Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hierarchically oriented organization in supramolecular peptide crystals

This article has been updated

Abstract

Hierarchical self-assembly and crystallization with long-range ordered spatial arrangement is ubiquitous in nature and plays an essential role in the regulation of structures and biological functions. Inspired by the multiscale hierarchical structures in biology, tremendous efforts have been devoted to the understanding of hierarchical self-assembly and crystallization of biomolecules such as peptides and amino acids. Understanding the fundamental mechanisms underlying the construction and organization of multiscale architectures is crucial for the design and fabrication of complex functional systems with long-range alignment of molecules. This Review summarizes the typical examples for hierarchically oriented organization of peptide self-assembly and discusses the thermodynamic and kinetic mechanisms that are responsible for this specific hierarchical organization. Most importantly, we propose the concept of hierarchically oriented organization for self-assembling peptide crystals, distinct from the traditional growth mechanism of supramolecular polymerization and crystallization based on the Ostwald ripening rule. Finally, we assess critical challenges and highlight future directions towards the mechanistic understanding and versatile application of the hierarchically oriented organization mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classical and hierarchically oriented organization self-assembly mechanism.
Fig. 2: Hierarchically oriented crystallization of linear short peptides.
Fig. 3: External stimuli-induced oriented alignment of short peptide self-assembly.
Fig. 4: Hierarchically oriented crystallization of cyclic peptides.
Fig. 5: Hierarchical self-assembly and crystallization of amphiphilic peptides.
Fig. 6: Hierarchically oriented polypeptide self-assembly.
Fig. 7: Hierarchically oriented organization in peptide-containing co-assembly systems.
Fig. 8: Hierarchically oriented organization in extended self-assembly systems.
Fig. 9: Intermolecular interactions involved in multiscale hierarchical self-assembly of peptides.
Fig. 10: The isotropic–nematic phase transition is entropically driven.

Similar content being viewed by others

Change history

  • 23 October 2019

    This article has been corrected to change an image credit given for Figure 2b. The credit line of Fig. 2b now reads “Part b is adapted with permission from ref.7, Wiley-VCH.”

References

  1. Knowles, T. P. J., Oppenheim, T. W., Buell, A. K., Chirgadze, D. Y. & Welland, M. E. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat. Nanotechnol. 5, 204–207 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Karsenti, E. Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9, 255–262 (2008).

    CAS  PubMed  Google Scholar 

  3. Yao, H.-B., Fang, H.-Y., Wang, X.-H. & Yu, S.-H. Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chem. Soc. Rev. 40, 3764–3785 (2011).

    CAS  PubMed  Google Scholar 

  4. Pelletier, O. et al. Structure of actin cross-linked with α-actinin: a network of bundles. Phys. Rev. Lett. 91, 148102 (2003).

    CAS  PubMed  Google Scholar 

  5. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    CAS  PubMed  Google Scholar 

  6. Wong, G. C. L. et al. Lamellar phase of stacked two-dimensional rafts of actin filaments. Phys. Rev. Lett. 91, 018103 (2003).

    PubMed  Google Scholar 

  7. Adler-Abramovich, L. et al. Bioinspired flexible and tough layered peptide crystals. Adv. Mater. 30, 1704551 (2017).

    Google Scholar 

  8. Tao, K., Makam, P., Aizen, R. & Gazit, E. Self-assembling peptide semiconductors. Science 358, eaam9756 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Fitzpatrick, A. W. P. et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc. Natl Acad. Sci. USA 110, 5468–5473 (2013).

    CAS  PubMed  Google Scholar 

  10. Bera, S., Mondal, S., Rencus-Lazar, S. & Gazit, E. Organization of amino acids into layered supramolecular secondary structures. Acc. Chem. Res. 51, 2187–2197 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cui, H. et al. Spontaneous and X-ray-triggered crystallization at long range in self-assembling filament networks. Science 327, 555–559 (2010).

    CAS  PubMed  Google Scholar 

  12. Liu, X. et al. Transformation of dipeptide-based organogels into chiral crystals by cryogenic treatment. Angew. Chem. Int. Ed. 56, 2660–2663 (2017).

    CAS  Google Scholar 

  13. Yan, X., Li, J. & Möhwald, H. Self-assembly of hexagonal peptide microtubes and their optical waveguiding. Adv. Mater. 23, 2796–2801 (2011).

    CAS  PubMed  Google Scholar 

  14. Liu, Y. et al. Self-assembled supramolecular nanotube yarn. Adv. Mater. 25, 5875–5879 (2013).

    CAS  PubMed  Google Scholar 

  15. Reches, M. & Gazit, E. Controlled patterning of aligned self-assembled peptide nanotubes. Nat. Nanotechnol. 1, 195–200 (2006).

    CAS  PubMed  Google Scholar 

  16. Valéry, C. et al. Biomimetic organization: octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc. Natl Acad. Sci. USA 100, 10258–10262 (2003).

    PubMed  Google Scholar 

  17. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    CAS  PubMed  Google Scholar 

  18. Li, Q., Jia, Y., Dai, L., Yang, Y. & Li, J. Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties. ACS Nano 9, 2689–2695 (2015).

    CAS  PubMed  Google Scholar 

  19. Kim, J. et al. Role of water in directing diphenylalanine assembly into nanotubes and nanowires. Adv. Mater. 22, 583–587 (2010).

    CAS  PubMed  Google Scholar 

  20. Yan, X. et al. Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew. Chem. Int. Ed. 46, 2431–2434 (2007).

    CAS  Google Scholar 

  21. Wang, Y. et al. Capillary force-driven, hierarchical co-assembly of dandelion-like peptide microstructures. Small 11, 2893–2902 (2015).

    CAS  PubMed  Google Scholar 

  22. Su, Y. et al. A peony-flower-like hierarchical mesocrystal formed by diphenylalanine. J. Mater. Chem. 20, 6734–6740 (2010).

    CAS  Google Scholar 

  23. Peterson, D. T., Baker, H. H. & Verhoeven, J. D. Damascus steel, characterization of one damascus steel sword. Mater. Charact. 24, 355–374 (1990).

    CAS  Google Scholar 

  24. Frederix, P. W. J. M. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2014).

    PubMed  Google Scholar 

  25. Lampel, A. et al. Polymeric peptide pigments with sequence-encoded properties. Science 356, 1064–1068 (2017).

    CAS  PubMed  Google Scholar 

  26. Chan, K. H., Xue, B., Robinson, R. C. & Hauser, C. A. E. Systematic moiety variations of ultrashort peptides produce profound effects on self-assembly, nanostructure formation, hydrogelation, and phase transition. Sci. Rep. 7, 12897 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Bortolini, C. et al. Rapid growth of acetylated Aβ(16–20) into macroscopic crystals. ACS Nano 12, 5408–5416 (2018).

    CAS  PubMed  Google Scholar 

  28. Tang, C., Ulijn, R. V. & Saiani, A. Effect of glycine substitution on Fmoc–diphenylalanine self-assembly and gelation properties. Langmuir 27, 14438–14449 (2011).

    CAS  PubMed  Google Scholar 

  29. Ejgenberg, M. & Mastai, Y. Hierarchical superstructures of l-glutathione. Cryst. Growth Des. 18, 5063–5068 (2018).

    CAS  Google Scholar 

  30. Cenker, Ç. Ç. et al. Peptide nanotube formation: a crystal growth process. Soft Matter 8, 7463–7470 (2012).

    CAS  Google Scholar 

  31. Lu, K., Jacob, J., Thiyagarajan, P., Conticello, V. P. & Lynn, D. G. Exploiting amyloid fibril lamination for nanotube self-assembly. J. Am. Chem. Soc. 125, 6391–6393 (2003).

    CAS  PubMed  Google Scholar 

  32. Wang, Y. et al. Columnar liquid crystals self-assembled by minimalistic peptides for chiral sensing and synthesis of ordered mesoporous silica. Chem. Mater. 30, 7902–7911 (2018).

    CAS  Google Scholar 

  33. Schwahn, D., Ma, Y. & Cölfen, H. Mesocrystal to single crystal transformation of d,l-alanine evidenced by small angle neutron scattering. J. Phys. Chem. C 111, 3224–3227 (2007).

    CAS  Google Scholar 

  34. Medina, D. D. & Mastai, Y. Synthesis of DL-alanine mesocrystals with a hollow morphology. Cryst. Growth Des. 8, 3646–3651 (2008).

    CAS  Google Scholar 

  35. Nemtsov, I., Mastai, Y. & Ejgenberg, M. Formation of hierarchical structures of l-glutamic acid with an l-arginine additive. Cryst. Growth Des. 18, 4054–4059 (2018).

    CAS  Google Scholar 

  36. Ma, Y., Cölfen, H. & Antonietti, M. Morphosynthesis of alanine mesocrystals by pH control. J. Phys. Chem. B 110, 10822–10828 (2006).

    CAS  PubMed  Google Scholar 

  37. Ejgenberg, M. & Mastai, Y. Biomimetic crystallization of l-cystine hierarchical structures. Cryst. Growth Des. 12, 4995–5001 (2012).

    CAS  Google Scholar 

  38. Elemans, J. A. A. W., Lei, S. & De Feyter, S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 48, 7298–7332 (2009).

    CAS  Google Scholar 

  39. Wang, X.-Y., Narita, A. & Müllen, K. Precision synthesis versus bulk-scale fabrication of graphenes. Nat. Rev. Chem. 2, 0100 (2017).

    Google Scholar 

  40. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).

    CAS  PubMed  Google Scholar 

  41. Chen, J. et al. Building two-dimensional materials one row at a time: avoiding the nucleation barrier. Science 362, 1135–1139 (2018).

    CAS  PubMed  Google Scholar 

  42. Kashchiev, D. Nucleation: Basic Theory with Applications. (Butterworth Heinemann, 2000).

  43. Liyanage, W., Brennessel, W. W. & Nilsson, B. L. Spontaneous transition of self-assembled hydrogel fibrils into crystalline microtubes enables a rational strategy to stabilize the hydrogel state. Langmuir 31, 9933–9942 (2015).

    CAS  PubMed  Google Scholar 

  44. Rajbhandary, A., Raymond, D. M. & Nilsson, B. L. Self-assembly, hydrogelation, and nanotube formation by cation-modified phenylalanine derivatives. Langmuir 33, 5803–5813 (2017).

    CAS  PubMed  Google Scholar 

  45. Liyanage, W. & Nilsson, B. L. Substituent effects on the self-assembly/coassembly and hydrogelation of phenylalanine derivatives. Langmuir 32, 787–799 (2016).

    CAS  PubMed  Google Scholar 

  46. Rajbhandary, A., Brennessel, W. W. & Nilsson, B. L. Comparison of the self-assembly behavior of Fmoc-phenylalanine and corresponding peptoid derivatives. Cryst. Growth Des. 18, 623–632 (2018).

    CAS  Google Scholar 

  47. Song, J. et al. Crystalline dipeptide nanobelts based on solid–solid phase transformation self-assembly and their polarization imaging of cells. ACS Appl. Mater. Interfaces 10, 2368–2376 (2018).

    CAS  PubMed  Google Scholar 

  48. Pappas, C. G. et al. Alignment of nanostructured tripeptide gels by directional ultrasonication. Chem. Commun. 51, 8465–8468 (2015).

    CAS  Google Scholar 

  49. Lu, Q. et al. Hydrogel assembly with hierarchical alignment by balancing electrostatic forces. Adv. Mater. Interfaces 3, 1500687 (2016).

    Google Scholar 

  50. Hill, A. et al. Alignment of aromatic peptide tubes in strong magnetic fields. Adv. Mater. 19, 4474–4479 (2007).

    CAS  Google Scholar 

  51. Zhang, S. et al. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9, 594–601 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhan, J. et al. Supramolecular silk from a peptide hydrogel. Mater. Chem. Front. 1, 911–915 (2017).

    CAS  Google Scholar 

  53. Wall, B. D. et al. Aligned macroscopic domains of optoelectronic nanostructures prepared via shear-flow assembly of peptide hydrogels. Adv. Mater. 23, 5009–5014 (2011).

    CAS  PubMed  Google Scholar 

  54. Qin, S.-Y., Pei, Y., Liu, X.-J., Zhuo, R.-X. & Zhang, X.-Z. Hierarchical self-assembly of a β-amyloid peptide derivative. J. Mater. Chem. B 1, 668–675 (2013).

    CAS  PubMed  Google Scholar 

  55. Sun, B. et al. Self-assembly of ultralong aligned dipeptide single crystals. ACS Nano 11, 10489–10494 (2017).

    CAS  PubMed  Google Scholar 

  56. Hu, Y. et al. Electrostatic-driven lamination and untwisting of β-sheet assemblies. ACS Nano 10, 880–888 (2016).

    CAS  PubMed  Google Scholar 

  57. Wang, M., Du, L., Wu, X., Xiong, S. & Chu, P. K. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly. ACS Nano 5, 4448–4454 (2011).

    CAS  PubMed  Google Scholar 

  58. Manchineella, S. & Govindaraju, T. Molecular self-assembly of cyclic dipeptide derivatives and their applications. ChemPlusChem 82, 88–106 (2016).

    PubMed  Google Scholar 

  59. Hu, K. et al. Tuning peptide self-assembly by an in-tether chiral center. Sci. Adv. 4, eaar5907 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Fears, K. P. et al. High-performance nanomaterials formed by rigid yet extensible cyclic β-peptide polymers. Nat. Commun. 9, 4090 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Ziganshin, M. A. et al. Thermally induced self-assembly and cyclization of l-leucyl-l-leucine in solid state. J. Phys. Chem. B 121, 8603–8610 (2017).

    CAS  PubMed  Google Scholar 

  62. Manchineella, S. & Govindaraju, T. Hydrogen bond directed self-assembly of cyclic dipeptide derivatives: gelation and ordered hierarchical architectures. RSC Adv. 2, 5539–5542 (2012).

    CAS  Google Scholar 

  63. Yan, X., Su, Y., Li, J., Früh, J. & Möhwald, H. Uniaxially oriented peptide crystals for active optical waveguiding. Angew. Chem. Int. Ed. 50, 11186–11191 (2011).

    CAS  Google Scholar 

  64. Li, Y. et al. Solvothermally mediated self-assembly of ultralong peptide nanobelts capable of optical waveguiding. Small 12, 2575–2579 (2016).

    CAS  PubMed  Google Scholar 

  65. Tao, K. et al. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat. Commun. 9, 3217 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Pianowski, Z. L., Karcher, J. & Schneider, K. Photoresponsive self-healing supramolecular hydrogels for light-induced release of DNA and doxorubicin. Chem. Commun. 52, 3143–3146 (2016).

    CAS  Google Scholar 

  67. Barman, A. K. & Verma, S. Solid state structures and solution phase self-assembly of clicked mannosylated diketopiperazines. RSC Adv. 3, 14691–14700 (2013).

    CAS  Google Scholar 

  68. Seo, M. J. et al. Reversibly thermochromic cyclic dipeptide nanotubes. Langmuir 34, 8365–8373 (2018).

    CAS  PubMed  Google Scholar 

  69. Palacin, S. et al. Hydrogen-bonded tapes based on symmetrically substituted diketopiperazines:  a robust structural motif for the engineering of molecular solids. J. Am. Chem. Soc. 119, 11807–11816 (1997).

    CAS  Google Scholar 

  70. Govindaraju, T. Spontaneous self-assembly of aromatic cyclic dipeptide into fibre bundles with high thermal stability and propensity for gelation. Supramol. Chem. 23, 759–767 (2011).

    CAS  Google Scholar 

  71. Jeziorna, A. et al. Cyclic dipeptides as building units of nano- and microdevices: synthesis, properties, and structural studies. Cryst. Growth Des. 15, 5138–5148 (2015).

    CAS  Google Scholar 

  72. Govindaraju, T., Pandeeswar, M., Jayaramulu, K., Jaipuria, G. & Atreya, H. S. Spontaneous self-assembly of designed cyclic dipeptide (Phg–Phg) into two-dimensional nano- and mesosheets. Supramol. Chem. 23, 487–492 (2011).

    CAS  Google Scholar 

  73. Leclair, S. et al. Micrometer-sized hexagonal tubes self-assembled by a cyclic peptide in a liquid crystal. Angew. Chem. Int. Ed. 43, 349–353 (2004).

    CAS  Google Scholar 

  74. Amorin, M. et al. Liquid crystal organization of self-assembling cyclic peptides. Chem. Commun. 50, 688–690 (2014).

    CAS  Google Scholar 

  75. Méndez-Ardoy, A., Granja, J. R. & Montenegro, J. pH-triggered self-assembly and hydrogelation of cyclic peptide nanotubes confined in water micro-droplets. Nanoscale Horiz. 3, 391–396 (2018).

    PubMed  Google Scholar 

  76. Smith, J. F., Knowles, T. P. J., Dobson, C. M., MacPhee, C. E. & Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 103, 15806–15811 (2006).

    CAS  PubMed  Google Scholar 

  77. Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).

    CAS  PubMed  Google Scholar 

  78. Rubin, D. J. et al. Structural, nanomechanical, and computational characterization of d,l-cyclic peptide assemblies. ACS Nano 9, 3360–3368 (2015).

    CAS  PubMed  Google Scholar 

  79. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Parmar, A. et al. Defining the molecular structure of teixobactin analogues and understanding their role in antibacterial activities. Chem. Commun. 53, 2016–2019 (2017).

    CAS  Google Scholar 

  81. Yang, H., Wierzbicki, M., Du Bois, D. R. & Nowick, J. S. X-ray crystallographic structure of a teixobactin derivative reveals amyloid-like assembly. J. Am. Chem. Soc. 140, 14028–14032 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cui, H., Cheetham, A. G., Pashuck, E. T. & Stupp, S. I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J. Am. Chem. Soc. 136, 12461–12468 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  PubMed  Google Scholar 

  84. Chen, Y., Gan, H. X. & Tong, Y. W. pH-controlled hierarchical self-assembly of peptide amphiphile. Macromolecules 48, 2647–2653 (2015).

    CAS  Google Scholar 

  85. Cui, H., Muraoka, T., Cheetham, A. G. & Stupp, S. I. Self-assembly of giant peptide nanobelts. Nano Lett. 9, 945–951 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Aggeli, A. et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. Proc. Natl Acad. Sci. USA 98, 11857–11862 (2001).

    CAS  PubMed  Google Scholar 

  87. Zhao, Y. et al. Tuning one-dimensional nanostructures of bola-like peptide amphiphiles by varying the hydrophilic amino acids. Chem. Eur. J. 22, 11394–11404 (2016).

    CAS  PubMed  Google Scholar 

  88. Zhao, Y. et al. Controlling the diameters of nanotubes self-assembled from designed peptide bolaphiles. Small 14, 1703216 (2018).

    Google Scholar 

  89. Wang, M. et al. Nanoribbons self-assembled from short peptides demonstrate the formation of polar zippers between β-sheets. Nat. Commun. 9, 5118 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. Pellach, M. et al. Spontaneous structural transition in phospholipid-inspired aromatic phosphopeptide nanostructures. ACS Nano 9, 4085–4095 (2015).

    CAS  PubMed  Google Scholar 

  91. Pellach, M. et al. A two-tailed phosphopeptide crystallizes to form a lamellar structure. Angew. Chem. Int. Ed. 56, 3252–3255 (2017).

    CAS  Google Scholar 

  92. Moyer, T. J., Cui, H. & Stupp, S. I. Tuning nanostructure dimensions with supramolecular twisting. J. Phys. Chem. B 117, 4604–4610 (2013).

    CAS  PubMed  Google Scholar 

  93. Löwik, D. W. P. M. et al. A highly ordered material from magnetically aligned peptide amphiphile nanofiber assemblies. Adv. Mater. 19, 1191–1195 (2007).

    Google Scholar 

  94. Hamley, I. W. et al. Shear alignment of bola-amphiphilic arginine-coated peptide nanotubes. Biomacromolecules 18, 141–149 (2017).

    CAS  PubMed  Google Scholar 

  95. Lin, Y., Qiao, Y., Tang, P., Li, Z. & Huang, J. Controllable self-assembled laminated nanoribbons from dipeptide-amphiphile bearing azobenzene moiety. Soft Matter 7, 2762–2769 (2011).

    CAS  Google Scholar 

  96. Wan, Y., Wang, Z., Sun, J. & Li, Z. Extremely stable supramolecular hydrogels assembled from nonionic peptide amphiphiles. Langmuir 32, 7512–7518 (2016).

    CAS  PubMed  Google Scholar 

  97. Deng, M., Yu, D., Hou, Y. & Wang, Y. Self-assembly of peptide-amphiphile C12–Aβ(11−17) into nanofibrils. J. Phys. Chem. B 113, 8539–8544 (2009).

    CAS  PubMed  Google Scholar 

  98. Hamley, I. W. et al. Nematic and columnar ordering of a PEG–peptide conjugate in aqueous solution. Chem. Eur. J. 14, 11369–11375 (2008).

    CAS  PubMed  Google Scholar 

  99. Guler, M. O., Pokorski, J. K., Appella, D. H. & Stupp, S. I. Enhanced oligonucleotide binding to self-assembled nanofibers. Bioconjugate Chem. 16, 501–503 (2005).

    CAS  Google Scholar 

  100. Ura, Y., Beierle, J. M., Leman, L. J., Orgel, L. E. & Ghadiri, M. R. Self-assembling sequence-adaptive peptide nucleic acids. Science 325, 73–77 (2009).

    CAS  PubMed  Google Scholar 

  101. Berger, O. et al. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing. Nat. Nanotechnol. 10, 353 (2015).

    CAS  PubMed  Google Scholar 

  102. Serpell, C. J. et al. Nucleobase peptide amphiphiles. Mater. Horiz. 1, 348–354 (2014).

    CAS  Google Scholar 

  103. Adamcik, J. et al. Microtubule-binding R3 fragment from Tau self-assembles into giant multistranded amyloid ribbons. Angew. Chem. Int. Ed. 55, 618–622 (2016).

    CAS  Google Scholar 

  104. Mondal, S. et al. Formation of functional super-helical assemblies by constrained single heptad repeat. Nat. Commun. 6, 8615 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Guterman, T. et al. Formation of bacterial pilus-like nanofibres by designed minimalistic self-assembling peptides. Nat. Commun. 7, 13482 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Gangloff, N., Ulbricht, J., Lorson, T., Schlaad, H. & Luxenhofer, R. Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering. Chem. Rev. 116, 1753–1802 (2016).

    CAS  PubMed  Google Scholar 

  107. Murnen, H. K., Rosales, A. M., Jaworski, J. N., Segalman, R. A. & Zuckermann, R. N. Hierarchical self-assembly of a biomimetic diblock copolypeptoid into homochiral superhelices. J. Am. Chem. Soc. 132, 16112–16119 (2010).

    CAS  PubMed  Google Scholar 

  108. Hule, R. A., Nagarkar, R. P., Hammouda, B., Schneider, J. P. & Pochan, D. J. Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules 42, 7137–7145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lamm, M. S., Rajagopal, K., Schneider, J. P. & Pochan, D. J. Laminated morphology of nontwisting β-sheet fibrils constructed via peptide self-assembly. J. Am. Chem. Soc. 127, 16692–16700 (2005).

    CAS  PubMed  Google Scholar 

  110. Barritt, J. D., Younan, N. D. & Viles, J. H. N-terminally truncated amyloid-β(11–40/42) cofibrillizes with its full-length counterpart: implications for Alzheimer’s disease. Angew. Chem. Int. Ed. 56, 9816–9819 (2017).

    CAS  Google Scholar 

  111. Ni, R. & Chau, Y. Tuning the inter-nanofibril interaction to regulate the morphology and function of peptide/DNA co-assembled viral mimics. Angew. Chem. Int. Ed. 56, 9356–9360 (2017).

    CAS  Google Scholar 

  112. Raymond, D. M. & Nilsson, B. L. Multicomponent peptide assemblies. Chem. Soc. Rev. 47, 3659–3720 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, K. et al. Peptide-induced hierarchical long-range order and photocatalytic activity of porphyrin assemblies. Angew. Chem. Int. Ed. 54, 500–505 (2015).

    CAS  Google Scholar 

  114. Zhou, M. et al. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30, 2523–2530 (2009).

    CAS  PubMed  Google Scholar 

  115. Ji, W. et al. Regulating higher-order organization through the synergy of two self-sorted assemblies. Angew. Chem. Int. Ed. 57, 3636–3640 (2018).

    CAS  Google Scholar 

  116. Inostroza-Brito, K. E. et al. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system. Nat. Chem. 7, 897 (2015).

    CAS  PubMed  Google Scholar 

  117. Ni, R. & Chau, Y. Structural mimics of viruses through peptide/DNA co-assembly. J. Am. Chem. Soc. 136, 17902–17905 (2014).

    CAS  PubMed  Google Scholar 

  118. Jiang, T. et al. Structurally ordered nanowire formation from co-assembly of DNA origami and collagen-mimetic peptides. J. Am. Chem. Soc. 139, 14025–14028 (2017).

    CAS  PubMed  Google Scholar 

  119. Xing, P., Li, P., Chen, H., Hao, A. & Zhao, Y. Understanding pathway complexity of organic micro/nanofiber growth in hydrogen-bonded coassembly of aromatic amino acids. ACS Nano 11, 4206–4216 (2017).

    CAS  PubMed  Google Scholar 

  120. Wang, F. & Feng, C.-L. Stoichiometry-controlled inversion of supramolecular chirality in nanostructures co-assembled with bipyridines. Chem.Eur. J. 24, 1509–1513 (2017).

    Google Scholar 

  121. Wang, F. & Feng, C.-L. Metal-ion-mediated supramolecular chirality of l-phenylalanine based hydrogels. Angew. Chem. Int. Ed. 57, 5655–5659 (2018).

    CAS  Google Scholar 

  122. Liu, G.-F., Liu, J., Feng, C.-L. & Zhao, Y. Unexpected right-handed helical nanostructures co-assembled from l-phenylalanine derivatives and achiral bipyridines. Chem. Sci. 8, 1769–1775 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, G.-F., Zhu, L.-Y., Ji, W., Feng, C.-L. & Wei, Z.-X. Inversion of the supramolecular chirality of nanofibrous structures through co-assembly with achiral molecules. Angew. Chem. Int. Ed. 55, 2411–2415 (2015).

    Google Scholar 

  124. Wang, J.-X. et al. Controlled arrays of self-assembled peptide nanostructures in solution and at interface. Langmuir 29, 6996–7004 (2013).

    CAS  PubMed  Google Scholar 

  125. Freeman, R. et al. Reversible self-assembly of superstructured networks. Science 362, 808–813 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Tao, F., Han, Q., Liu, K. & Yang, P. Tuning crystallization pathways through the mesoscale assembly of biomacromolecular nanocrystals. Angew. Chem. Int. Ed. 56, 13440–13444 (2017).

    CAS  Google Scholar 

  127. Lara, C., Adamcik, J., Jordens, S. & Mezzenga, R. General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12, 1868–1875 (2011).

    CAS  PubMed  Google Scholar 

  128. Lashuel, H. A., LaBrenz, S. R., Woo, L., Serpell, L. C. & Kelly, J. W. Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly:  implications for amyloid fibril formation and materials science. J. Am. Chem. Soc. 122, 5262–5277 (2000).

    CAS  PubMed  Google Scholar 

  129. Yang, S. et al. Giant capsids from lattice self-assembly of cyclodextrin complexes. Nat. Commun. 8, 15856 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Van Driessche, A. E. S. et al. Molecular nucleation mechanisms and control strategies for crystal polymorph selection. Nature 556, 89–94 (2018).

    PubMed  Google Scholar 

  131. Würthner, F. et al. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem. Rev. 116, 962–1052 (2016).

    PubMed  Google Scholar 

  132. Chen, S., Slattum, P., Wang, C. & Zang, L. Self-assembly of perylene imide molecules into 1D nanostructures: methods, morphologies, and applications. Chem. Rev. 115, 11967–11998 (2015).

    CAS  PubMed  Google Scholar 

  133. Zhang, X., Görl, D., Stepanenko, V. & Würthner, F. Hierarchical growth of fluorescent dye aggregates in water by fusion of segmented nanostructures. Angew. Chem. Int. Ed. 53, 1270–1274 (2014).

    Google Scholar 

  134. Görl, D., Zhang, X., Stepanenko, V. & Würthner, F. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides. Nat. Commun. 6, 7009 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Percec, V. et al. Self-repairing complex helical columns generated via kinetically controlled self-assembly of dendronized perylene bisimides. J. Am. Chem. Soc. 133, 18479–18494 (2011).

    CAS  PubMed  Google Scholar 

  136. Percec, V. et al. Transformation from kinetically into thermodynamically controlled self-organization of complex helical columns with 3D periodicity assembled from dendronized perylene bisimides. J. Am. Chem. Soc. 135, 4129–4148 (2013).

    CAS  PubMed  Google Scholar 

  137. Partridge, B. E. et al. Increasing 3D supramolecular order by decreasing molecular order. a comparative study of helical assemblies of dendronized nonchlorinated and tetrachlorinated perylene bisimides. J. Am. Chem. Soc. 137, 5210–5224 (2015).

    CAS  PubMed  Google Scholar 

  138. Sahoo, D. et al. Hierarchical self-organization of perylene bisimides into supramolecular spheres and periodic arrays thereof. J. Am. Chem. Soc. 138, 14798–14807 (2016).

    CAS  PubMed  Google Scholar 

  139. Herbst, S. et al. Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases. Nat. Commun. 9, 2646 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Yagai, S. et al. Structural and electronic properties of extremely long perylene bisimide nanofibers formed through a stoichiometrically mismatched, hydrogen-bonded complexation. Small 6, 2731–2740 (2010).

    CAS  PubMed  Google Scholar 

  141. Marty, R. et al. Hierarchically structured microfibers of “single stack” perylene bisimide and quaterthiophene nanowires. ACS Nano 7, 8498–8508 (2013).

    CAS  PubMed  Google Scholar 

  142. Palmer, L. C. et al. Long-range rrdering of highly charged self-assembled nanofilaments. J. Am. Chem. Soc. 136, 14377–14380 (2014).

    CAS  PubMed  Google Scholar 

  143. Taden, A., Landfester, K. & Antonietti, M. Crystallization of dyes by directed aggregation of colloidal intermediates:  a model case. Langmuir 20, 957–961 (2004).

    CAS  PubMed  Google Scholar 

  144. Zhang, C. et al. Porphyrin supramolecular 1D structures via surfactant-assisted self-assembly. Adv. Mater. 27, 5379–5387 (2015).

    CAS  PubMed  Google Scholar 

  145. Hu, J.-S., Guo, Liang, H.-P., Wan, L.-J. & Jiang, L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J. Am. Chem. Soc. 127, 17090–17095 (2005).

    CAS  PubMed  Google Scholar 

  146. Guo, P., Chen, P. & Liu, M. Porphyrin assemblies via a surfactant-assisted method: from nanospheres to nanofibers with tunable length. Langmuir 28, 15482–15490 (2012).

    CAS  PubMed  Google Scholar 

  147. Qiu, Y., Chen, P. & Liu, M. Evolution of various porphyrin nanostructures via an oil/aqueous medium: controlled self-assembly, further organization, and supramolecular chirality. J. Am. Chem. Soc. 132, 9644–9652 (2010).

    CAS  PubMed  Google Scholar 

  148. Kim, T., Ham, S., Lee, S. H., Hong, Y. & Kim, D. Enhancement of exciton transport in porphyrin aggregate nanostructures by controlling the hierarchical self-assembly. Nanoscale 10, 16438–16446 (2018).

    CAS  PubMed  Google Scholar 

  149. Xu, G., Li, Q. & Chen, X. Nanobelts of hexagonal columnar crystal lattice through ionic self-assembly. Colloid Polym. Sci. 293, 2877–2882 (2015).

    CAS  Google Scholar 

  150. Li, H., Guan, M., Zhu, G., Yin, G. & Xu, Z. Experimental observation of fullerene crystalline growth from mesocrystal to single crystal. Cryst. Growth Des. 16, 1306–1310 (2016).

    CAS  Google Scholar 

  151. Zhang, X. & Takeuchi, M. Controlled fabrication of fullerene C60 into microspheres of nanoplates through porphyrin-polymer-assisted self-assembly. Angew. Chem. Int. Ed. 48, 9646–9651 (2009).

    CAS  Google Scholar 

  152. Zhang, X. et al. Supramolecular [60]fullerene liquid crystals formed by self-organized two-dimensional crystals. Angew. Chem. Int. Ed. 54, 114–117 (2014).

    Google Scholar 

  153. Ramos Sasselli, I., Halling, P. J., Ulijn, R. V. & Tuttle, T. Supramolecular fibers in gels can be at thermodynamic equilibrium: a simple packing model reveals preferential fibril formation versus crystallization. ACS Nano 10, 2661–2668 (2016).

    CAS  Google Scholar 

  154. Palermo, V. & Samorì, P. Molecular self-assembly across multiple length scales. Angew. Chem. Int. Ed. 46, 4428–4432 (2007).

    CAS  Google Scholar 

  155. Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    CAS  PubMed  Google Scholar 

  156. Mendes, A. C., Baran, E. T., Reis, R. L. & Azevedo, H. S. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 582–612 (2013).

    CAS  PubMed  Google Scholar 

  157. Ulijn, R. V. & Smith, A. M. Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664–675 (2008).

    CAS  PubMed  Google Scholar 

  158. Fichman, G. et al. Spontaneous structural transition and crystal formation in minimal supramolecular polymer model. Sci. Adv. 2, e1500827 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. Dudukovic, N. A., Hudson, B. C., Paravastu, A. K. & Zukoski, C. F. Self-assembly pathways and polymorphism in peptide-based nanostructures. Nanoscale 10, 1508–1516 (2018).

    CAS  PubMed  Google Scholar 

  160. Banwell, E. F. et al. Rational design and application of responsive α-helical peptide hydrogels. Nat. Mater. 8, 596–600 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. González-Rodríguez, D. et al. G-quadruplex self-assembly regulated by coulombic interactions. Nat. Chem. 1, 151–155 (2009).

    PubMed  Google Scholar 

  162. Faul, C. F. J. & Antonietti, M. Ionic self-assembly: facile synthesis of supramolecular materials. Adv. Mater. 15, 673–683 (2003).

    CAS  Google Scholar 

  163. Rehm, T. H. & Schmuck, C. Ion-pair induced self-assembly in aqueous solvents. Chem. Soc. Rev. 39, 3597–3611 (2010).

    CAS  PubMed  Google Scholar 

  164. Jeffrey, G. A. & Saenger, W. Hydrogen Bonding in Biological Structures (Springer Science & Business Media, 2012).

  165. Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4098 (2001).

    CAS  PubMed  Google Scholar 

  166. Krieg, E., Bastings, M. M. C., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477 (2016).

    CAS  PubMed  Google Scholar 

  167. Grimme, S. Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed. 47, 3430–3434 (2008).

    CAS  Google Scholar 

  168. Martinez, C. R. & Iverson, B. L. Rethinking the term “pi-stacking”. Chem. Sci. 3, 2191–2201 (2012).

    CAS  Google Scholar 

  169. Cockroft, S. L., Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. Electrostatic control of aromatic stacking interactions. J. Am. Chem. Soc. 127, 8594–8595 (2005).

    CAS  PubMed  Google Scholar 

  170. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    CAS  PubMed  Google Scholar 

  171. Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008).

    CAS  PubMed  Google Scholar 

  172. Tao, J. et al. Energetic basis for the molecular-scale organization of bone. Proc. Natl Acad. Sci. USA 112, 326 (2015).

    CAS  PubMed  Google Scholar 

  173. Manoharan, V. N. Colloidal matter: packing, geometry, and entropy. Science 349, 1253751 (2015).

    PubMed  Google Scholar 

  174. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51, 627–659 (1949).

    CAS  Google Scholar 

  175. Needleman, D. J. et al. Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces. Proc. Natl Acad. Sci. USA 101, 16099–16103 (2004).

    CAS  PubMed  Google Scholar 

  176. Yao, Z. & Olvera de la Cruz, M. Electrostatic repulsion-driven crystallization model arising from filament networks. Phys. Rev. E 87, 042605 (2013).

    Google Scholar 

  177. Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 38, 231–252 (1985).

    Google Scholar 

  178. De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    PubMed  Google Scholar 

  179. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (project nos 21522307, 21802143 and 21802144), the National Natural Science Fund BRICS STI Framework Programme (no. 51861145304) and Innovation Research Community Science Fund (no. 21821005), and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (CAS, grant no. QYZDB-SSW-JSC034) as well as the European Research Council under the European Union Horizon 2020 research and innovation programme (BISON no. 694426). The authors thank Sigal Rencus-Lazar for language editing assistance.

Author information

Authors and Affiliations

Authors

Contributions

C.Y. and W. J. contributed equally to this work. X.Y., J.L. and E.G. conceived the Review. All authors contributed to the discussion and writing of the Review.

Corresponding authors

Correspondence to Junbai Li, Ehud Gazit or Xuehai Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks T. Tuttle, R. Ulijn and B. Nilsson for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Paracrystals

A kind of solid-phase state exhibiting short-range and medium-range ordering in the lattice (similar to liquid crystal phases) but lacking long-range ordering in at least one direction.

Ferrofluid

A kind of liquid that becomes strongly magnetized in the presence of a magnetic field.

Solvothermal treatment

An approach for preparing crystalline materials with micro/nanostructures such as metals, polymers and semiconductors from a non-aqueous solution in an autoclave (a thick-walled steel vessel) at high temperature and pressure.

Optical waveguiding

A physical property possessed by a perfect and smooth physical structure that can guide electromagnetic waves in the optical spectrum.

Nematic liquid crystal

A kind of thermotropic liquid crystal in which the molecules are in a definite order or pattern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Ji, W., Xing, R. et al. Hierarchically oriented organization in supramolecular peptide crystals. Nat Rev Chem 3, 567–588 (2019). https://doi.org/10.1038/s41570-019-0129-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0129-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing