Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic strategies to target RAS-mutant cancers

Abstract

RAS genes are the most commonly mutated oncogenes in cancer, but effective therapeutic strategies to target RAS-mutant cancers have proved elusive. A key aspect of this challenge is the fact that direct inhibition of RAS proteins has proved difficult, leading researchers to test numerous alternative strategies aimed at exploiting RAS-related vulnerabilities or targeting RAS effectors. In the past few years, we have witnessed renewed efforts to target RAS directly, with several promising strategies being tested in clinical trials at different stages of completion. Important advances have also been made in approaches designed to indirectly target RAS by improving inhibition of RAS effectors, exploiting synthetic lethal interactions or metabolic dependencies, using therapeutic combination strategies or harnessing the immune system. In this Review, we describe historical and ongoing efforts to target RAS-mutant cancers and outline the current therapeutic landscape in the collective quest to overcome the effects of this crucial oncogene.

Key points

  • RAS is the most commonly mutated oncogene in cancer.

  • Direct inhibition of oncogenic RAS has proved difficult, hindering the development of effective therapies for RAS-mutant cancers.

  • Renewed efforts to target mutant RAS directly have yielded promising efficacy outcomes in preclinical studies.

  • Targeting key effector pathways or vulnerabilities in RAS-mutant cancers offers a promising alternative therapeutic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RAS structure and regulation.
Fig. 2: Direct inhibition of RAS function.
Fig. 3: Approaches to inhibiting RAS function.
Fig. 4: Inhibitors of RAF–MEK–ERK currently under clinical evaluation.

Similar content being viewed by others

References

  1. Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    CAS  PubMed  Google Scholar 

  3. Nussinov, R., Tsai, C.-J. & Jang, H. Oncogenic Ras isoforms signaling specificity at the membrane. Cancer Res. 78, 593–602 (2018).

    CAS  PubMed  Google Scholar 

  4. Keeton, A. B., Salter, E. A. & Piazza, G. A. The RAS-effector interaction as a drug target. Cancer Res. 77, 221–226 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ryan, M. B., Der, C. J., Wang-Gillam, A. & Cox, A. D. Targeting RAS-mutant cancers: is ERK the key? Trends Cancer 1, 183–198 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chow, H. Y. et al. p21-activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res. 72, 5966–5975 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kashatus, D. F. Ral GTPases in tumorigenesis: emerging from the shadows. Exp. Cell Res. 319, 2337–2342 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu, Z. et al. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov. 4, 452–465 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yuan, T. L. et al. Differential effector engagement by oncogenic KRAS. Cell Rep. 22, 1889–1902 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cox, A. D. & Der, C. J. Ras history: the saga continues. Small GTPases 1, 2–27 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Forbes, S. A. et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 45, D777–D783 (2017).

    CAS  PubMed  Google Scholar 

  14. Wellcome Sanger Institute. COSMIC Release v84. Sanger.ac.uk https://cosmic-blog.sanger.ac.uk/cosmic-release-v84/ (2018).

  15. Hobbs, G. A., Der, C. J. & Rossman, K. L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci. 129, 1287–1292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Burd, C. E. et al. Mutation-specific RAS oncogenicity explains NRAS codon 61 selection in melanoma. Cancer Discov. 4, 1418–1429 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Haigis, K. M. et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat. Genet. 40, 600–608 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Raphael, B. J. et al. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185–203.e13 (2017).

    Google Scholar 

  19. Collisson, E. A. et al. A central role for RAF-MEK-ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov. 2, 685–693 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Appleman, V. A., Ahronian, L. G., Cai, J., Klimstra, D. S. & Lewis, B. C. KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling. Mol. Cancer Res. 10, 1228–1239 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Collins, M. A. et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J. Clin. Invest. 122, 639–653 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Esposito, D., Stephen, A. G., Turbyville, T. J. & Holderfield, M. New weapons to penetrate the armor: novel reagents and assays developed at the NCI RAS Initiative to enable discovery of RAS therapeutics. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2018.02.006 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Waters, A. M. et al. Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies. Sci. Signal. 10, eaao3332 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Goody, R. S., Frech, M. & Wittinghofer, A. Affinity of guanine nucleotide binding proteins for their ligands: facts and artefacts. Trends Biochem. Sci. 16, 327–328 (1991).

    CAS  PubMed  Google Scholar 

  25. Ahearn, I. M., Haigis, K., Bar-Sagi, D. & Philips, M. R. Regulating the regulator: post-translational modification of RAS. Nat. Rev. Mol. Cell Biol. 13, 39–51 (2011).

    PubMed  Google Scholar 

  26. Basso, A. D., Kirschmeier, P. & Bishop, W. R. Lipid posttranslational modifications. Farnesyl transferase inhibitors. J. Lipid Res. 47, 15–31 (2006).

    CAS  PubMed  Google Scholar 

  27. Berndt, N., Hamilton, A. D. & Sebti, S. M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer 11, 775–791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rowell, C. A., Kowalczyk, J. J., Lewis, M. D. & Garcia, A. M. Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J. Biol. Chem. 272, 14093–14097 (1997).

    CAS  PubMed  Google Scholar 

  29. Whyte, D. B. et al. K and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272, 14459–14464 (1997).

    CAS  PubMed  Google Scholar 

  30. Liu, M. et al. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc. Natl Acad. Sci. USA 107, 6471–6476 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Winter-Vann, A. M. & Casey, P. J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer 5, 405–412 (2005).

    CAS  PubMed  Google Scholar 

  32. Zimmermann, G. et al. Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling. Nature 497, 638–642 (2013).

    CAS  PubMed  Google Scholar 

  33. Papke, B. et al. Identification of pyrazolopyridazinones as PDEdelta inhibitors. Nat. Commun. 7, 11360 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, M. & Casey, P. J. Protein prenylation: unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol. 17, 110 (2016).

    CAS  PubMed  Google Scholar 

  35. Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hunter, J. C. et al. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol. Cancer Res. 13, 1325–1335 (2015).

    CAS  PubMed  Google Scholar 

  37. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hunter, J. C. et al. In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc. Natl Acad. Sci. USA 111, 8895–8900 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Visscher, M., Arkin, M. R. & Dansen, T. B. Covalent targeting of acquired cysteines in cancer. Curr. Opin. Chem. Biol. 30, 61–67 (2016).

    CAS  PubMed  Google Scholar 

  40. Shipman, L. Anticancer drugs: putting the brakes on KRAS-G12C nucleotide cycling. Nat. Rev. Drug Discov. 15, 159 (2016).

    CAS  PubMed  Google Scholar 

  41. Westover, K. D., Janne, P. A. & Gray, N. S. Progress on covalent inhibition of KRAS(G12C). Cancer Discov. 6, 233–234 (2016).

    CAS  PubMed  Google Scholar 

  42. Lito, P., Solomon, M., Li, L. S., Hansen, R. & Rosen, N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 351, 604–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Patricelli, M. P. et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 6, 316–329 (2016).

    CAS  PubMed  Google Scholar 

  44. Ostrem, J. M. & Shokat, K. M. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat. Rev. Drug Discov. 15, 771–785 (2016).

    CAS  PubMed  Google Scholar 

  45. Zeng, M. et al. Potent and selective covalent quinazoline inhibitors of KRAS G12C. Cell Chem. Biol. 24, 1005–1016 (2017).

    CAS  PubMed  Google Scholar 

  46. Janes, M. R. et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172, 578–589.e17 (2018).

    CAS  PubMed  Google Scholar 

  47. Welsch, M. E. et al. Multivalent small-molecule pan-RAS inhibitors. Cell 168, 878–889 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ross, S. J. et al. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci. Transl Med. 9, eaal5253 (2017).

    PubMed  Google Scholar 

  50. Athuluri-Divakar, S. K. et al. A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell 165, 643–655 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ritt, D. A. et al. Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit. Mol. Cell 64, 875–887 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jost, M. et al. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubule-destabilizing agent. Mol. Cell 68, 210–223 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Burns, M. C. et al. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange. Proc. Natl Acad. Sci. USA 111, 3401–3406 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Burns, M. C. et al. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling. Anal. Biochem. 548, 44–52 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gentile, D. R. et al. Ras binder induces a modified switch-II pocket in GTP and GDP states. Cell Chem. Biol. 24, 1455–1466.e14 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin, W.-C. et al. H-Ras forms dimers on membrane surfaces via a protein–protein interface. Proc. Natl Acad. Sci. 111, 2996–3001 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Santos, E. Dimerization opens new avenues into Ras signaling research. Sci. Signal. 7, pe12 (2014).

    PubMed  Google Scholar 

  58. Nan, X. et al. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc. Natl Acad. Sci. USA 112, 7996–8001 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sarkar-Banerjee, S. et al. Spatiotemporal analysis of K-Ras plasma membrane interactions reveals multiple high order homo-oligomeric complexes. J. Am. Chem. Soc. 139, 13466–13475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ambrogio, C. et al. KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS. Cell 172, 857–868 (2018).

    CAS  PubMed  Google Scholar 

  61. Spencer-Smith, R. et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat. Chem. Biol. 13, 62–68 (2017).

    CAS  PubMed  Google Scholar 

  62. Freeman, A. K., Ritt, D. A. & Morrison, D. K. The importance of Raf dimerization in cell signaling. Small GTPases 4, 180–185 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Peng, S. B. et al. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell 28, 384–398 (2015).

    CAS  PubMed  Google Scholar 

  64. Lavoie, H. & Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 16, 281–298 (2015).

    CAS  PubMed  Google Scholar 

  65. Young, A., Lou, D. & McCormick, F. Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discov. 3, 112–123 (2013).

    CAS  PubMed  Google Scholar 

  66. Grabocka, E. et al. Wild-Type H and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell 25, 243–256 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Singh, A. et al. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 15, 489–500 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Muzumdar, M. D. et al. Survival of pancreatic cancer cells lacking KRAS function. Nat. Commun. 8, 1090 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Downward, J. RAS synthetic lethal screens revisited: still seeking the elusive prize? Clin. Cancer Res. 21, 1802–1809 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS DEPENDENcy and STK33 suppression in human cancer cells. Cell 137, 821–834 (2009).

    CAS  PubMed  Google Scholar 

  71. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Babij, C. et al. STK33 kinase activity is nonessential in KRAS-dependent cancer cells. Cancer Res. 71, 5818–5826 (2011).

    CAS  PubMed  Google Scholar 

  73. Luo, T. et al. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability. Proc. Natl Acad. Sci. USA 109, 2860–2865 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Muvaffak, A. et al. Evaluating TBK1 as a therapeutic target in cancers with activated IRF3. Mol. Cancer Res. 12, 1055–1066 (2014).

    CAS  PubMed  Google Scholar 

  75. Wang, T. et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168, 890–903.e15 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Anderson, G. R. et al. A landscape of therapeutic cooperativity in KRAS mutant cancers reveals principles for controlling tumor evolution. Cell Rep. 20, 999–1015 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Martin, T. D. et al. A role for mitochondrial translation in promotion of viability in K-Ras mutant cells. Cell Rep. 20, 427–438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Martz, C. A. et al. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci. Signal. 7, ra121 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Kimmelman, A. C. Metabolic dependencies in RAS-driven cancers. Clin. Cancer Res. 21, 1828–1834 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bryant, K. L., Mancias, J. D., Kimmelman, A. C. & Der, C. J. KRAS: feeding pancreatic cancer proliferation. Trends Biochem. Sci. 39, 91–100 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gaglio, D. et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523–523 (2011).

    PubMed  PubMed Central  Google Scholar 

  86. Halbrook, C. J. & Lyssiotis, C. A. Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell 31, 5–19 (2017).

    CAS  PubMed  Google Scholar 

  87. Gross, M. I. et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890–901 (2014).

    CAS  PubMed  Google Scholar 

  88. Jacque, N. et al. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood 126, 1346–1356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chakrabarti, G. et al. Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone. Cancer Metab. 3, 12 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Yun, J. et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350, 1391–1396 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Morrison, D. K. MAP kinase pathways. Cold Spring Harb. Perspect Biol. 4, a011254 (2012).

    PubMed  PubMed Central  Google Scholar 

  92. Blasco, R. B. et al. c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma. Cancer Cell 19, 652–663 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sanclemente, M. et al. c-RAF ablation induces regression of advanced Kras/Trp53 mutant lung adenocarcinomas by a mechanism independent of MAPK signaling. Cancer Cell 33, 217–228 (2018).

    CAS  PubMed  Google Scholar 

  94. Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ahronian, L. G. et al. Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discov. 5, 358–367 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Oddo, D. et al. Molecular landscape of acquired resistance to targeted therapy combinations in BRAF-mutant colorectal cancer. Cancer Res. 76, 4504–4515 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lidsky, M. et al. Mitogen-activated protein kinase (MAPK) hyperactivation and enhanced NRAS expression drive acquired vemurafenib resistance in V600E BRAF melanoma cells. J. Biol. Chem. 289, 27714–27726 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wagle, N. et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov. 4, 61–68 (2014).

    CAS  PubMed  Google Scholar 

  100. Van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

    PubMed  Google Scholar 

  101. Watson, I. R. et al. The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF. Cancer Res. 74, 4845–4852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Corcoran, R. B. et al. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci. Signal. 3, ra84 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Callahan, M. K. et al. Progression of RAS-mutant leukemia during RAF inhibitor treatment. N. Engl. J. Med. 367, 2316–2321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Oberholzer, P. A. et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol. 30, 316–321 (2012).

    CAS  PubMed  Google Scholar 

  106. Hatzivassiliou, G. et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501, 232–236 (2013).

    CAS  PubMed  Google Scholar 

  107. Lito, P. et al. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell 25, 697–710 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wee, S. et al. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 69, 4286–4293 (2009).

    CAS  PubMed  Google Scholar 

  109. Poulikakos, P. I. & Solit, D. B. Resistance to MEK inhibitors: should we co-target upstream? Sci. Signal. 4, pe16 (2011).

    PubMed  Google Scholar 

  110. Sun, C. et al. Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep. 7, 86–93 (2014).

    CAS  PubMed  Google Scholar 

  111. Johnson, G. L., Stuhlmiller, T. J., Angus, S. P., Zawistowski, J. S. & Graves, L. M. Molecular pathways: adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer. Clin. Cancer Res. 20, 2516–2522 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Blumenschein, G. R. Jr et al. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC). Ann. Oncol. 26, 894–901 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Jänne, P. A. et al. Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: the SELECT-1 randomized clinical trial. JAMA 317, 1844–1853 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Welsh, S. J. & Corrie, P. G. Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma. Ther. Adv. Med. Oncol. 7, 122–136 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Duncan, J. S. et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307–321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhao, Y. & Adjei, A. A. The clinical development of MEK inhibitors. Nat. Rev. Clin. Oncol. 11, 385–400 (2014).

    CAS  PubMed  Google Scholar 

  117. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Morris, E. J. et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 3, 742–750 (2013).

    CAS  PubMed  Google Scholar 

  119. Moschos, S. J. et al. Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI Insight 3, 92352 (2018).

    PubMed  Google Scholar 

  120. Germann, U. A. et al. The selective ERK inhibitor BVD-523 is active in models of MAPK pathway-dependent cancers, including those with intrinsic and acquired drug resistance [abstract]. Cancer Res. 75 (Suppl), 4693 (2015).

    Google Scholar 

  121. Sullivan, R. J. et al. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov. 8, 184–195 (2018).

    CAS  PubMed  Google Scholar 

  122. Hatzivassiliou, G. et al. ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol. Cancer Ther. 11, 1143–1154 (2012).

    CAS  PubMed  Google Scholar 

  123. Hayes, T. K. et al. Long-term ERK inhibition in KRAS-mutant pancreatic cancer is associated with MYC degradation and senescence-like growth suppression. Cancer Cell 29, 75–89 (2016).

    CAS  PubMed  Google Scholar 

  124. Goetz, E. M., Ghandi, M., Treacy, D. J., Wagle, N. & Garraway, L. A. ERK mutations confer resistance to mitogen-activated protein kinase pathway inhibitors. Cancer Res. 74, 7079–7089 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Jha, S. et al. Dissecting therapeutic resistance to ERK inhibition. Mol. Cancer Ther. 15, 548–559 (2016).

    CAS  PubMed  Google Scholar 

  126. Brenan, L. et al. Phenotypic characterization of a comprehensive set of MAPK1/ERK2 missense mutants. Cell Rep. 17, 1171–1183 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Long, G. V. et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann. Oncol. 28, 1631–1639 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Long, G. V. et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 371, 1877–1888 (2014).

    PubMed  Google Scholar 

  129. Ascierto, P. A. et al. Cobimetinib combined with vemurafenib in advanced BRAFV600-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 17, 1248–1260 (2016).

    CAS  PubMed  Google Scholar 

  130. Hazar-Rethinam, M. et al. Convergent therapeutic strategies to overcome the heterogeneity of acquired resistance in BRAFV600E colorectal cancer. Cancer Discov. 8, 417–427 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Corcoran, R. B. et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAFV600E-mutant colorectal cancer. Cancer Discov. 8, 428–443 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Merchant, M. et al. Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors. PLOS ONE 12, e0185862 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Vito, W. R. et al. Vertical inhibition of the MAPK pathway enhances therapeutic responses in NRAS-mutant melanoma. Pigment Cell Melanoma Res. 27, 1154–1158 (2014).

    Google Scholar 

  134. Vakana, E. et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget 8, 9251–9266 (2017).

    PubMed  Google Scholar 

  135. Hong, D. S. et al. A first-in-human dose phase 1 study of LY3009120 in advanced cancer patients. J. Clin. Oncol. 35, 2507–2507 (2017).

    Google Scholar 

  136. Girotti, M. R. et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell 27, 85–96 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wada, M., Horinaka, M., Yamazaki, T., Katoh, N. & Sakai, T. The dual RAF/MEK inhibitor CH5126766/RO5126766 may be a potential therapy for RAS-mutated tumor cells. PLOS ONE 9, e113217 (2014).

    PubMed  PubMed Central  Google Scholar 

  138. Martinez-Garcia, M. et al. First-in-human, phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors. Clin. Cancer Res. 18, 4806–4819 (2012).

    CAS  PubMed  Google Scholar 

  139. Corcoran, R. B. et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 23, 121–128 (2013).

    CAS  PubMed  Google Scholar 

  140. Okumura, S. & Jänne, P. A. Molecular pathways: the basis for rational combination using MEK inhibitors in KRAS-mutant cancers. Clin. Cancer Res. 20, 4193–4199 (2014).

    CAS  PubMed  Google Scholar 

  141. Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Posch, C. et al. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc. Natl Acad. Sci. USA 110, 4015–4020 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Junttila, M. R. et al. Modeling targeted inhibition of MEK and PI3 kinase in human pancreatic cancer. Mol. Cancer Ther. 14, 40–47 (2015).

    CAS  PubMed  Google Scholar 

  144. She, Q.-B. et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18, 39–51 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Tolcher, A. W. et al. Antitumor activity in RAS-driven tumors by blocking AKT and MEK. Clin. Cancer Res. 21, 739–748 (2015).

    CAS  PubMed  Google Scholar 

  146. Chung, V. et al. Effect of selumetinib and MK-2206 vs oxaliplatin and fluorouracil in patients with metastatic pancreatic cancer after prior therapy: SWOG S1115 study randomized clinical trial. JAMA Oncol. 3, 516–522 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Bedard, P. L. et al. A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin. Cancer Res. 21, 730–738 (2015).

    CAS  PubMed  Google Scholar 

  148. Do, K. et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest. New Drugs 33, 720–728 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sun, C. et al. Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers. Sci. Transl Med. 9, eaal5148 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. Pek, M. et al. Oncogenic KRAS-associated gene signature defines co-targeting of CDK4/6 and MEK as a viable therapeutic strategy in colorectal cancer. Oncogene 36, 4975–4986 (2017).

    CAS  PubMed  Google Scholar 

  151. Peeper, D. S. et al. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386, 177 (1997).

    CAS  PubMed  Google Scholar 

  152. Chang, Z. et al. Cooperativity of oncogenic K-Ras and downregulated p16/INK4A in human pancreatic tumorigenesis. PLOS ONE 9, e101452 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. Schuster, K. et al. Nullifying the CDKN2AB locus promotes mutant K-ras lung tumorigenesis. Mol. Cancer Res. 12, 912–923 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Sherr, C. J., Beach, D. & Shapiro, G. I. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 6, 353–367 (2016).

    CAS  PubMed  Google Scholar 

  155. Ziemke, E. K. et al. Sensitivity of KRAS-mutant colorectal cancers to combination therapy that cotargets MEK and CDK4/6. Clin. Cancer Res. 22, 405–414 (2016).

    CAS  PubMed  Google Scholar 

  156. Franco, J., Witkiewicz, A. K. & Knudsen, E. S. CDK4/6 inhibitors have potent activity in combination with pathway selective therapeutic agents in models of pancreatic cancer. Oncotarget 5, 6512–6525 (2014).

    PubMed  PubMed Central  Google Scholar 

  157. Kwong, L. N. et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat. Med. 18, 1503–1510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Manchado, E. et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 534, 647–651 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Hata, A. N. et al. Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers. Cancer Res. 74, 3146–3156 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Horn, T. et al. High-order drug combinations are required to effectively kill colorectal cancer cells. Cancer Res. 76, 6950–6963 (2016).

    CAS  PubMed  Google Scholar 

  161. Lal, N. et al. KRAS mutation and consensus molecular subtypes 2 and 3 are independently associated with reduced immune infiltration and reactivity in colorectal cancer. Clin. Cancer Res. 24, 224–233 (2017).

    PubMed  PubMed Central  Google Scholar 

  162. Loi, S. et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res. 22, 1499–1509 (2016).

    CAS  PubMed  Google Scholar 

  163. Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Coelho, M. A. et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083–1099 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Cullis, J., Das, S. & Bar-Sagi, D. Kras and tumor immunity: friend or foe? Cold Spring Harb. Perspect Med. 8, a031849 (2017).

    Google Scholar 

  166. Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. June, C. H., Riddell, S. R. & Schumacher, T. N. Adoptive cellular therapy: a race to the finish line. Sci. Transl Med. 7, 280ps7 (2015).

    PubMed  Google Scholar 

  168. June, C. H. Drugging the undruggable Ras — immunotherapy to the rescue? N. Engl. J. Med. 375, 2286–2289 (2016).

    CAS  PubMed  Google Scholar 

  169. Wang, Q. J. et al. Identification of T cell receptors targeting KRAS-mutated human tumors. Cancer Immunol. Res. 4, 204–214 (2016).

    CAS  PubMed  Google Scholar 

  170. Eriksen, J. A., Gladhaug, I. P., Rosseland, A., Risberg Handeland, K. & Buanes, T. An observational clinical study with RAS peptide vaccine TG01 evaluating immune response, safety and overall survival in patients with non-resectable pancreatic cancer. Ann. Oncol. 28, mdx376.018 (2017).

    Google Scholar 

  171. Palmer, D. H., Dueland, S., Valle, J. W. & Aksnes, A.-K. A phase I/II trial of TG01/GM-CSF and gemcitabine as adjuvant therapy for treating patients with resected RAS-mutant adenocarcinoma of the pancreas. J. Clin. Oncol. 35, 4119–4119 (2017).

    Google Scholar 

  172. Topalian Suzanne, L., Drake Charles, G. & Pardoll Drew, M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Cooper, Z. A. et al. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol. Res. 2, 643–654 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Ebert, P. J. R. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44, 609–621 (2016).

    CAS  PubMed  Google Scholar 

  175. Bendell, J. C. et al. Clinical activity and safety of cobimetinib (cobi) and atezolizumab in colorectal cancer (CRC). J. Clin. Oncol. 34, 3502–3502 (2016).

    Google Scholar 

  176. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Infante, J. R. et al. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 13, 773–781 (2012).

    CAS  PubMed  Google Scholar 

  178. Bendell, J. C. et al. A phase Ib study of safety and clinical activity of atezolizumab (A) and cobimetinib (C) in patients (pts) with metastatic colorectal cancer (mCRC). J. Clin. Oncol. 36, 560–560 (2018).

    Google Scholar 

Download references

Acknowledgements

The work of R.B.C. is supported by US National Institutes of Health (NIH)-National Cancer Institute (NCI) Gastrointestinal Cancer SPORE P50 CA127003, R01CA208437 and U54CA224068 and a Stand Up To Cancer (SU2C) Colorectal Dream Team Translational Research Grant (grant number SU2C-AACR-DT22-17). Research grants are administered by the American Association of Cancer Research, the scientific partner of SU2C.

Author information

Authors and Affiliations

Authors

Contributions

M.B.R. and R.B.C. contributed equally to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Ryan B. Corcoran.

Ethics declarations

Competing interests

R.B.C. has received consulting fees from Amgen, Astex, Avidity, Bristol-Myers Squibb, FOG Pharma, Genentech, LOXO, Merrimack, N-of-One, Roche, Roivant, Shire, Symphogen, Taiho and Warp Drive Bio, as well as research support from AstraZeneca and Sanofi. M.B.R. declares no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The RAS initiative: https://www.cancer.gov/research/key-initiatives/rasUS National Institutes of Health ClinicalTrials.gov database: https://www.clinicaltrials.gov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, M.B., Corcoran, R.B. Therapeutic strategies to target RAS-mutant cancers. Nat Rev Clin Oncol 15, 709–720 (2018). https://doi.org/10.1038/s41571-018-0105-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0105-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer