Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Classic and exertional heatstroke

Abstract

In the past two decades, record-breaking heatwaves have caused an increasing number of heat-related deaths, including heatstroke, globally. Heatstroke is a heat illness characterized by the rapid rise of core body temperature above 40 °C and central nervous system dysfunction. It is categorized as classic when it results from passive exposure to extreme environmental heat and as exertional when it develops during strenuous exercise. Classic heatstroke occurs in epidemic form and contributes to 9–37% of heat-related fatalities during heatwaves. Exertional heatstroke sporadically affects predominantly young and healthy individuals. Under intensive care, mortality reaches 26.5% and 63.2% in exertional and classic heatstroke, respectively. Pathological studies disclose endothelial cell injury, inflammation, widespread thrombosis and bleeding in most organs. Survivors of heatstroke may experience long-term neurological and cardiovascular complications with a persistent risk of death. No specific therapy other than rapid cooling is available. Physiological and morphological factors contribute to the susceptibility to heatstroke. Future research should identify genetic factors that further describe individual heat illness risk and form the basis of precision-based public health response. Prioritizing research towards fundamental mechanism and diagnostic biomarker discovery is crucial for the design of specific management approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamental principles of thermoregulation.
Fig. 2: The potential pathogenic mechanisms that can result in heatstroke.
Fig. 3: Putative mechanisms of tissue injury and organ dysfunction in heatstroke.
Fig. 4: Structural and ultrastructural alterations in models of heatstroke.
Fig. 5: Brain damage in nonhuman primate models of heatstroke.
Fig. 6: Conventional and novel cooling techniques.

Similar content being viewed by others

References

  1. Bouchama, A. & Knochel, J. P. Heat stroke. N. Engl. J. Med. 346, 1978–1988 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Leon, L. R. & Bouchama, A. Heat stroke. Compr. Physiol. 5, 611–647 (2015).

    Article  PubMed  Google Scholar 

  3. González-Alonso, J., Quistorff, B., Krustrup, P., Bangsbo, J. & Saltin, B. Heat production in human skeletal muscle at the onset of intense dynamic exercise. J. Physiol. 524, 603–615 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Griffin, G. E. & Goldspink, G. The increase in skeletal muscle mass in male and female mice. Anat. Rec. 177, 465–469 (1973).

    Article  CAS  PubMed  Google Scholar 

  5. Austin, M. & Berry, J. Observations on one hundred cases of heatstroke. J. Am. Med. Assoc. 161, 1525–1529 (1956).

    Article  CAS  PubMed  Google Scholar 

  6. Bouchama, A. et al. Ineffectiveness of dantrolene sodium in the treatment of heatstroke. Crit. Care Med. 19, 176–180 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Bouchama, A. & De Vol, E. B. Acid-base alterations in heatstroke. Intensive Care Med. 27, 680–685 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Casa, D. et al. Historical perspectives on medical care for heat stroke, part 1: ancient times through the nineteenth century: a review of the literature. Athl. Train. Sports Health Care 2, 132–138 (2010).

    Article  Google Scholar 

  9. Casa, D. et al. Historical perspectives on medical care for heat stroke, part 2: 1850 through the present: a review of the literature. Athl. Train. Sports Health Care 2, 178–190 (2010).

    Article  Google Scholar 

  10. Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Watts, N. et al. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet 397, 129–170 (2021).

    Article  PubMed  Google Scholar 

  12. Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Chang. 11, 492–500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. USGCRP. 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I (eds Wuebbles, D. J. et al.) 470 (U.S. Global Change Research Program, 2017).

  14. Carré, N., Ermanel, C., Isnard, H. & Ledrans, M. Décès par coup de chaleur dans les établissements de santé en France: 8 aout-19 aout 2003. Bull. Epidemiol. Hebd. 45, 226–227 (2003). This study reveals that the time between onset of heatstroke signs and symptoms and death was <24 h in 47% of 2,417 patients, independent of age, sex and type of housing.

    Google Scholar 

  15. Fouillet, A. et al. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health 80, 16–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jones, T. S. et al. Morbidity and mortality associated with the July 1980 heat wave in St Louis and Kansas City, Mo. JAMA 247, 3327–3331 (1982). This study shows that 61% of patients with heatstroke were hospitalized or died in <24 h from the onset of the heat illness.

    Article  CAS  PubMed  Google Scholar 

  17. Semenza, J. C. et al. Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 335, 84–90 (1996). This study demonstrates that the mortality in heatwaves is due to heatstroke and heat-aggravating chronic medical conditions, particularly cardiovascular diseases.

    Article  CAS  PubMed  Google Scholar 

  18. Bobb, J. F., Obermeyer, Z., Wang, Y. & Dominici, F. Cause-specific risk of hospital admission related to extreme heat in older adults. JAMA 312, 2659–2667 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501 (2017). This study identifies a global threshold beyond which daily mean surface air temperature and relative humidity become deadly and predicts a 48–74% increase in exposure of the world’s population to this deadly threshold depending on the level of reduction in greenhouse gas emissions.

    Article  Google Scholar 

  20. Coombs, A. Climate change concerns prompt improved disease forecasting. Nat. Med. 14, 3 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. World Health Organization. Protecting Health from Climate Changes: Global Research Priorities. WHO http://apps.who.int/iris/bitstream/handle/10665/44133/9789241598187_eng.pdf (2009).

  23. Bouchama, A. et al. A model of exposure to extreme environmental heat uncovers the human transcriptome to heat stress. Sci. Rep. 7, 9429 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225–257 (2005).

    Article  PubMed  Google Scholar 

  25. Lopez-Maury, L., Marguerat, S. & Bahler, J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat. Rev. Genet. 9, 583–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Mahat, D. B., Salamanca, H. H., Duarte, F. M., Danko, C. G. & Lis, J. T. Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. Mol. Cell 62, 63–78 (2016). This study demonstrates that the mammalian heat shock response is fast and extensive, leading to the expression of several hundreds of genes not limited to HSF1-induced genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richter, K., Haslbeck, M. & Buchner, J. The heat shock response: life on the verge of death. Mol. Cell 40, 253–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Kourtis, N., Nikoletopoulou, V. & Tavernarakis, N. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature 490, 213–218 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Roti Roti, J. L. Cellular responses to hyperthermia (40–46 °C): cell killing and molecular events. Int. J. Hyperth. 24, 3–15 (2008).

    Article  Google Scholar 

  30. Mackowiak, P. A. Concepts of fever. Arch. Intern. Med. 158, 1870–1881 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura, K. Central circuitries for body temperature regulation and fever. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1207–R1228 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Nakamura, K. & Morrison, S. F. A thermosensory pathway that controls body temperature. Nat. Neurosci. 11, 62–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Guyton, A. & Hall, J. E. Body Temperature, Temperature Regulation and Fever (W. B. Saunders, 2000).

  34. Vriens, J., Nilius, B. & Voets, T. Peripheral thermosensation in mammals. Nat. Rev. Neurosci. 15, 573–589 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Ghaznawi, H. I. & Ibrahim, M. A. Heatstroke and heat exhaustion in pilgrims performing the Haj (annual pilgrimage) in Saudi Arabia. Ann. Saudi Med. 7, 323–326 (1987).

    Article  Google Scholar 

  36. Centers for Disease Control and Prevention. Heat-related Illness. CDC https://www.cdc.gov/pictureofamerica/pdfs/picture_of_america_heat-related_illness.pdf (2021).

  37. Nakamura, S. & Aruga, T. Epidemiology of heat illness. Japan Med. Assoc. J. 56, 162–166 (2013).

    Google Scholar 

  38. Hemon, D. et al. Surmortalité liée à la canicule d’août 2003 en France. Bull. Epidemiol. Hebd. 45–46, 221–225 (2004).

    Google Scholar 

  39. Dhainaut, J. F., Claessens, Y. E., Ginsburg, C. & Riou, B. Unprecedented heat-related deaths during the 2003 heat wave in Paris: consequences on emergency departments. Crit. Care 8, 1–2 (2004).

    Article  PubMed  Google Scholar 

  40. Ghumman, U. & Horney, J. Characterizing the impact of extreme heat on mortality, Karachi, Pakistan, June 2015. Prehosp. Disaster Med. 31, 263–266 (2016).

    Article  PubMed  Google Scholar 

  41. Robine, J. M. et al. Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol. 331, 171–178 (2008). This population-level epidemiological study demonstrates the unprecedented incidence of heat-related deaths during the European heatwave of 2003, underlining the emerging danger of climate changes to human health.

    Article  PubMed  Google Scholar 

  42. Knowlton, K. et al. The 2006 California heat wave: impacts on hospitalizations and emergency department visits. Environ. Health Perspect. 117, 61–67 (2009).

    Article  PubMed  Google Scholar 

  43. Public Health England. PHE Heatwave Mortality Monitoring, Summer 2019. Public Health England https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/942646/PHE_heatwave_report_2019.pdf (2019).

  44. Government of British Columbia. Coroner Responded Deaths in B.C., June 25-July 1, 2016-2021. Government of British Columbia https://www2.gov.bc.ca/gov/content/life-events/death/coroners-service/news-and-updates/coroner-responded-deaths (2021).

  45. Semenza, J. C., McCullough, J. E., Flanders, W. D., McGeehin, M. A. & Lumpkin, J. R. Excess hospital admissions during the July 1995 heat wave in Chicago. Am. J. Prev. Med. 16, 269–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Hayashida, K., Shimizu, K. & Yokota, H. Severe heatwave in Japan. Acute Med. Surg. 6, 206–207 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & Garcia-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, D. H. Epidemic heat effects. JAMA 247, 3354–3355 (1982).

    Article  CAS  PubMed  Google Scholar 

  49. Donoghue, E. R. et al. Criteria for the diagnosis of heat-related deaths: National Association of Medical Examiners. Position paper. National Association of Medical Examiners Ad Hoc Committee on the Definition of Heat-Related Fatalities. Am. J. Forensic Med. Pathol. 18, 11–14 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Nixdorf-Miller, A., Hunsaker, D. M. & Hunsaker, J. C. 3rd Hypothermia and hyperthermia medicolegal investigation of morbidity and mortality from exposure to environmental temperature extremes. Arch. Pathol. Lab. Med. 130, 1297–1304 (2006).

    Article  PubMed  Google Scholar 

  51. Palmiere, C. & Mangin, P. Hyperthermia and postmortem biochemical investigations. Int. J. Leg. Med. 127, 93–102 (2013).

    Article  Google Scholar 

  52. Howe, A. S. & Boden, B. P. Heat-related illness in athletes. Am. J. Sports Med. 35, 1384–1395 (2007).

    Article  PubMed  Google Scholar 

  53. Yankelson, L. et al. Life-threatening events during endurance sports: is heat stroke more prevalent than arrhythmic death? J. Am. Coll. Cardiol. 64, 463–469 (2014).

    Article  PubMed  Google Scholar 

  54. Gamage, P. J., Fortington, L. V. & Finch, C. F. Epidemiology of exertional heat illnesses in organised sports: A systematic review. J. Sci. Med. Sport. 23, 701–709 (2020).

    Article  PubMed  Google Scholar 

  55. Breslow, R. G. et al. Medical Tent Utilization at 10-km road races: injury, illness, and influencing factors. Med. Sci. Sports Exerc. 51, 2451–2457 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Demartini, J. K. et al. Effectiveness of cold water immersion in the treatment of exertional heat stroke at the Falmouth Road Race. Med. Sci. Sports Exerc. 47, 240–245 (2015).

    Article  PubMed  Google Scholar 

  57. Alele, F. O., Malau-Aduli, B. S., Malau-Aduli, A. E. O. & Crowe, M. J. Epidemiology of exertional heat illness in the military: a systematic review of observational studies. Int. J. Environ. Res. Public Health 17, 7037 (2020).

    Article  PubMed Central  Google Scholar 

  58. Donham, B. P., Frankfurt, S. B., Cartier, R. A., O’Hara, S. M. & Sieg, V. C. Low Incidence of death and renal failure in United States military service members hospitalized with exertional heat stroke: a retrospective cohort study. Mil. Med. 185, 362–367 (2020).

    Article  PubMed  Google Scholar 

  59. Sithinamsuwan, P. et al. Exertional heatstroke: early recognition and outcome with aggressive combined cooling — a 12-year experience. Mil. Med. 174, 496–502 (2009).

    Article  PubMed  Google Scholar 

  60. Yang, M. et al. Outcome and risk factors associated with extent of central nervous system injury due to exertional heat stroke. Medicine 96, e8417 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Filep, E. M. et al. Exertional heat stroke, modality cooling rate, and survival outcomes: a systematic review. Medicina 56, 589 (2020).

    Article  PubMed Central  Google Scholar 

  62. Bobbert, A. C. Energy expenditure in level and grade walking. J. Appl. Physiol. 15, 1015–1021 (1960).

    Article  Google Scholar 

  63. Luhtanen, P., Rahkila, P., Rusko, H. & Viitasalo, J. T. Mechanical work and efficiency in ergometer bicycling at aerobic and anaerobic thresholds. Acta Physiol. Scand. 131, 331–337 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Ravanelli, N., Cramer, M., Imbeault, P. & Jay, O. The optimal exercise intensity for the unbiased comparison of thermoregulatory responses between groups unmatched for body size during uncompensable heat stress. Physiol. Rep. 5, e13099 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cramer, M. N. & Jay, O. Selecting the correct exercise intensity for unbiased comparisons of thermoregulatory responses between groups of different mass and surface area. J. Appl. Physiol. 116, 1123–1132 (2014).

    Article  PubMed  Google Scholar 

  66. Jay, O., Bain, A. R., Deren, T. M., Sacheli, M. & Cramer, M. N. Large differences in peak oxygen uptake do not independently alter changes in core temperature and sweating during exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R832–R841 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Crandall, C. G. & Wilson, T. E. Human cardiovascular responses to passive heat stress. Compr. Physiol. 5, 17–43 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Rowell, L. B. Cardiovascular aspects of human thermoregulation. Circ. Res. 52, 367–379 (1983). This important review recapitulates the global and regional haemodynamic changes during thermoregulation in humans experiencing heat stress.

    Article  CAS  PubMed  Google Scholar 

  69. Ebi, K. L. et al. Hot weather and heat extremes: health risks. Lancet 398, 698–708 (2021). This paper provides a detailed description of the different physiological mechanistic pathways for morbidity and mortality during extreme heatwave exposure.

    Article  PubMed  Google Scholar 

  70. González-Alonso, J., Crandall, C. G. & Johnson, J. M. The cardiovascular challenge of exercising in the heat. J. Physiol. 586, 45–53 (2008).

    Article  PubMed  Google Scholar 

  71. Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA 107, 9552–9555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pal, J. S. & Eltahir, E. A. B. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Change 6, 197 (2015).

    Article  Google Scholar 

  74. Vanos, J. K., Baldwin, J. W., Jay, O. & Ebi, K. L. Simplicity lacks robustness when projecting heat-health outcomes in a changing climate. Nat. Commun. 11, 6079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. United States Environmental Protection Agency. Climate Change Indicators: Heat Waves. EPA https://www.epa.gov/climate-indicators/climate-change-indicators-heat-waves (2021).

  76. WHO, Regional Office for Europe. Heat Threatens Health: Key figures for Europe. WHO https://www.euro.who.int/en/health-topics/environment-and-health/Climate-change/archive/heat-threatens-health-key-figures-for-europe (2021).

  77. Hiromi, Y., Okamoto, H., Gehring, W. J. & Hotta, Y. Germline transformation with Drosophila mutant actin genes induces constitutive expression of heat shock genes. Cell 44, 293–301 (1986).

    Article  CAS  PubMed  Google Scholar 

  78. Parsell, D. A. & Sauer, R. T. Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev. 3, 1226–1232 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Satyal, S. H. et al. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 97, 5750–5755 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ashburner, M. & Bonner, J. J. The induction of gene activity in Drosophila by heat shock. Cell 17, 241–254 (1979).

    Article  CAS  PubMed  Google Scholar 

  81. Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Morimoto, R. I. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb. Symp. Quant. Biol. 76, 91–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Gidalevitz, T., Prahlad, V. & Morimoto, R. I. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb. Perspect. Biol. 3, a009704 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gomez-Pastor, R., Burchfiel, E. T. & Thiele, D. J. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 4–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Vihervaara, A., Duarte, F. M. & Lis, J. T. Molecular mechanisms driving transcriptional stress responses. Nat. Rev. Genet. 19, 385–397 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van Oosten-Hawle, P. & Morimoto, R. I. Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses. J. Exp. Biol. 217, 129–136 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Haynes, C. M. & Ron, D. The mitochondrial UPR — protecting organelle protein homeostasis. J. Cell Sci. 123, 3849–3855 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Sonna, L. A., Fujita, J., Gaffin, S. L. & Lilly, C. M. Invited review: effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol. 92, 1725–1742 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, J. E., Oney, M., Frizzell, K., Phadnis, N. & Hollien, J. Drosophila melanogaster activating transcription factor 4 regulates glycolysis during endoplasmic reticulum stress. G3 5, 667–675 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sonna, L. A. et al. Exertional heat injury and gene expression changes: a DNA microarray analysis study. J. Appl. Physiol. 96, 1943–1953 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Guisbert, E., Czyz, D. M., Richter, K., McMullen, P. D. & Morimoto, R. I. Identification of a tissue-selective heat shock response regulatory network. PLoS Genet 9, e1003466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Prahlad, V., Cornelius, T. & Morimoto, R. I. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320, 811–814 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Takeuchi, T. et al. Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proc. Natl Acad. Sci. USA 112, E2497–E2506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tatum, M. C. et al. Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Curr. Biol. 25, 163–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Tan, C. L. et al. Warm-sensitive neurons that control body temperature. Cell 167, 47–59.e15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Riabowol, K. T., Mizzen, L. A. & Welch, W. J. Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science 242, 433–436 (1988).

    Article  CAS  PubMed  Google Scholar 

  98. Moseley, P. L. Heat shock proteins and heat adaptation of the whole organism. J. Appl. Physiol. 83, 1413–1417 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Yang, Y. L. & Lin, M. T. Heat shock protein expression protects against cerebral ischemia and monoamine overload in rat heatstroke. Am. J. Physiol. 276, H1961–H1967 (1999).

    CAS  PubMed  Google Scholar 

  100. Lee, W. C., Wen, H. C., Chang, C. P., Chen, M. Y. & Lin, M. T. Heat shock protein 72 overexpression protects against hyperthermia, circulatory shock, and cerebral ischemia during heatstroke. J. Appl. Physiol. 100, 2073–2082 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Zelin, E. & Freeman, B. C. Lysine deacetylases regulate the heat shock response including the age-associated impairment of HSF1. J. Mol. Biol. 427, 1644–1654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Buckley, I. K. A light and electron microscopic study of thermally injured cultured cells. Lab. Invest. 26, 201–209 (1972).

    CAS  PubMed  Google Scholar 

  103. Sakaguchi, Y. et al. Apoptosis in tumors and normal tissues induced by whole body hyperthermia in rats. Cancer Res. 55, 5459–5464 (1995).

    CAS  PubMed  Google Scholar 

  104. Roberts, G. T. et al. Microvascular injury, thrombosis, inflammation, and apoptosis in the pathogenesis of heatstroke: a study in baboon model. Arterioscler Thromb. Vasc. Biol. 28, 1130–1136 (2008). This study describes the structural and ultrastructural damage caused by heatstroke in a nonhuman primate model that replicates human heatstroke pathology.

    Article  CAS  PubMed  Google Scholar 

  105. Bynum, G. D. et al. Induced hyperthermia in sedated humans and the concept of critical thermal maximum. Am. J. Physiol. 235, R228–R236 (1978).

    CAS  PubMed  Google Scholar 

  106. Bouchama, A. et al. Inflammatory, hemostatic, and clinical changes in a baboon experimental model for heatstroke. J. Appl. Physiol. 98, 697–705 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Byrne, C., Lee, J. K., Chew, S. A., Lim, C. L. & Tan, E. Y. Continuous thermoregulatory responses to mass-participation distance running in heat. Med. Sci. Sports Exerc. 38, 803–810 (2006).

    Article  PubMed  Google Scholar 

  108. Kuennen, M. et al. Thermotolerance and heat acclimation may share a common mechanism in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R524–R533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Horowitz, M. Epigenetics and cytoprotection with heat acclimation. J. Appl. Physiol. 120, 702–710 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Bouchard, C. Genomic predictors of trainability. Exp. Physiol. 97, 347–352 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Lindholm, M. E. et al. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics 9, 1557–1569 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bouchama, A., Parhar, R. S., el-Yazigi, A., Sheth, K. & al-Sedairy, S. Endotoxemia and release of tumor necrosis factor and interleukin 1 alpha in acute heatstroke. J. Appl. l Physiol. 70, 2640–2644 (1991).

    Article  CAS  Google Scholar 

  113. Bouchama, A., al-Sedairy, S., Siddiqui, S., Shail, E. & Rezeig, M. Elevated pyrogenic cytokines in heatstroke. Chest 104, 1498–1502 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Huisse, M. G. et al. Leukocyte activation: the link between inflammation and coagulation during heatstroke. A study of patients during the 2003 heat wave in Paris. Crit. Care Med. 36, 2288–2295 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Lu, K. C., Wang, J. Y., Lin, S. H., Chu, P. & Lin, Y. F. Role of circulating cytokines and chemokines in exertional heatstroke. Crit. Care Med. 32, 399–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. King, M. A., Leon, L. R., Morse, D. A. & Clanton, T. L. Unique cytokine and chemokine responses to exertional heat stroke in mice. J. Appl. Physiol. 122, 296–306 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Iwaniec, J. et al. Acute phase response to exertional heat stroke in mice. Exp. Physiol. 106, 222–232 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Biedenkapp, J. C. & Leon, L. R. Increased cytokine and chemokine gene expression in the CNS of mice during heat stroke recovery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R978–R986 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Rock, K. L., Lai, J. J. & Kono, H. Innate and adaptive immune responses to cell death. Immunol. Rev. 243, 191–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dehbi, M. et al. Hsp-72, a candidate prognostic indicator of heatstroke. Cell Stress Chaperones 15, 593–603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dehbi, M. et al. Toll-like receptor 4 and high-mobility group Box 1 are critical mediators of tissue injury and survival in a mouse model for heatstroke. PLoS ONE 7, e44100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hagiwara, S. et al. Recombinant thrombomodulin prevents heatstroke by inhibition of high-mobility group box 1 protein in sera of rats. Shock 34, 402–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, C. M. et al. Activated protein C therapy in a rat heat stroke model. Crit. Care Med. 34, 1960–1966 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Lin, M. T., Liu, H. H. & Yang, Y. L. Involvement of interleukin-1 receptor mechanisms in development of arterial hypotension in rat heatstroke. Am. J. Physiol. 273, H2072–H2077 (1997).

    CAS  PubMed  Google Scholar 

  126. Liu, C. C., Chien, C. H. & Lin, M. T. Glucocorticoids reduce interleukin-1 concentration and result in neuroprotective effects in rat heatstroke. J. Physiol. 527, 333–343 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bouchama, A. et al. Recombinant activated protein C attenuates endothelial injury and inhibits procoagulant microparticles release in baboon heatstroke. Arterioscler Thromb. Vasc. Biol. 28, 1318–1325 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Leon, L. R. The thermoregulatory consequences of heat stroke: are cytokines involved? J. Therm. Biol. 31, 67–81 (2006).

    Article  CAS  Google Scholar 

  129. Leon, L. R., Dineen, S., Blaha, M. D., Rodriguez-Fernandez, M. & Clarke, D. C. Attenuated thermoregulatory, metabolic, and liver acute phase protein response to heat stroke in TNF receptor knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1421–R1432 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. al-Mashhadani, S. A. et al. The coagulopathy of heat stroke: alterations in coagulation and fibrinolysis in heat stroke patients during the pilgrimage (Haj) to Makkah. Blood Coagul. Fibrinolysis 5, 731–736 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Bouchama, A. et al. Activation of coagulation and fibrinolysis in heatstroke. Thromb. Haemost. 76, 909–915 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Bouchama, A. et al. Tissue factor/factor VIIa pathway mediates coagulation activation in induced-heat stroke in the baboon. Crit. Care Med. 40, 1229–1236 (2012). Using a human primate model of heatstroke, this study demonstrates that tissue factor initiates the coagulation activation in heatstroke.

    Article  CAS  PubMed  Google Scholar 

  133. Sohal, R. S., Sun, S. C., Colcolough, H. L. & Burch, G. E. Heat stroke. An electron microscopic study of endothelial cell damage and disseminated intravascular coagulation. Arch. Intern. Med. 122, 43–47 (1968).

    Article  CAS  PubMed  Google Scholar 

  134. Bouchama, A., Hammami, M. M., Haq, A., Jackson, J. & al-Sedairy, S. Evidence for endothelial cell activation/injury in heatstroke. Crit. Care Med. 24, 1173–1178 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Shieh, S. D., Shiang, J. C., Lin, Y. F., Shiao, W. Y. & Wang, J. Y. Circulating angiotensin-converting enzyme, von Willebrand factor antigen and thrombomodulin in exertional heat stroke. Clin. Sci. 89, 261–265 (1995).

    Article  CAS  Google Scholar 

  136. O’Connor, F. G., Grunberg, N. E., Harp, J. B. & Duster, P. A. Exertion-related illness: the critical roles of leadership and followership. Curr. Sports Med. Rep. 19, 35–39 (2020).

    Article  PubMed  Google Scholar 

  137. Racinais, S., Cocking, S. & Périard, J. D. Sports and environmental temperature: from warming-up to heating-up. Temperature 4, 227–257 (2017).

    Article  Google Scholar 

  138. Laitano, O. et al. Osmolality selectively offsets the impact of hyperthermia on mouse skeletal muscle in vitro. Front. Physiol. 9, 1496 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. van der Poel, C. & Stephenson, D. G. Effects of elevated physiological temperatures on sarcoplasmic reticulum function in mechanically skinned muscle fibers of the rat. Am. J. Physiol. Cell Physiol. 293, C133–C141 (2007).

    Article  PubMed  Google Scholar 

  140. van der Poel, C., Edwards, J. N., Macdonald, W. A. & Stephenson, D. G. Effect of temperature-induced reactive oxygen species production on excitation-contraction coupling in mammalian skeletal muscle. Clin. Exp. Pharmacol. Physiol. 35, 1482–1487 (2008).

    PubMed  Google Scholar 

  141. Thongprayoon, C. et al. Impact of rhabdomyolysis on outcomes of hospitalizations for heat stroke in the United States. Hosp. Pract. 48, 276–281 (2020).

    Article  Google Scholar 

  142. Clarkson, P. M., Kearns, A. K., Rouzier, P., Rubin, R. & Thompson, P. D. Serum creatine kinase levels and renal function measures in exertional muscle damage. Med. Sci. Sports Exerc. 38, 623–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Gardner, L. et al. Investigating the genetic susceptibility to exertional heat illness. J. Med. Gene. 57, 531–541 (2020).

    Article  CAS  Google Scholar 

  144. Dlamini, N. et al. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul. Disord. 23, 540–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Protasi, F., Paolini, C. & Dainese, M. Calsequestrin-1: a new candidate gene for malignant hyperthermia and exertional/environmental heat stroke. J. Physiol. 587, 3095–3100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Michelucci, A. et al. Strenuous exercise triggers a life-threatening response in mice susceptible to malignant hyperthermia. FASEB. J. 31, 3649–3662 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Roux-Buisson, N. et al. Identification of variants of the ryanodine receptor type 1 in patients with exertional heat stroke and positive response to the malignant hyperthermia in vitro contracture test. Br. J. Anaesth. 116, 566–568 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Lanner, J. T. et al. AICAR prevents heat-induced sudden death in RyR1 mutant mice independent of AMPK activation. Nat. Med. 18, 244–251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Snoeck, M. et al. RYR1-related myopathies: a wide spectrum of phenotypes throughout life. Eur. J. Neurol. 22, 1094–1112 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Sagui, E. Malignant hyperthermia, exertional heat illness, and ryr1 variants: the muscle may not be the brain. Anesthesiology 124, 510 (2016).

    Article  PubMed  Google Scholar 

  151. Sagui, E. et al. Is there a link between exertional heat stroke and susceptibility to malignant hyperthermia? PloS ONE 10, e0135496 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. González-Alonso, J., Calbet, J. A. & Nielsen, B. Muscle blood flow is reduced with dehydration during prolonged exercise in humans. J. Physiol. 513, 895–905 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Laitano, O., Oki, K. & Leon, L. R. The role of skeletal muscles in exertional heat stroke pathophysiology. Int. J. Sports Med. 42, 673–681 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Hyatt, H. W. & Powers, S. K. The role of calpains in skeletal muscle remodeling with exercise and inactivity-induced atrophy. Int. J. Sports Med. 41, 994–1008 (2020).

    Article  PubMed  Google Scholar 

  155. Argaud, L. et al. Short- and long-term outcomes of heatstroke following the 2003 heat wave in Lyon, France. Arch. Intern. Med. 167, 2177–2183 (2007).

    Article  PubMed  Google Scholar 

  156. Misset, B. et al. Mortality of patients with heatstroke admitted to intensive care units during the 2003 heat wave in France: a national multiple-center risk-factor study. Crit. Care Med. 34, 1087–1092 (2006).

    Article  PubMed  Google Scholar 

  157. Shapiro, Y. & Seidman, D. S. Field and clinical observations of exertional heat stroke patients. Med. Sci. Sports Exerc. 22, 6–14 (1990).

    Article  CAS  PubMed  Google Scholar 

  158. Ferris, E. B., Blankenhorn, M. A., Robinson, H. W. & Cullen, G. E. Heat stroke: clinical and chemical observations on 44 cases. J. Clin. Invest. 17, 249–261 (1938).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Malamud, N., Haymaker, W. & Custer, R. Heatstroke: a clinico-pathologic study of 125 fatal cases. Mil. Surg. 99, 397–449 (1946). This landmark post-mortem study reveals that heatstroke is a systemic illness that causes extensive damage to most organs in the body.

    CAS  PubMed  Google Scholar 

  160. Yaqub, B. A. Neurologic manifestations of heatstroke at the Mecca pilgrimage. Neurology 37, 1004–1006 (1987).

    Article  CAS  PubMed  Google Scholar 

  161. Bazille, C. et al. Brain damage after heat stroke. J. Neuropathol. Exp. Neurol. 64, 970–975 (2005).

    Article  PubMed  Google Scholar 

  162. Fuse, A. et al. Reversible focal cerebral cortical lesions in a patient with heat stroke. Intern. Med. 52, 377–380 (2013).

    Article  PubMed  Google Scholar 

  163. Fushimi, Y., Taki, H., Kawai, H. & Togashi, K. Abnormal hyperintensity in cerebellar efferent pathways on diffusion-weighted imaging in a patient with heat stroke. Clin. Radiol. 67, 389–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Guivarch, E., Fichet, J., Silvera, S., Zuber, B. & Cariou, A. Prolonged but reversible coma: an unusual complication of severe heatstroke. Intensive Care Med. 38, 1571–1572 (2012).

    Article  PubMed  Google Scholar 

  165. Lee, J., Choi, J., Kang, S.-Y., Kang, J.-H. & Park, J.-K. Heat stroke: increased signal intensity in the bilateral cerebellar dentate nuclei and splenium on diffusion-weighted MR imaging. Am. J. Neuroradiol. 30, e58 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mahajan, S. & Schucany, W. G. Symmetric bilateral caudate, hippocampal, cerebellar, and subcortical white matter MRI abnormalities in an adult patient with heat stroke. Proc. (Bayl. Univ. Med. Cent.) 21, 433–436 (2008).

    Google Scholar 

  167. McLaughlin, C. T., Kane, A. G. & Auber, A. E. MR imaging of heat stroke: external capsule and thalamic T1 shortening and cerebellar injury. Am. J. Neuroradiol. 24, 1372–1375 (2003).

    PubMed  PubMed Central  Google Scholar 

  168. Ookura, R., Shiro, Y., Takai, T., Okamoto, M. & Ogata, M. Diffusion-weighted magnetic resonance imaging of a severe heat stroke patient complicated with severe cerebellar ataxia. Inter. Med. 48, 1105–1108 (2009).

    Article  Google Scholar 

  169. Sudhakar, P. J. & Al-Hashimi, H. Bilateral hippocampal hyperintensities: a new finding in MR imaging of heat stroke. Pediatr. Radiol. 37, 1289–1291 (2007).

    Article  PubMed  Google Scholar 

  170. el-Kassimi, F. A., Al-Mashhadani, S., Abdullah, A. K. & Akhtar, J. Adult respiratory distress syndrome and disseminated intravascular coagulation complicating heat stroke. Chest 90, 571–574 (1986).

    Article  CAS  PubMed  Google Scholar 

  171. Meikle, A. W. & Graybill, J. R. Fibrinolysis and hemorrhage in a fatal case of heat stroke. N. Engl. J. Med. 276, 911–913 (1967).

    Article  CAS  PubMed  Google Scholar 

  172. Perchick, J. S., Winkelstein, A. & Shadduck, R. K. Disseminated intravascular coagulation in heat stroke. Response to heparin therapy. JAMA 231, 480–483 (1975).

    Article  CAS  PubMed  Google Scholar 

  173. Shibolet, S., Fisher, S., Gilat, T., Bank, H. & Heller, H. Fibrinolysis and hemorrhages in fatal heatstroke. N. Engl. J. Med. 266, 169–173 (1962).

    Article  CAS  PubMed  Google Scholar 

  174. Weber, M. B. & Blakely, J. A. The haemorrhagic diathesis of heatstroke. A consumption coagulopathy successfully treated with heparin. Lancet 1, 1190–1192 (1969).

    Article  CAS  PubMed  Google Scholar 

  175. Chao, T. C., Sinniah, R. & Pakiam, J. E. Acute heat stroke deaths. Pathology 13, 145–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  176. Bouchama, A., Dehbi, M. & Chaves-Carballo, E. Cooling and hemodynamic management in heatstroke: practical recommendations. Crit. Care 11, R54 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Hart, G. R. et al. Epidemic classical heat stroke: clinical characteristics and course of 28 patients. Medicine 61, 189–197 (1982).

    Article  CAS  PubMed  Google Scholar 

  178. Sprung, C. L. Hemodynamic alterations of heat stroke in the elderly. Chest 75, 362–366 (1979).

    Article  CAS  PubMed  Google Scholar 

  179. O’Donnell, T. F. Jr Acute heat stroke: epidemiologic, biochemical, renal, and coagulation studies. JAMA 234, 824–828 (1975).

    Article  PubMed  Google Scholar 

  180. Al-Harthi, S. S., El-Deane, M. S., Akhtar, J. & Al-Nozha, M. M. Hemodynamic changes and intravascular hydration state in heat stroke. Ann. Saudi Med. 9, 378–383 (1989).

    Article  Google Scholar 

  181. Dahmash, N. S., al Harthi, S. S. & Akhtar, J. Invasive evaluation of patients with heat stroke. Chest 103, 1210–1214 (1993).

    Article  CAS  PubMed  Google Scholar 

  182. Gaudio, J., R. & Abramson, N. Heat-induced hyperventilation. J. Appl. Physiol. 25, 742–746 (1968).

    Article  Google Scholar 

  183. Sprung, C. L., Portocarrero, C. J., Fernaine, A. V. & Weinberg, P. F. The metabolic and respiratory alterations of heat stroke. Arch. Intern. Med. 140, 665–669 (1980).

    Article  CAS  PubMed  Google Scholar 

  184. Schrier, R. W. et al. Renal, metabolic, and circulatory responses to heat and exercise. Studies in military recruits during summer training, with implications for acute renal failure. Ann. Intern. Med. 73, 213–223 (1970).

    Article  CAS  PubMed  Google Scholar 

  185. Kew, M. C. et al. The effects of heatstroke on the function and structure of the kidney. Q. J. Med. 36, 277–300 (1967).

    CAS  PubMed  Google Scholar 

  186. Satirapoj, B., Kongthaworn, S., Choovichian, P. & Supasyndh, O. Electrolyte disturbances and risk factors of acute kidney injury patients receiving dialysis in exertional heat stroke. BMC Nephrol. 17, 55 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Thongprayoon, C. et al. Impact of acute kidney injury on outcomes of hospitalizations for heat stroke in the United States. Diseases 8, 28 (2020).

    Article  PubMed Central  Google Scholar 

  188. Knochel, J. P. Heat stroke and related heat stress disorders. Dis. Mon. 35, 301–377 (1989).

    CAS  PubMed  Google Scholar 

  189. Bi, X., Deising, A. & Frenette, C. Acute liver failure from exertional heatstroke can result in excellent long-term survival with liver transplantation. Hepatology 71, 1122–1123 (2020).

    Article  PubMed  Google Scholar 

  190. Figiel, W. et al. Fulminant liver failure following a marathon: five case reports and review of literature. World J. Clin. Cases 7, 1467–1474 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Kew, M., Bersohn, I., Seftel, H. & Kent, G. Liver damage in heatstroke. Am. J. Med. 49, 192–202 (1970).

    Article  CAS  PubMed  Google Scholar 

  192. Novosad, V. L., Richards, J. L., Phillips, N. A., King, M. A. & Clanton, T. L. Regional susceptibility to stress-induced intestinal injury in the mouse. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G418–G426 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Gathiram, P., Gaffin, S. L., Brock-Utne, J. G. & Wells, M. T. Time course of endotoxemia and cardiovascular changes in heat-stressed primates. Aviat. Space Environ. Med. 58, 1071–1074 (1987).

    CAS  PubMed  Google Scholar 

  194. Shapiro, Y., Alkan, M., Epstein, Y., Newman, F. & Magazanik, A. Increase in rat intestinal permeability to endotoxin during hyperthermia. Eur. J. Appl. Physiol. Occup. Physiol. 55, 410–412 (1986).

    Article  CAS  PubMed  Google Scholar 

  195. Valentijn, K. M., Sadler, J. E., Valentijn, J. A., Voorberg, J. & Eikenboom, J. Functional architecture of Weibel-Palade bodies. Blood 117, 5033–5043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hall, D. M. et al. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am. J. Physiol. Heart Circ. Physiol. 280, H509–H521 (2001). This landmark study shows the effects of hyperthermia on the generation of reactive oxygen species generation, which limits heat tolerance by promoting circulatory and intestinal barrier dysfunction.

    Article  CAS  PubMed  Google Scholar 

  197. Taylor, N. A., Tipton, M. J. & Kenny, G. P. Considerations for the measurement of core, skin and mean body temperatures. J. Therm. Biol. 46, 72–101 (2014).

    Article  PubMed  Google Scholar 

  198. Huggins, R., Glaviano, N., Negishi, N., Casa, D. J. & Hertel, J. Comparison of rectal and aural core body temperature thermometry in hyperthermic, exercising individuals: a meta-analysis. J. Athl. Train. 47, 329–338 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Briner, W. W. Jr Tympanic membrane vs rectal temperature measurement in marathon runners. JAMA 276, 194 (1996).

    Article  PubMed  Google Scholar 

  200. Bouchama, A., Cafege, A., Robertson, W., al-Dossary, S. & el-Yazigi, A. Mechanisms of hypophosphatemia in humans with heatstroke. J. Appl. Physiol. 71, 328–332 (1991).

    Article  CAS  PubMed  Google Scholar 

  201. Knochel, J. P. Exertional rhabdomyolysis. N. Eng. J. Med. 287, 927–929 (1972).

    Article  CAS  Google Scholar 

  202. Hassanein, T., Razack, A., Gavaler, J. S. & Van Thiel, D. H. Heatstroke: its clinical and pathological presentation, with particular attention to the liver. Am. J. Gastroenterol. 87, 1382–1389 (1992).

    CAS  PubMed  Google Scholar 

  203. Kew, M. C., Minick, O. T., Bahu, R. M., Stein, R. J. & Kent, G. Ultrastructural changes in the liver in heatstroke. Am. J. Pathol. 90, 609–618 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Bouchama, A. et al. Distribution of peripheral blood leukocytes in acute heatstroke. J. Appl. Physiol. 73, 405–409 (1992).

    Article  CAS  PubMed  Google Scholar 

  205. Costrini, A. M., Pitt, H. A., Gustafson, A. B. & Uddin, D. E. Cardiovascular and metabolic manifestations of heat stroke and severe heat exhaustion. Am. J. Med. 66, 296–302 (1979).

    Article  CAS  PubMed  Google Scholar 

  206. Paul, A., Alex, R., Jacob, J. R. & Yadav, B. Effects of heat stroke on surface ECG: a study on clinical outcomes. Heart Asia 11, e011221–e011221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Hausfater, P. et al. Elevation of cardiac troponin I during non-exertional heat-related illnesses in the context of a heatwave. Crit. Care 14, R99–R99 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Akhtar, M. J., al-Nozha, M., al-Harthi, S. & Nouh, M. S. Electrocardiographic abnormalities in patients with heat stroke. Chest 104, 411–414 (1993).

    Article  CAS  PubMed  Google Scholar 

  209. Dematte, J. E. et al. Near-fatal heat stroke during the 1995 heat wave in Chicago. Ann. Intern. Med. 129, 173–181 (1998). This is the first study to show systematically that heatstroke leads to long-term severe neurological disability with a continuous risk of death after 1 year.

    Article  CAS  PubMed  Google Scholar 

  210. Bouchama, A. et al. Prognostic factors in heat wave related deaths: a meta-analysis. Arch. Intern. Med. 167, 2170–2176 (2007). This meta-analysis of case-controlled studies establishes the risks associated with death during heatwaves, and shows that withdrawing from environmental heat for a few hours is the only protective factor.

    Article  PubMed  Google Scholar 

  211. Ellis, F. Heat wave deaths and drugs affecting temperature regulation. Br. Med. J. 2, 474 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Martinez, M., Devenport, L., Saussy, J. & Martinez, J. Drug-associated heat stroke. South Med. J. 95, 799–802 (2002).

    Article  PubMed  Google Scholar 

  213. Vassallo, S. U. & Delaney, K. A. Pharmacologic effects on thermoregulation: mechanisms of drug-related heatstroke. J. Toxicol. Clin. Toxicol. 27, 199–224 (1989).

    Article  CAS  PubMed  Google Scholar 

  214. Rav-Acha, M., Hadad, E., Epstein, Y., Heled, Y. & Moran, D. S. Fatal exertional heat stroke: a case series. Am. J. Med. Sci. 328, 84–87 (2004).

    Article  PubMed  Google Scholar 

  215. Grundstein, A. J., Hosokawa, Y. & Casa, D. J. Fatal exertional heat stroke and American football players: the need for regional heat-safety guidelines. J. Athl. Train. 53, 43–50 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Abriat, A., Brosset, C., Brégigeon, M. & Sagui, E. Report of 182 cases of exertional heatstroke in the French armed forces. Mil. Med. 179, 309–314 (2014).

    Article  PubMed  Google Scholar 

  217. Casa, D. J. et al. The inter-association task force for preventing sudden death in secondary school athletics programs: best-practices recommendations. J. Athl. Train. 48, 546–553 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Wu, Y. et al. Context-aware heatstroke relief station placement and route optimization for large outdoor events. Int. J. Health Geogr. 20, 23 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Morris, N. B. et al. Sustainable solutions to mitigate occupational heat strain - an umbrella review of physiological effects and global health perspectives. Environ. Health 19, 95 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Jay, O. et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 398, 709–724 (2021).

    Article  PubMed  Google Scholar 

  221. Lowe, D., Ebi, K. L. & Forsberg, B. Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int. J. Environ. Res. Public Health 8, 4623–4648 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Morris, N. B. et al. Electric fan use for cooling during hot weather: a biophysical modelling study. Lancet Planet Health 5, e368–e377 (2021).

    Article  PubMed  Google Scholar 

  223. Morris, N. B., English, T., Hospers, L., Capon, A. & Jay, O. The effects of electric fan use under differing resting heat index conditions: a clinical trial. Ann. Intern. Med. 171, 675–677 (2019).

    Article  PubMed  Google Scholar 

  224. Morris, N. B. et al. A preliminary study of the effect of dousing and foot immersion on cardiovascular and thermal responses to extreme heat. JAMA 322, 1411–1413 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Nelson, D. A., Deuster, P. A., O’Connor, F. G. & Kurina, L. M. Timing and predictors of mild and severe heat illness among new military enlistees. Med. Sci. Sports Exerc. 50, 1603–1612 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Morrissey, M. C. et al. Heat safety in the workplace: modified delphi consensus to establish strategies and resources to protect the US worker. Geohealth 5, e2021GH000443 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Roberts, W. O. Determining a “do not start” temperature for a marathon on the basis of adverse outcomes. Med. Sci. Sports Exerc. 42, 226–232 (2010).

    Article  PubMed  Google Scholar 

  228. Racinais, S. et al. Consensus recommendations on training and competing in the heat. Br. J. Sports Med. 49, 1164–1173 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Hosokawa, Y. et al. Activity modification in heat: critical assessment of guidelines across athletic, occupational, and military settings in the USA. Int. J. Biometeorol. 63, 405–427 (2019).

    Article  PubMed  Google Scholar 

  230. Kerr, Z. Y. et al. The association between mandated preseason heat acclimatization guidelines and exertional heat illness during preseason high school American football practices. Environ. Health Perspect. 127, 47003 (2019).

    Article  PubMed  Google Scholar 

  231. Sawka, M. N. et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 39, 377–390 (2007).

    PubMed  Google Scholar 

  232. Kerr, Z. Y. et al. Exertional heat-stroke preparedness in high school football by region and state mandate presence. J. Athl. Train. 54, 921–928 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Scarneo-Miller, S. E., Saltzman, B., Adams, W. M. & Casa, D. J. Regional requirements influence adoption of exertional heat illness preparedness strategies in United States high schools. Medicina 56, 488 (2020).

    Article  PubMed Central  Google Scholar 

  234. Parsons, J. T., Anderson, S. A., Casa, D. J. & Hainline, B. Preventing catastrophic injury and death in collegiate athletes: interassociation recommendations endorsed by 13 medical and sports medicine organisations. Br. J. Sports Med. 54, 208 (2020).

    Article  PubMed  Google Scholar 

  235. Benjamin, C. L. et al. The effects of hydration status and ice-water dousing on physiological and performance indices during a simulated soccer match in the heat. J. Sci. Med. Sport 24, 723–728 (2021).

    Article  PubMed  Google Scholar 

  236. Hosokawa, Y. et al. Prehospital management of exertional heat stroke at sports competitions: International Olympic Committee Adverse Weather Impact Expert Working Group for the Olympic Games Tokyo 2020. Br. J. Sports Med. 55, 1405–1410 (2021).

    Article  PubMed  Google Scholar 

  237. Racinais S., Sawka, M. N., Daanen, H. & Périard, J. D. in Heat Stress in Sport and Exercise (eds Périard, J. D. & Racinais, S.) 159–178 (Springer, 2019).

  238. Adams, W. M. et al. Roundtable on preseason heat safety in secondary school athletics: heat acclimatization. J. Athl. Train. 56, 352–361 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Vicario, S. J., Okabajue, R. & Haltom, T. Rapid cooling in classic heatstroke: effect on mortality rates. Am. J. Emerg. Med. 4, 394–398 (1986).

    Article  CAS  PubMed  Google Scholar 

  240. Dewey, W. C., Hopwood, L. E., Sapareto, S. A. & Gerweck, L. E. Cellular responses to combinations of hyperthermia and radiation. Radiology 123, 463–474 (1977).

    Article  CAS  PubMed  Google Scholar 

  241. Glahn, K. P. E. et al. Availability of dantrolene for the management of malignant hyperthermia crises: European Malignant Hyperthermia Group guidelines. Br. J. Anaesth. 125, 133–140 (2020).

    Article  CAS  PubMed  Google Scholar 

  242. Garcia, C. K. et al. Effects of ibuprofen during exertional heat stroke in mice. Med. Sci. Sports Exerc. 52, 1870–1878 (2020).

    Article  CAS  PubMed  Google Scholar 

  243. Audet, G. N. et al. Pretreatment with indomethacin results in increased heat stroke severity during recovery in a rodent model of heat stroke. J. Appl. Physiol. 123, 544–557 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Walter, E. & Gibson, O. The efficacy of antibiotics in reducing morbidity and mortality from heatstroke — a systematic review. J. Therm. Biol. 88, 102509 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Leon, L. R., DuBose, D. A. & Mason, C. W. Heat stress induces a biphasic thermoregulatory response in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R197–R204 (2005).

    Article  CAS  PubMed  Google Scholar 

  246. Leon, L. R., Gordon, C. J., Helwig, B. G., Rufolo, D. M. & Blaha, M. D. Thermoregulatory, behavioral, and metabolic responses to heatstroke in a conscious mouse model. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R241–R248 (2010).

    Article  CAS  PubMed  Google Scholar 

  247. Wyndham, C. H. et al. Methods of cooling subjects with hyperpyrexia. J. Appl. Physiol. 14, 771–776 (1959).

    Article  CAS  PubMed  Google Scholar 

  248. Morrison, K. E., Desai, N., McGuigan, C., Lennon, M. & Godek, S. F. Effects of intravenous cold saline on hyperthermic athletes representative of large football players and small endurance runners. Clin. J. Sport Med. 28, 493–499 (2018).

    Article  PubMed  Google Scholar 

  249. Mok, G., DeGroot, D., Hathaway, N. E., Bigley, D. P. & McGuire, C. S. Exertional heat injury: effects of adding cold (4 °C) intravenous saline to prehospital protocol. Curr. Sports Med. Rep. 16, 103–108 (2017).

    Article  PubMed  Google Scholar 

  250. Smith, J. E. Cooling methods used in the treatment of exertional heat illness. Br. J. Sports Med. 39, 503–507 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Douma, M. J. et al. First aid cooling techniques for heat stroke and exertional hyperthermia: a systematic review and meta-analysis. Resuscitation 148, 173–190 (2020). This meta-analysis shows that water immersion techniques (using 1–17 °C water) more effectively lowers core body temperatures than passive cooling in adults with hyperthermia.

    Article  PubMed  Google Scholar 

  252. McDermott, B. P. et al. Acute whole-body cooling for exercise-induced hyperthermia: a systematic review. J. Athl. Train. 44, 84–93 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Al-Aska, A. K., Abu-Aisha, H., Yaqub, B., Al-Harthi, S. S. & Sallam, A. Simplified cooling bed for heatstroke. Lancet 1, 381 (1987).

    Article  CAS  PubMed  Google Scholar 

  254. Graham, B. S., Lichtenstein, M. J., Hinson, J. M. & Theil, G. B. Nonexertional heatstroke. Physiologic management and cooling in 14 patients. Arch. Intern. Med. 146, 87–90 (1986).

    Article  CAS  PubMed  Google Scholar 

  255. Bursey, M. M., Galer, M., Oh, R. C. & Weathers, B. K. Successful management of severe exertional heat stroke with endovascular cooling after failure of standard cooling measures. J. Emerg. Med. 57, e53–e56 (2019).

    Article  PubMed  Google Scholar 

  256. Manegold, R., Fistera, D., Holzner, C. & Risse, J. Effective intranasal cooling in an 80 year old patient with heatstroke. Am. J. Emerg. Med. 38, 2488.e1–2488.e2 (2020).

    Article  Google Scholar 

  257. Hosokawa, Y., Belval, L. N., Adams, W. M., Vandermark, L. W. & Casa, D. J. Chemically activated cooling vest’s effect on cooling rate following exercise-induced hyperthermia: a randomized counter-balanced crossover study. Medicina 56, 539 (2020).

    Article  PubMed Central  Google Scholar 

  258. Yeargin, S. et al. Physiological and perceived effects of forearm or head cooling during simulated firefighting activity and rehabilitation. J. Athl. Train. 51, 927–935 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Tan, P. M. et al. Evaluation of various cooling systems after exercise-induced hyperthermia. J. Athl. Train. 52, 108–116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Bernard, S. A. et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346, 557–563 (2002).

    Article  PubMed  Google Scholar 

  261. Bouchama, A. & Almuntashri, A. Patent title: Artificial hypothalamus for body temperature regulation USPTO (2016).

  262. Guerrero, W. R., Varghese, S., Savitz, S. & Wu, T. C. Heat stress presenting with encephalopathy and MRI findings of diffuse cerebral injury and hemorrhage. BMC Neurol. 13, 1 (2013).

    Article  Google Scholar 

  263. Kim, K. K. et al. Neurological manifestations and image findings in patients with exercise-induced heat stroke. J. Korean Neurol. Assoc. 22, 115–121 (2004).

    Google Scholar 

  264. Albukrek, D., Bakon, M., Moran, D. S., Faibel, M. & Epstein, Y. Heat-stroke-induced cerebellar atrophy: clinical course, CT and MRI findings. Neuroradiology 39, 195–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  265. Rav-Acha, M., Shuvy, M., Hagag, S., Gomori, M. & Biran, I. Unique persistent neurological sequelae of heat stroke. Mil. Med. 172, 603–606 (2007).

    Article  PubMed  Google Scholar 

  266. Schermann, H., Sherman, M. & Rutenberg, R. Case report of a new headache developed by a combat soldier after an episode of exertional heat illness. Front. Neurol. 8, 383–383 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Wallace, R. F., Kriebel, D., Punnett, L., Wegman, D. H. & Amoroso, P. J. Prior heat illness hospitalization and risk of early death. Environ. Res. 104, 290–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  268. Wang, J. C. et al. The association between heat stroke and subsequent cardiovascular diseases. PLoS ONE 14, e0211386 (2019). This 14-year follow-up study shows that patients who have heatstroke have an increased incidence of acute myocardial infarction and an increased incidence of acute ischaemic stroke.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Laitano, O. et al. Delayed metabolic dysfunction in myocardium following exertional heat stroke in mice. J. Physiol. 598, 967–985 (2020). This study shows that exertional heat stroke promotes negative changes in the metabolome of the myocardium that emerge only 9–14 days after the episode.

    Article  CAS  PubMed  Google Scholar 

  270. Schermann, H. et al. Probability of heat intolerance: standardized interpretation of heat-tolerance testing results versus specialist judgment. J. Athl. Train. 53, 423–430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Stearns, R. L. et al. Incidence of recurrent exertional heat stroke in a warm-weather road race. Medicina 56, 720 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Bouchama, A. et al. Glucocorticoids do not protect against the lethal effects of experimental heatstroke in baboons. Shock 27, 578–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  273. Hagiwara, S. et al. Danaparoid sodium attenuates the effects of heat stress. J. Surg. Res. 171, 762–768 (2011).

    Article  CAS  PubMed  Google Scholar 

  274. Hagiwara, S. et al. High-dose antithrombin III prevents heat stroke by attenuating systemic inflammation in rats. Inflamm. Res. 59, 511–518 (2010).

    Article  CAS  PubMed  Google Scholar 

  275. Kawasaki, T., Okamoto, K., Kawasaki, C. & Sata, T. Thrombomodulin improved liver injury, coagulopathy, and mortality in an experimental heatstroke model in mice. Anesth. Analg. 118, 956–963 (2014).

    Article  CAS  PubMed  Google Scholar 

  276. Lin, X. J. et al. Activated protein C can be used as a prophylactic as well as a therapeutic agent for heat stroke in rodents. Shock 32, 524–529 (2009).

    Article  CAS  PubMed  Google Scholar 

  277. Phillips, N. A., Welc, S. S., Wallet, S. M., King, M. A. & Clanton, T. L. Protection of intestinal injury during heat stroke in mice by interleukin-6 pretreatment. J. Physiol. 593, 739–753 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Shen, K. H., Chang, C. K., Lin, M. T. & Chang, C. P. Interleukin-1 receptor antagonist restores homeostatic function and limits multiorgan damage in heatstroke. Eur. J. Appl. Physiol. 103, 561–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  279. Tao, Z. et al. JAK2/STAT3 pathway mediating inflammatory responses in heatstroke-induced rats. Int. J. Clin. Exp. Pathol. 8, 6732–6739 (2015).

    PubMed  PubMed Central  Google Scholar 

  280. Yamakawa, K. et al. Electrical vagus nerve stimulation attenuates systemic inflammation and improves survival in a rat heatstroke model. PLoS ONE 8, e56728 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Zhu, Y. H. & Pei, Z. M. GSK2193874 treatment at heatstroke onset reduced cell apoptosis in heatstroke mice. Cell. Mol. Biol. 64, 36–42 (2018).

    Article  PubMed  Google Scholar 

  282. Chen, G. M. et al. Clearance of serum solutes by hemofiltration in dogs with severe heat stroke. Scand. J. Trauma. Resusc. Emerg. Med. 22, 49 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Chen, G. M. et al. Effects of continuous haemofiltration on serum enzyme concentrations, endotoxemia, homeostasis and survival in dogs with severe heat stroke. Resuscitation 83, 657–662 (2012).

    Article  CAS  PubMed  Google Scholar 

  284. Yamazawa, T. et al. A novel RyR1-selective inhibitor prevents and rescues sudden death in mouse models of malignant hyperthermia and heat stroke. Nat. Commun. 12, 4293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Hwang, W. S. et al. Human umbilical cord blood-derived CD34+ cells can be used as a prophylactic agent for experimental heatstroke. J. Pharmacol. Sci. 106, 46–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  286. Liu, W. S. et al. Human umbilical cord blood cells protect against hypothalamic apoptosis and systemic inflammation response during heatstroke in rats. Pediatr. Neonatol. 50, 208–216 (2009).

    Article  PubMed  Google Scholar 

  287. Tseng, L. S., Chen, S. H., Lin, M. T. & Lin, Y. C. Umbilical cord blood-derived stem cells improve heat tolerance and hypothalamic damage in heat stressed mice. Biomed. Res. Int. 2014, 685683 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Tseng, L. S., Chen, S. H., Lin, M. T. & Lin, Y. C. Transplantation of human dental pulp-derived stem cells protects against heatstroke in mice. Cell Transplant. 24, 921–937 (2015).

    Article  PubMed  Google Scholar 

  289. Umemura, Y. et al. Bone marrow-derived mononuclear cell therapy can attenuate systemic inflammation in rat heatstroke. Scand. J. Trauma. Resusc. Emerg. Med. 26, 97 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Zhang, Y. et al. Mesenchymal stem cells provide neuroprotection by regulating heat stroke-induced brain inflammation. Front. Neurol. 11, 372 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Sonna, L. A. et al. Effect of acute heat shock on gene expression by human peripheral blood mononuclear cells. J. Appl. Physiol. 92, 2208–2220 (2002).

    Article  CAS  PubMed  Google Scholar 

  292. Stallings, J. D. et al. Patterns of gene expression associated with recovery and injury in heat-stressed rats. BMC Genomics 15, 1058 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Zhang, H. J., Drake, V. J., Morrison, J. P., Oberley, L. W. & Kregel, K. C. Selected contribution: differential expression of stress-related genes with aging and hyperthermia. J. Appl. Physiol. 92, 1762 (2002).

    Article  CAS  PubMed  Google Scholar 

  294. Khoury, M. J. et al. From public health genomics to precision public health: a 20-year journey. Genet. Med. 20, 574–582 (2018).

    Article  PubMed  Google Scholar 

  295. Rakyan, V. K., Down, T. A., Balding, D. J. & Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 12, 529–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. McCaw, B. A., Stevenson, T. J. & Lancaster, L. T. Epigenetic responses to temperature and climate. Integ. Comp. Biol. 60, 1469–1480 (2020). This review identifies areas of future research in epigenetic responses to environmental temperature change.

    Article  CAS  Google Scholar 

  297. Hu, Z. et al. Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. Plant J. 84, 1178–1191 (2015).

    Article  CAS  PubMed  Google Scholar 

  298. Petesch, S. J. & Lis, J. T. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134, 74–84 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Dai, T. M. et al. Molecular characterizations of DNA methyltransferase 3 and its roles in temperature tolerance in the whitefly, Bemisia tabaci Mediterranean. Insect Mol. Biol. 27, 123–132 (2018).

    Article  CAS  PubMed  Google Scholar 

  300. Vabulas, R. M., Raychaudhuri, S., Hayer-Hartl, M. & Hartl, F. U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol. 2, a004390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Tetievsky, A. & Horowitz, M. Posttranslational modifications in histones underlie heat acclimation-mediated cytoprotective memory. J. Appl. Physiol. 109, 1552–1561 (2010).

    Article  CAS  PubMed  Google Scholar 

  302. Skinner, M. K. Environmental stress and epigenetic transgenerational inheritance. BMC Med. 12, 153 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Voisin, S., Eynon, N., Yan, X. & Bishop, D. J. Exercise training and DNA methylation in humans. Acta Physiol. 213, 39–59 (2015).

    Article  CAS  Google Scholar 

  304. Burggren, W. Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology 5, 24 (2016).

    Article  PubMed Central  Google Scholar 

  305. Horowitz, M. Heat acclimation and cross-tolerance against novel stressors: genomic-physiological linkage. Prog. Brain Res. 162, 373–392 (2007).

    Article  CAS  PubMed  Google Scholar 

  306. Fiszer, D. et al. Next-generation sequencing of RYR1 and CACNA1S in malignant hyperthermia and exertional heat illness. Anesthesiology 122, 1033–1046 (2015).

    Article  CAS  PubMed  Google Scholar 

  307. Li, Y., Wang, Y. & Ma, L. An association study of CASQ1 gene polymorphisms and heat stroke. Genomics Proteom. Bioinforma. 12, 127–132 (2014).

    Article  CAS  Google Scholar 

  308. Bosson, C. et al. Variations in the TRPV1 gene are associated to exertional heat stroke. J. Sci. Med. Sport 23, 1021–1027 (2020).

    Article  PubMed  Google Scholar 

  309. Durham, W. J. et al. RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell 133, 53–65 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Dainese, M. et al. Anesthetic- and heat-induced sudden death in calsequestrin-1-knockout mice. FASEB J. 23, 1710–1720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Lamech, L. T. & Haynes, C. M. The unpredictability of prolonged activation of stress response pathways. J. Cell Biol. 209, 781–787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Santé publique France. Bilan de mortalité des épisodes de chaleur de juin et juillet 2019. Santé publique France https://www.santepubliquefrance.fr/determinants-de-sante/climat/fortes-chaleurs-canicule/documents/bulletin-national/systeme-d-alerte-canicule-et-sante.-bilan-de-mortalite-des-episodes-de-chaleur-de-juin-et-juillet-2019 (2019).

  313. Parsons, K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance 3rd edn (CRC Press, 2002).

  314. Clarke, J. F. Some effects of the urban structure on heat mortality. Environ. Res. 5, 93–104 (1972).

    Article  CAS  PubMed  Google Scholar 

  315. Piver, W. T., Ando, M., Ye, F. & Portier, C. J. Temperature and air pollution as risk factors for heat stroke in Tokyo, July and August 1980-1995. Environ. Health Perspect. 107, 911–916 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Dervis, S. et al. A comparison of thermoregulatory responses to exercise between mass-matched groups with large differences in body fat. J. Appl. Physiol. 120, 615–623 (2016).

    Article  CAS  PubMed  Google Scholar 

  317. Cramer, M. N. & Jay, O. Explained variance in the thermoregulatory responses to exercise: the independent roles of biophysical and fitness/fatness-related factors. J. Appl. Physiol. 119, 982–989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Gagge, A. P. & Gonzalez, R. R. in Comprehensive Physiology 45–84 (Wiley, 1996). A comprehensive overview of the fundamental factors altering human heat balance during passive and active heat stress.

  319. Ravanelli, N., Coombs, G. B., Imbeault, P. & Jay, O. Maximum skin wettedness after aerobic training with and without heat acclimation. Med. Sci. Sports Exerc. 50, 299–307 (2018).

    Article  PubMed  Google Scholar 

  320. Gagnon, D. & Kenny, G. P. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J. Physiol. 590, 5963–5973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Belval, L. N. et al. Interaction of exercise intensity and simulated burn injury size on thermoregulation. Med. Sci. Sports Exerc. 53, 367–374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Belval, L. N. et al. Consensus statement - prehospital care of exertional heat stroke. Prehosp. Emerg. Care 22, 392–397 (2018).

    Article  PubMed  Google Scholar 

  323. Bligh, J. & Johnson, K. G. Glossary of terms for thermal physiology. J. Appl. Physiol. 35, 941–961 (1973).

    Article  CAS  PubMed  Google Scholar 

  324. Périard, J. D., Racinais, S. & Sawka, M. N. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand. J. Med. Sci. Sports 25 (Suppl. 1), 20–38 (2015).

    Article  PubMed  Google Scholar 

  325. Murray, K. O. et al. Exertional heat stroke leads to concurrent long-term epigenetic memory, immunosuppression and altered heat shock response in female mice. J. Physiol. 599, 119–141 (2021). This study demonstrates in a mouse exertional heat stress model that heatstroke induces long-term immune and heat shock responses that may be linked to specific epigenetic profiles in bone marrow-derived monocytes.

    Article  CAS  PubMed  Google Scholar 

  326. Casa, D. J. et al. Cold water immersion: the gold standard for exertional heatstroke treatment. Exerc. Sport Sci. Rev. 35, 141–149 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.B., C.L., O.L., O.J., F.G.O. and L.R.L.); Epidemiology (A.B., O.J., F.G.O. and L.R.L.); Mechanisms/pathophysiology (A.B., B.A., C.L., O.L., O.J. and L.R.L.); Diagnosis, screening and prevention (A.B., F.G.O. and L.R.L.); Management (A.B., B.A., C.L., O.L., O.J., F.G.O. and L.R.L.); Quality of life (A.B., B.A., C.L., O.L., F.G.O. and L.R.L.); Outlook (A.B., B.A., C.L., O.L., O.J., F.G.O. and L.R.L.); Overview of the Primer (A.B.).

Corresponding author

Correspondence to Abderrezak Bouchama.

Ethics declarations

Competing interests

A.B. is patent holder for ‘Artificial hypothalamus for body temperature regulation’ (US20170216086A1; co-inventor: A. Almuntashri) but has not received any royalties. The patent describes the next generation of cooling systems; currently at proof-of-concept stage. F.G.O. is a medical and science advisory board member of Korey Stringer Institute. The other authors declare no competing interests.

Additional information

Disclaimer

The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Army, Uniformed Services University of the Health Sciences, or the Department of Defense.

Peer review information

Nature Reviews Disease Primers thanks Oliver Gibson, Zachary Schlader, Rebecca Stearns and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchama, A., Abuyassin, B., Lehe, C. et al. Classic and exertional heatstroke. Nat Rev Dis Primers 8, 8 (2022). https://doi.org/10.1038/s41572-021-00334-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-021-00334-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing