5, e00912-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Barcenas-Morales, G., Cortes-Acevedo, P. & Doffinger, R. Anticytokine autoantibodies leading to infection: early recognition, diagnosis and treatment options. Curr. Opin. Infect. Dis. 32, 330–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liao, C. H. et al. Different presentations and outcomes between HIV-infected and HIV-uninfected patients with cryptococcal meningitis. J. Microbiol. Immunol. Infect. 45, 296–304 (2012).

    Article  PubMed  Google Scholar 

  68. Pyrgos, V., Seitz, A. E., Steiner, C. A., Prevots, D. R. & Williamson, P. R. Epidemiology of cryptococcal meningitis in the US: 1997-2009. PLoS ONE 8, e56269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marr, K. A. et al. A multicenter, longitudinal cohort study of cryptococcosis in human immunodeficiency virus-negative people in the United States. Clin. Infect. Dis. 70, 252–261 (2020).

    Article  PubMed  Google Scholar 

  70. Levitz, S. M. The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. Rev. Infect. Dis. 13, 1163–1169 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Bartlett, K. H., Kidd, S. E. & Kronstad, J. W. The emergence of Cryptococcus gattii in British Columbia and the Pacific Northwest. Curr. Infect. Dis. Rep. 10, 58–65 (2008).

    Article  PubMed  Google Scholar 

  72. Datta, K. et al. Spread of Cryptococcus gattii into Pacific Northwest region of the United States. Emerg. Infect. Dis. 15, 1185–1191 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gugnani, H. C. et al. Isolation of Cryptococcus gattii and Cryptococcus neoformans var. grubii from the flowers and bark of eucalyptus trees in India. Med. Mycol. 43, 565–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Kozubowski, L. & Heitman, J. Profiling a killer, the development of Cryptococcus neoformans. FEMS Microbiol. Rev. 36, 78–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Desnos-Ollivier, M. et al. Mixed infections and in vivo evolution in the human fungal pathogen Cryptococcus neoformans. mBio 1, e00091-10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chang, Y. C. et al. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect. Immun. 72, 4985–4995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. George, I. A., Santos, C. A. Q., Olsen, M. A. & Powderly, W. G. Epidemiology of cryptococcosis and cryptococcal meningitis in a large retrospective cohort of patients after solid organ transplantation. Open Forum Infect. Dis. 4, ofx004 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kapoor, A. et al. Cryptococcal meningitis in renal transplant patients associated with environmental exposure. Transpl. Infect. Dis. 1, 213–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Osterholzer, J. J. et al. Role of dendritic cells and alveolar macrophages in regulating early host defense against pulmonary infection with Cryptococcus neoformans. Infect. Immun. 77, 3749–3758 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Biondo, C. et al. MyD88 and TLR2, but not TLR4, are required for host defense against Cryptococcus neoformans. Eur. J. Immunol. 35, 870–878 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Cross, C. E. & Bancroft, G. J. Ingestion of acapsular Cryptococcus neoformans occurs via mannose and beta-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect. Immun. 63, 2604–2611 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kozel, T. R., Pfrommer, G. S., Guerlain, A. S., Highison, B. A. & Highison, G. J. Strain variation in phagocytosis of Cryptococcus neoformans: dissociation of susceptibility to phagocytosis from activation and binding of opsonic fragments of C3. Infect. Immun. 56, 2794–2800 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Casadevall, A. et al. The capsule of Cryptococcus neoformans. Virulence 10, 822–831 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Wozniak, K. L. Interactions of Cryptococcus with dendritic cells. J. Fungi. 4, 36 (2018).

    Article  Google Scholar 

  85. Chen, G. H. et al. The gamma interferon receptor is required for the protective pulmonary inflammatory response to Cryptococcus neoformans. Infect. Immun. 73, 1788–1796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. George, I. A., Spec, A., Powderly, W. G. & Santos, C. A. Q. Comparative epidemiology and outcomes of human immunodeficiency virus (HIV), Non-HIV non-transplant, and solid organ transplant associated cryptococcosis: a population-based study. Clin. Infect. Dis. 66, 608–611 (2018).

    Article  PubMed  Google Scholar 

  87. Kiertiburanakul, S., Wirojtananugoon, S., Pracharktam, R. & Sungkanuparph, S. Cryptococcosis in human immunodeficiency virus-negative patients. Int. J. Infect. Dis. 10, 72–78 (2006).

    Article  PubMed  Google Scholar 

  88. Lin, Y. Y., Shiau, S. & Fang, C. T. Risk factors for invasive Cryptococcus neoformans diseases: a case-control study. PLoS ONE 10, e0119090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Costa, M. L., Souza, J. P., Oliveira Neto, A. F. & Pinto, E. S. J. L. Cryptococcal meningitis in HIV negative pregnant women: case report and review of literature. Rev. Inst. Med. Trop. Sao Paulo 51, 289–294 (2009).

    Article  PubMed  Google Scholar 

  90. Wipasa, J. et al. Characterization of anti-interferon-γ antibodies in HIV-negative immunodeficient patients infected with unusual intracellular microorganisms. Exp. Biol. Med. 243, 621–626 (2018).

    Article  CAS  Google Scholar 

  91. Golde, D. W., Territo, M., Finley, T. N. & Cline, M. J. Defective lung macrophages in pulmonary alveolar proteinosis. Ann. Intern. Med. 85, 304–309 (1976).

    Article  CAS  PubMed  Google Scholar 

  92. McClelland, E. E., Bernhardt, P. & Casadevall, A. Estimating the relative contributions of virulence factors for pathogenic microbes. Infect. Immun. 74, 1500–1504 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zaragoza, O. et al. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol. 10, 2043–2057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Denham, S. T. et al. Regulated release of cryptococcal polysaccharide drives virulence and suppresses immune cell infiltration into the central nervous system. Infect. Immun. 86, e00662-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rodrigues, J. et al. Lack of chitin synthase genes impacts capsular architecture and cellular physiology in Cryptococcus neoformans. Cell Surf. 2, 14–23 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Baker, L. G., Specht, C. A., Donlin, M. J. & Lodge, J. K. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot. Cell 6, 855–867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Banks, I. R. et al. A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot. Cell 4, 1902–1912 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kwon-Chung, K. J., Polacheck, I. & Popkin, T. J. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J. Bacteriol. 150, 1414–1421 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Williamson, P. R. Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front. Biosci. 2, e99–e107 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Shea, J. M., Kechichian, T. B., Luberto, C. & Del Poeta, M. The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Infect. Immun. 74, 5977–5988 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hamed, M. F. et al. Phospholipase B is critical for Cryptococcus neoformans survival in the central nervous system. mBio 14, e0264022 (2023).

    Article  PubMed  Google Scholar 

  102. Evans, R. J. et al. Cryptococcal phospholipase B1 is required for intracellular proliferation and control of titan cell morphology during macrophage infection. Infect. Immun. 83, 1296–1304 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ganendren, R., Carter, E., Sorrell, T., Widmer, F. & Wright, L. Phospholipase B activity enhances adhesion of Cryptococcus neoformans to a human lung epithelial cell line. Microbes Infect. 8, 1006–1015 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Santangelo, R. T. et al. Biochemical and functional characterisation of secreted phospholipase activities from Cryptococcus neoformans in their naturally occurring state. J. Med. Microbiol. 48, 731–740 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Fu, M. S. et al. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathog. 14, e1007144 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Singh, A. et al. Factors required for activation of urease as a virulence determinant in Cryptococcus neoformans. mBio 4, e00220-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Baker, R. P. & Casadevall, A. Reciprocal modulation of ammonia and melanin production has implications for cryptococcal virulence. Nat. Commun. 14, 849 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Charlier, C. et al. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect. Immun. 77, 120–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Sun, D. & Shi, M. Neutrophil swarming toward Cryptococcus neoformans is mediated by complement and leukotriene B4. Biochem. Biophys. Res. Commun. 477, 945–951 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Leopold Wager, C. M., Hole, C. R., Wozniak, K. L., Olszewski, M. A. & Wormley, F. L. Jr. STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice. J. Immunol. 193, 4060–4071 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Heung, L. J. & Hohl, T. M. Inflammatory monocytes are detrimental to the host immune response during acute infection with Cryptococcus neoformans. PLoS Pathog. 15, e1007627 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jarvis, J. N. et al. The phenotype of the Cryptococcus-specific CD4+ memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis. J. Infect. Dis. 207, 1817–1828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jarvis, J. N. et al. Adjunctive interferon-γ immunotherapy for the treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial. AIDS 26, 1105–1113 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Pappas, P. G. et al. Recombinant interferon-γ1b as adjunctive therapy for AIDS-related acute cryptococcal meningitis. J. Infect. Dis. 189, 2185–2191 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Lee, S. C., Kress, Y., Zhao, M. L., Dickson, D. W. & Casadevall, A. Cryptococcus neoformans survive and replicate in human microglia. Lab. Invest. 73, 871–879 (1995).

    CAS  PubMed  Google Scholar 

  116. Lee, S. C., Kress, Y., Dickson, D. W. & Casadevall, A. Human microglia mediate anti-Cryptococcus neoformans activity in the presence of specific antibody. J. Neuroimmunol. 62, 43–52 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Koutsouras, G. W., Ramos, R. L. & Martinez, L. R. Role of microglia in fungal infections of the central nervous system. Virulence 8, 705–718 (2017).

    Article  PubMed  Google Scholar 

  118. Neal, L. M. et al. CD4+ T cells orchestrate lethal immune pathology despite fungal clearance during Cryptococcus neoformans meningoencephalitis. mBio 8, e01415-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Aguirre, K. M. & Johnson, L. L. A role for B cells in resistance to Cryptococcus neoformans in mice. Infect. Immun. 65, 525–530 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Okurut, S. et al. B cell compartmentalization in blood and cerebrospinal fluid of HIV-infected Ugandans with cryptococcal meningitis. Infect. Immun. 88, e00779-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Yoon, H. A. et al. Association between plasma antibody responses and risk for Cryptococcus-associated immune reconstitution inflammatory syndrome. J. Infect. Dis. 219, 420–428 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Haddow, L. J. et al. Cryptococcal immune reconstitution inflammatory syndrome in HIV-1-infected individuals: proposed clinical case definitions. Lancet Infect. Dis. 10, 791–802 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bonham, S., Meya, D. B., Bohjanen, P. R. & Boulware, D. R. Biomarkers of HIV immune reconstitution inflammatory syndrome. Biomark. Med. 2, 349–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Boulware, D. R. et al. Paucity of initial cerebrospinal fluid inflammation in cryptococcal meningitis is associated with subsequent immune reconstitution inflammatory syndrome. J. Infect. Dis. 202, 962–970 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Scriven, J. E. et al. The CSF immune response in HIV-1-associated cryptococcal meningitis: macrophage activation, correlates of disease severity, and effect of antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 75, 299–307 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Scriven, J. E. et al. Early ART after cryptococcal meningitis is associated with cerebrospinal fluid pleocytosis and macrophage activation in a multisite randomized trial. J. Infect. Dis. 212, 769–778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chang, C. C. et al. Clinical and mycological predictors of cryptococcosis-associated immune reconstitution inflammatory syndrome. AIDS 27, 2089–2099 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Boulware, D. R. et al. Higher levels of CRP, D-dimer, IL-6, and hyaluronic acid before initiation of antiretroviral therapy (ART) are associated with increased risk of AIDS or death. J. Infect. Dis. 203, 1637–1646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Boulware, D. R. et al. Multisite validation of cryptococcal antigen lateral flow assay and quantification by laser thermal contrast. Emerg. Infect. Dis. 20, 45–53 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hansen, J. et al. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin. Vaccin. Immunol. 20, 52–55 (2013).

    Article  CAS  Google Scholar 

  131. Percival, A., Thorkildson, P. & Kozel, T. R. Monoclonal antibodies specific for immunorecessive epitopes of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans, reduce serotype bias in an immunoassay for cryptococcal antigen. Clin. Vaccin. Immunol. 18, 1292–1296 (2011).

    Article  CAS  Google Scholar 

  132. Bridge, S. et al. Evaluation of the biofire(R) filmarray(R) meningitis/encephalitis panel in an adult and pediatric Ugandan population. J. Mycol. Med. 31, 101170 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Skipper, C. et al. Evaluation of serum cryptococcal antigen testing using two novel semiquantitative lateral flow assays in persons with cryptococcal antigenemia. J. Clin. Microbiol. 58, e02046-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kwizera, R. et al. Evaluation of the Dynamiker cryptococcal antigen lateral flow assay for the diagnosis of HIV-associated cryptococcosis. J. Clin. Microbiol. 59, e02421-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Mpoza, E. et al. Evaluation of a point-of-care immunoassay test kit ‘StrongStep’ for cryptococcal antigen detection. PLoS ONE 13, e0190652 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ssebambulidde, K. et al. Symptomatic cryptococcal antigenemia presenting as early cryptococcal meningitis with negative cerebral spinal fluid analysis. Clin. Infect. Dis. 68, 2094–2098 (2018).

    Article  PubMed Central  Google Scholar 

  137. Anjum, S. H. et al. Neuroimaging of cryptococcal meningitis in patients without human immunodeficiency virus: data from a multi-center cohort study. J. Fungi. 9, 594 (2023).

    Article  Google Scholar 

  138. Chen, S. et al. Epidemiology and host- and variety-dependent characteristics of infection due to Cryptococcus neoformans in Australia and New Zealand. Australasian Cryptococcal study group. Clin. Infect. Dis. 31, 499–508 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Perfect, J. R. et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 50, 291–322 (2010).

    Article  PubMed  Google Scholar 

  140. Bahr, N. C. et al. Recurrence of symptoms following cryptococcal meningitis: characterizing a diagnostic conundrum with multiple etiologies. Clin. Infect. Dis. 76, 1080–1087 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Musubire, A. K., Boulware, D. R., Meya, D. B. & Rhein, J. Diagnosis and management of cryptococcal relapse. J. AIDS Clin. Res. Suppl. 3, S3-003 (2013).

    PubMed  PubMed Central  Google Scholar 

  142. Rhein, J. et al. Diagnostic performance of a multiplex PCR assay for meningitis in an HIV-infected population in Uganda. Diagn. Microbiol. Infect. Dis. 84, 268–273 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Mbangiwa, T. et al. Cryptococcus qPCR assays: the future for routine mycology labs and clinical trials dealing with cryptococcosis [abstract S1.4d]. Med. Mycol. 60 (Suppl. 1), myac072S14d (2022).

    Article  PubMed Central  Google Scholar 

  144. Del Poeta, M., Wormley, F. L.Jr. & Lin, X. Host populations, challenges, and commercialization of cryptococcal vaccines. PLoS Pathog. 19, e1011115 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  145. World Health Organization. Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. World Health Organization https://www.who.int/publications/i/item/9789240052178 (2022).

  146. Meya, D. B. et al. Cost-effectiveness of serum cryptococcal antigen screening to prevent deaths among HIV-infected persons with a CD4+ cell count ≤100 cells/µL who start HIV therapy in resource-limited settings. Clin. Infect. Dis. 51, 448–455 (2010).

    Article  PubMed  Google Scholar 

  147. World Health Organization. Rapid advice: diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children. World Health Organization www.who.int/hiv/pub/cryptococcal_disease2011 (2011).

  148. Wake, R. M. et al. High cryptococcal antigen titers in blood are predictive of subclinical cryptococcal meningitis among human immunodeficiency virus-infected patients. Clin. Infect. Dis. 66, 686–692 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Rajasingham, R. & Boulware, D. R. Cryptococcal antigen screening and preemptive treatment – how can we improve survival? Clin. Infect. Dis. 70, 1691–1694 (2020).

    Article  PubMed  Google Scholar 

  150. Rutakingirwa, M. K. et al. Tuberculosis in HIV-associated cryptococcal meningitis is associated with an increased risk of death. J. Clin. Med. 9, 781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Skipper, C. et al. Cytomegalovirus viremia associated with increased mortality in cryptococcal meningitis in sub-Saharan Africa. Clin. Infect. Dis. 71, 525–531 (2020).

    Article  PubMed  Google Scholar 

  152. Skipper, C. P. et al. Cytomegalovirus viremia as a risk factor for mortality in HIV-associated cryptococcal and tuberculous meningitis. Int. J. Infect. Dis. 122, 785–792 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  153. World Health Organization. Guideline for managing advanced HIV disease and the timing for initiating antiretroviral therapy. World Health Organization http://www.who.int/hiv/pub/guidelines/advanced-HIV-disease/en/ (2017).

  154. World Health Organization. WHO consolidated guidelines on tuberculosis: module 3: diagnosis: rapid diagnostics for tuberculosis detection, 2021 update. World Health Organization https://www.who.int/publications/i/item/9789240029415 (2021).

  155. Rajasingham, R. et al. Nosocomial drug-resistant bacteremia in 2 cohorts with cryptococcal meningitis, Africa. Emerg. Infect. Dis. 20, 722–724 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Moore, C. C. et al. Etiology of sepsis in Uganda using a quantitative polymerase chain reaction-based TaqMan Array Card. Clin. Infect. Dis. 68, 266–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Hakim, J. et al. Enhanced prophylaxis plus antiretroviral therapy for advanced HIV infection in Africa. N. Engl. J. Med. 377, 233–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Einsele, H. et al. Risk factors for treatment failures in patients receiving PCR-based preemptive therapy for CMV infection. Bone Marrow Transplant. 25, 757–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Rose, D. N. & Sacks, H. S. Cost-effectiveness of cytomegalovirus (CMV) disease prevention in patients with AIDS: oral ganciclovir and CMV polymerase chain reaction testing. AIDS 11, 883–887 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. Wohl, D. A. et al. Low rate of CMV end-organ disease in HIV-infected patients despite low CD4+ cell counts and CMV viremia: results of ACTG protocol A5030. HIV Clin. Trials 10, 143–152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Skipper, C. P. & Schleiss, M. R. Cytomegalovirus viremia and advanced HIV disease: is there an argument for anti-CMV treatment. Expert. Rev. Anti Infect. Ther. 21, 227–233 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Panel on Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents with HIV. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. clinicalinfo.hiv.gov https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-opportunistic-infection/cryptococcosis (2022).

  163. Bicanic, T. et al. Toxicity of amphotericin B deoxycholate-based induction therapy in patients with HIV-associated cryptococcal meningitis. Antimicrob. Agents Chemother. 59, 7224–7231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bahr, N. C. et al. Standardized electrolyte supplementation and fluid management improves survival during amphotericin therapy for cryptococcal meningitis in resource-limited settings. Open Forum Infect. Dis. 1, ofu070 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Schutz, C. et al. Acute kidney injury and urinary biomarkers in human immunodeficiency virus-associated cryptococcal meningitis. Open Forum Infect. Dis. 4, ofx127 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Muzoora, C. K. et al. Short course amphotericin B with high dose fluconazole for HIV-associated cryptococcal meningitis. J. Infect. 64, 76–81 (2012).

    Article  PubMed  Google Scholar 

  167. Rajasingham, R., Rolfes, M. A., Birkenkamp, K. E., Meya, D. B. & Boulware, D. R. Cryptococcal meningitis treatment strategies in resource-limited settings: a cost-effectiveness analysis. PLoS Med. 9, e1001316 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  168. World Health Organization. Guidelines for the diagnosis, prevention, and management of cryptococcal disease in HIV-infected adults, adolescents and children. World Health Organization https://apps.who.int/iris/bitstream/handle/10665/260399/9789241550277-eng.pdf (2018).

  169. Stone, N. R., Bicanic, T., Salim, R. & Hope, W. Liposomal amphotericin B (AmBisome((R))): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 76, 485–500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lawrence, D. S. et al. Cost-effectiveness of single, high-dose, liposomal amphotericin regimen for HIV-associated cryptococcal meningitis in five countries in sub-Saharan Africa: an economic analysis of the AMBITION-cm trial. Lancet Glob. Health 10, e1845–e1854 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lawrence, D. S. et al. The acceptability of the AMBITION-cm treatment regimen for HIV-associated cryptococcal meningitis: findings from a qualitative methods study of participants and researchers in Botswana and Uganda. PLoS Negl. Trop. Dis. 16, e0010825 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Harrison, T. S. et al. How applicable is the single-dose AMBITION regimen for human immunodeficiency virus-associated cryptococcal meningitis to high-income settings? Clin. Infect. Dis. 76, 944–949 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Panackal, A. A., Marr, K. A. & Williamson, P. R. Dexamethasone in cryptococcal meningitis. N. Engl. J. Med. 375, 188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Beardsley, J. et al. Adjunctive dexamethasone in HIV-associated cryptococcal meningitis. N. Engl. J. Med. 374, 542–554 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Govender, N. P. et al. Southern African HIV Clinicians Society guideline for the prevention, diagnosis and management of cryptococcal disease among HIV-infected persons: 2019 update. South. Afr. J. HIV Med. 20, 1030 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Beyene, T. et al. Inadequacy of high-dose fluconazole monotherapy among cerebrospinal fluid cryptococcal antigen (CrAg)-positive human immunodeficiency virus-infected persons in an Ethiopian CrAg screening program. Clin. Infect. Dis. 65, 2126–2129 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03945448 (2023).

  178. ISRCTN registry. isrctn.com https://www.isrctn.com/ISRCTN30579828 (2023).

  179. Zolopa, A. et al. Early antiretroviral therapy reduces AIDS progression/death in individuals with acute opportunistic infections: a multicenter randomized strategy trial. PLoS ONE 4, e5575 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Makadzange, A. T. et al. Early versus delayed initiation of antiretroviral therapy for concurrent HIV infection and cryptococcal meningitis in sub-Saharan Africa. Clin. Infect. Dis. 50, 1532–1538 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Bisson, G. P. et al. Early versus delayed antiretroviral therapy and cerebrospinal fluid fungal clearance in adults with HIV and cryptococcal meningitis. Clin. Infect. Dis. 56, 1165–1173 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Alufandika, M. et al. A pragmatic approach to managing antiretroviral therapy-experienced patients diagnosed with HIV-associated cryptococcal meningitis: impact of antiretroviral therapy adherence and duration. AIDS 34, 1425–1428 (2020).

    Article  PubMed  Google Scholar 

  183. Boulware, D. R. & Jarvis, J. N. Timing of antiretroviral therapy in cryptococcal meningitis: what we can (and cannot) learn from observational data. Clin. Infect. Dis. 77, 74–76 (2023).

    Article  PubMed  Google Scholar 

  184. Beardsley, J. et al. Do Intracerebral cytokine responses explain the harmful effects of dexamethasone in human immunodeficiency virus-associated cryptococcal meningitis? Clin. Infect. Dis. 68, 1494–1501 (2018).

    Article  PubMed Central  Google Scholar 

  185. Brunel, A. S. et al. Thalidomide for steroid-dependent immune reconstitution inflammatory syndromes during AIDS. AIDS 26, 2110–2112 (2012).

    Article  PubMed  Google Scholar 

  186. Gaube, G. et al. Treatment with adalimumab for severe immune reconstitution inflammatory syndrome in an HIV-infected patient presenting with cryptococcal meningitis. Med. Mal. Infect. 46, 154–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Ssebambulidde, K. et al. Treatment recommendations for non-HIV associated cryptococcal meningoencephalitis including management of post-infectious inflammatory response syndrome. Front. Neurol. 13, 994396 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Anjum, S. et al. Outcomes in previously healthy cryptococcal meningoencephalitis patients treated with pulse taper corticosteroids for post-infectious inflammatory syndrome. Clin. Infect. Dis. 73, e2789–e2798 (2021).

    Article  PubMed  Google Scholar 

  189. Tugume, L. et al. Prognostic implications of baseline anaemia and changes in haemoglobin concentrations with amphotericin B therapy for cryptococcal meningitis. HIV Med. 18, 13–20 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Tugume, L. et al. Association of hyponatremia on mortality in cryptococcal meningitis: a prospective cohort. Open Forum Infect. Dis. 9, ofac301 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Lofgren, S. et al. Differences in immunologic factors among patients presenting with altered mental status during cryptococcal meningitis. J. Infect. Dis. 215, 693–697 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pastick, K. A. et al. Seizures in human immunodeficiency virus-associated cryptococcal meningitis: predictors and outcomes. Open Forum Infect. Dis. 6, ofz478 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Abassi, M. et al. Cerebrospinal fluid lactate as a prognostic marker of disease severity and mortality in cryptococcal meningitis. Clin. Infect. Dis. 73, e3077–e3082 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Rolfes, M. A. et al. The effect of therapeutic lumbar punctures on acute mortality from cryptococcal meningitis. Clin. Infect. Dis. 59, 1607–1614 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bicanic, T. et al. Relationship of cerebrospinal fluid pressure, fungal burden and outcome in patients with cryptococcal meningitis undergoing serial lumbar punctures. AIDS 23, 701–706 (2009).

    Article  PubMed  Google Scholar 

  196. Kagimu, E. et al. Therapeutic lumbar punctures in human immunodeficiency virus-associated cryptococcal meningitis: should opening pressure direct management? Open Forum Infect. Dis. 9, ofac416 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Kitonsa, J. et al. Factors affecting mortality among HIV positive patients two years after completing recommended therapy for cryptococcal meningitis in Uganda. PLoS ONE 14, e0210287 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kitonsa, J. et al. Quality of life and associated factors among HIV positive patients after completion of treatment for cryptococcal meningitis. PLoS Negl. Trop. Dis. 15, e0008983 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dean, O. et al. Quality of life of HIV-negative, previously healthy individuals following cryptococcal meningoencephalitis. Sci. Rep. 11, 3673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Krishnamoorthy, A., Joel, A. & Abhilash, K. P. Cryptococcal meningitis with multiple cranial nerves palsies: a review of literature. J. Glob. Infect. Dis. 7, 123–124 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Mohan, S., Ahmed, S. I., Alao, O. A. & Schliep, T. C. A case of AIDS associated cryptococcal meningitis with multiple cranial nerve neuropathies. Clin. Neurol. Neurosurg. 108, 610–613 (2006).

    Article  PubMed  Google Scholar 

  202. Rival, G. et al. Bilateral cranial nerve VI palsies in cryptococcal meningitis, HIV, and syphilis: a case report. Clin. Pract. Cases Emerg. Med. 5, 515–518 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Duggan, J. & Walls, H. M. Ocular complications of cryptococcal meningitis in patients with HIV: report of two cases and review of the literature. J. Int. Assoc. Physicians AIDS Care 11, 283–288 (2012).

    Article  Google Scholar 

  204. Neo, W. L., Durisala, N. & Ho, E. C. Reversible hearing loss following cryptococcal meningitis: case study. J. Laryngol. Otol. 130, 691–695 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Wang, H. C. et al. The prognosis of hearing impairment complicating HIV-negative cryptococcal meningitis. Neurology 65, 320–322 (2005).

    Article  PubMed  Google Scholar 

  206. Holikatti, P. C. & Kar, N. Psychiatric manifestations in a patient with HIV-associated neurocognitive symptoms and cryptococcal meningitis. Indian. J. Psychol. Med. 34, 381–382 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Lofgren, S. M. et al. The effect of sertraline on depression and associations with persistent depression in survivors of HIV-related cryptococcal meningitis. Wellcome Open Res. 6, 45 (2021).

    Article  Google Scholar 

  208. Carlson, R. D. et al. Predictors of neurocognitive outcomes on antiretroviral therapy after cryptococcal meningitis: a prospective cohort study. Metab. Brain Dis. 29, 269–279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Levin, A. E. et al. Outpatient cryptococcal antigen screening is associated with favorable baseline characteristics and improved survival in persons with cryptococcal meningitis in Uganda. Clin. Infect. Dis. 76, e759–e765 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Meya, D. B. et al. Reflexive laboratory-based cryptococcal antigen screening and preemptive fluconazole therapy for cryptococcal antigenemia in HIV-infected individuals with CD4 <100 cells/µL: a stepped-wedge, cluster-randomized trial. J. Acquir. Immune Defic. Syndr. 80, 182–189 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Enock, K. et al. Evaluation of the initial 12 months of a routine cryptococcal antigen screening program in reduction of HIV-associated cryptococcal meningitis in Uganda. BMC Health Serv. Res. 22, 301 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Lawrence, D. S. et al. Decision making in a clinical trial for a life-threatening illness: therapeutic expectation, not misconception. Soc. Sci. Med. 305, 115082 (2022).

    Article  PubMed  Google Scholar 

  213. Link, A. et al. Delays in cryptococcal meningitis diagnosis and care: a mixed methods study in rural Uganda. Ann. Glob. Health 88, 22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Yaich, S. et al. Early onset of paucisymptomatic cryptococcal meningitis in a kidney transplant patient: a case report and review of the literature. Transpl. Proc. 43, 663–665 (2011).

    Article  CAS  Google Scholar 

  215. Bosnić, D. et al. Cryptococcal meningitis as a diagnostic problem in a patient with SLE – case report [Croatian]. Lijec. Vjesn. 130, 136–140 (2008).

    PubMed  Google Scholar 

  216. Jongwutiwes, U., Sungkanuparph, S. & Kiertiburanakul, S. Comparison of clinical features and survival between cryptococcosis in human immunodeficiency virus (HIV)-positive and HIV-negative patients. Jpn. J. Infect. Dis. 61, 111–115 (2008).

    Article  PubMed  Google Scholar 

  217. Lin, T. Y. et al. Cryptococcal disease in patients with or without human immunodeficiency virus: clinical presentation and monitoring of serum cryptococcal antigen titers. J. Microbiol. Immunol. Infect. 42, 220–226 (2009).

    PubMed  Google Scholar 

  218. Srishyla, D. et al. Determinants of cryptococcal antigen (CrAg) screening uptake in Kampala, Uganda: an assessment of health center characteristics. Med Mycol. 60, myac013 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Namuju, O. C. et al. Adherence of health workers to guidelines for screening and management of cryptococcal meningitis in Uganda. PLoS ONE 18, e0284165 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Wake, R. M., Molloy, S. F., Jarvis, J. N., Harrison, T. S. & Govender, N. P. Cryptococcal antigenemia in advanced human immunodeficiency virus disease: pathophysiology, epidemiology, and clinical implications. Clin. Infect. Dis. 76, 764–770 (2023).

    Article  CAS  PubMed  Google Scholar 

  221. Mpoza, E. et al. Cryptococcal antigenemia in human immunodeficiency virus antiretroviral therapy-experienced Ugandans with virologic failure. Clin. Infect. Dis. 71, 1726–1731 (2020).

    Article  CAS  PubMed  Google Scholar 

  222. Boulware, D. R. et al. Oral lipid nanocrystal amphotericin B for cryptococcal meningitis: a randomized clinical trial. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciad440 (2023).

  223. Ngan, N. T. T. et al. An open label randomized controlled trial of tamoxifen combined with amphotericin B and fluconazole for cryptococcal meningitis. Elife 10, e68929 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Rhein, J. et al. Adjunctive sertraline for HIV-associated cryptococcal meningitis: a randomised, placebo-controlled, double-blind phase 3 trial. Lancet Infect. Dis. 19, 843–851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Shaw, K. J. et al. In vitro and in vivo evaluation of APX001A/APX001 and other Gwt1 inhibitors against Cryptococcus. Antimicrob. Agents Chemother. 62, e00523-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Wiederhold, N. P. et al. Fungal-specific Cyp51 inhibitor VT-1598 demonstrates in vitro activity against Candida and Cryptococcus species, endemic fungi, including Coccidioides species, Aspergillus species and Rhizopus arrhizus. J. Antimicrob. Chemother. 73, 404–408 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Gerlach, E. S. et al. ATI-2307 exhibits equivalent antifungal activity in Cryptococcus neoformans clinical isolates with high and low fluconazole IC50. Front. Cell Infect. Microbiol. 11, 695240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Guo, X. et al. Sterol sponge mechanism is conserved for glycosylated polyene macrolides. ACS Cent. Sci. 7, 781–791 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. World Health Organization. WHO fungal priority pathogens list to guide research, development and public health action. World Health Organization https://www.who.int/publications/i/item/9789240060241 (2022).

  230. Ending Cryptococcal Meningitis Deaths by 2030 – Strategic Framework. Drugs for Neglected Diseases Initiative https://dndi.org/wp-content/uploads/2021/05/EndCryptococcalMeningitisDeaths2030-StrategicFramework-EN-2021.pdf (2021).

  231. Faini, D. et al. Laboratory-reflex cryptococcal antigen screening is associated with a survival benefit in Tanzania. J. Acquir. Immune Defic. Syndr. 80, 205–213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Nalintya, E. et al. A prospective evaluation of a multisite cryptococcal screening and treatment program in HIV clinics in Uganda. J. Acquir. Immune Defic. Syndr. 78, 231–238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Rolfes, M. A. et al. Cerebrospinal fluid culture positivity and clinical outcomes after amphotericin-based induction therapy for cryptococcal meningitis. Open Forum Infect. Dis. 2, ofv157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Grant, P. M. et al. Risk factor analyses for immune reconstitution inflammatory syndrome in a randomized study of early vs. deferred ART during an opportunistic infection. PLoS ONE 5, e11416 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Bicanic, T. et al. Immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis: a prospective study. J. Acquir. Immune Defic. Syndr. 51, 130–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  236. Meya, D. B. et al. Cellular immune activation in cerebrospinal fluid from Ugandans with cryptococcal meningitis and immune reconstitution inflammatory syndrome. J. Infect. Dis. 211, 1597–1606 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.T. was supported by the Fogarty International Center of the National Institutes of Health under grant D43TW009345 awarded to the Northern Pacific Global Health Fellows Program. J.K. and J.G. are supported by the Fogarty International Center and National Institute of Neurologic Disorders and Stroke (R01NS086312).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (L.T.); Epidemiology (L.T. and R.R.); Mechanisms/pathophysiology (L.T., J.K., K.S. and D.B.M.); Diagnosis, screening and prevention (L.T., R.R. and R.M.W.); Management (L.T., D.S.L., J.E., D.B.M., J.G. and M.A.); Quality of life (L.T. and M.A.); Outlook (L.T., D.R.B. and D.B.M.); all authors researched data for this article, discussed content and made revisions.

Corresponding author

Correspondence to Lillian Tugume.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks Nelesh Govender; William G. Powderly, who co-reviewed with Adriana Rauseo Acevedo; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tugume, L., Ssebambulidde, K., Kasibante, J. et al. Cryptococcal meningitis. Nat Rev Dis Primers 9, 62 (2023). https://doi.org/10.1038/s41572-023-00472-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00472-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing