Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The ultrafast X-ray spectroscopic revolution in chemical dynamics

An Author Correction to this article was published on 14 June 2018

This article has been updated

Abstract

The past two decades have seen rapid developments in short-pulse X-ray sources, which have enabled the study of nuclear and electronic dynamics by ultrafast X-ray spectroscopies with unprecedented time resolution ranging from nanoseconds to attoseconds. In this Perspective, we discuss some of the major achievements in the study of nuclear and electronic dynamics with X-ray pulses produced by high-harmonic, free-electron-laser and synchrotron sources. The particular dynamic processes probed by X-ray radiation highlighted in this Perspective are electronic coherences on attosecond to femtosecond timescales, chemical reactions, such as dissociations, and pericyclic ring-openings, spin-crossover dynamics, ligand-exchange dynamics and structural deformations in excited states. X-ray spectroscopic probing of chemical dynamics holds great promise for the future owing to the ongoing developments of new spectroscopies, such as four-wave mixing, and the continuous improvements in emerging laboratory-based, high-harmonic sources and large-scale, facility-based, free-electron lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: X-ray spectroscopy of chemical dynamics.
Fig. 2: Electronic coherence measured in atoms and molecules.
Fig. 3: Following a chemical reaction with soft X-ray spectroscopy.
Fig. 4: Time-resolved XANES measurement of spin-crossover dynamics in aqueous tris(2,2´-bipyridine)iron(ii) ([Feii(bpy)3]2+).
Fig. 5: Time-resolved RIXS (free-electron laser) of the ligand-exchange dynamics in aqueous Fe(CO)5.
Fig. 6: Time-resolved EXAFS measurement reveals structural dynamics of a photochemically active diplatinum molecule in solution.

Similar content being viewed by others

Change history

  • 14 June 2018

    In the original version of the article the authors inadvertently omitted to acknowledge funding from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Gas Phase Chemical Physics Program under contract no. DE-AC02-05-CH11231. This has been corrected in all versions of the published article.

References

  1. Eigen, M. Methods for investigation of ionic reactions in aqueous solutions with half-times as short as 10–19 sec. application to neutralization and hydrolysis reactions. Discuss. Faraday Soc. 17, 194–205 (1954).

    Article  Google Scholar 

  2. Porter, G. The absorption spectroscopy of substances of short life. Discuss. Faraday Soc. 9, 60–69 (1950).

    Article  Google Scholar 

  3. [No authors listed.] The Nobel Prize in Chemistry 1967. Nobelprize.org https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1967/ (2018).

  4. Dantus, M., Rosker, M. J. & Zewail, A. H. Real-time femtosecond probing of transition states in chemical reactions. J. Chem. Phys. 87, 2395–2397 (1987).

    Article  CAS  Google Scholar 

  5. Rosker, M. J., Dantus, M. & Zewail, A. H. Femtosecond clocking of the chemical bond. Science 241, 1200–1202 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Rose, T. S., Rosker, M. J. & Zewail, A. H. Femtosecond real-time probing of reactions. iv. the reactions of alkali halides. J. Chem. Phys. 91, 7415–7436 (1989).

    Article  CAS  Google Scholar 

  7. Mokhtari, A., Cong, P., Herek, J. & Zewail, A. Direct femtosecond mapping of trajectories in a chemical reaction. Nature 348, 225–227 (1990).

    Article  CAS  Google Scholar 

  8. Dantus, M., Bowman, R. M., Gruebele, M. & Zewail, A. H. Femtosecond real-time probing of reactions. v. the reaction of IHgI. J. Chem. Phys. 91, 7437–7450 (1989).

    Article  CAS  Google Scholar 

  9. [No authors listed.] The Nobel Prize in Chemistry 1999. Nobelprize.org https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1999/ (2018).

  10. Minitti, M. et al. Imaging molecular motion: femtosecond X-ray scattering of an electro-cyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Glownia, J. M. et al. Self-referenced coherent diffraction X-ray movie of Ångstrom-and femtosecond-scale atomic motion. Phys. Rev. Lett. 117, 153003 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Loh, Z.-H. & Leone, S. R. Capturing ultrafast quantum dynamics with femtosecond and attosecond X-ray core-level absorption spectroscopy. J. Phys. Chem. Lett. 4, 292–302 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Hosler, E. R. & Leone, S. R. Characterization of vibrational wave packets by core-level high-harmonic transient absorption spectroscopy. Phys. Rev. A 88, 023420 (2013).

    Article  CAS  Google Scholar 

  15. Dutoi, A. D. & Leone, S. R. Simulation of X-ray transient absorption for following vibrations in coherently ionized F2 molecules. Chem. Phys. 482, 249–264 (2017).

    Article  CAS  Google Scholar 

  16. Wei, Z. et al. Elucidating the origins of multimode vibrational coherences of polyatomic molecules induced by intense laser fields. Nat. Commun. 8, 735 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramasesha, K., Leone, S. R. & Neumark, D. M. Real-time probing of electron dynamics using attosecond time-resolved spectroscopy. Annu. Rev. Phys. Chem. 67, 41–63 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Schoenlein, R. et al. Generation of femtosecond pulses of synchrotron radiation. Science 287, 2237–2240 (2000).

    Article  CAS  Google Scholar 

  19. Mitzner, R. et al. Direct autocorrelation of soft-X-ray free-electron-laser pulses by time- resolved two-photon double ionization of he. Phys. Rev. A 80, 025402 (2009).

    Article  CAS  Google Scholar 

  20. Moshammer, R. et al. Second-order autocorrelation of XUV FEL pulses via time resolved two-photon single ionization of He. Opt. Express 19, 21698–21706 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Helml, W. et al. Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain. Nat. Photon. 8, 950 (2014).

    Article  CAS  Google Scholar 

  22. Huang, S. et al. Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Phys. Rev. Lett. 119, 154801 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, K. et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37, 3891–3893 (2012).

    Article  PubMed  Google Scholar 

  26. Li, J. et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nat. Commun. 8, 186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cousin, S. L. et al. Attosecond streaking in the water window: a new regime of attosecond pulse characterization. Phys. Rev. X 7, 041030 (2017).

    Google Scholar 

  28. Gaumnitz, T. et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express 25, 27506–27518 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, L. X. Probing transient molecular structures in photochemical processes using laser-initiated time-resolved X-ray absorption spectroscopy. Annu. Rev. Phys. Chem. 56, 221–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, L., Zhang, X. & Shelby, M. Recent advances on ultrafast X-ray spectroscopy in the chemical sciences. Chem. Sci. 5, 4136–4152 (2014).

    Article  CAS  Google Scholar 

  31. Chan, L.-O. et al. Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray source. Phys. Rev. Lett. 103, 257402 (2009).

    Article  CAS  Google Scholar 

  32. Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Jiang, C.-M. et al. Characterization of photo-induced charge transfer and hot carrier relaxation pathways in spinel cobalt oxide (Co3o4). J. Phys. Chem. C 118, 22774–22784 (2014).

    Article  CAS  Google Scholar 

  34. Kfir, O. et al. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nat. Photon. 9, 99–105 (2015).

    Article  CAS  Google Scholar 

  35. Gierz, I. et al. Tracking primary thermalization events in graphene with photoemission at extreme time scales. Phys. Rev. Lett. 115, 086803 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Lucchini, M. et al. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Zürch, M. et al. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium. Nat. Commun. 8, 15734 (2017).

    Article  CAS  Google Scholar 

  38. Jager, M. F. et al. Tracking the insulator-to-metal phase transition in Vo2 with few-femtosecond extreme UV transient absorption spectroscopy. Proc. Natl Acad. Sci. 114, 9558–9563 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Carneiro, L. M. et al. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat. Mater. 16, 819–825 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Moulet, A. et al. Soft X-ray excitonics. Science 357, 1134–1138 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Ossiander, M. et al. Attosecond correlation dynamics. Nat. Phys. 13, 280–285 (2017).

    Article  CAS  Google Scholar 

  46. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Kraus, P. M. et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 350, 790–795 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, H. et al. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Lein, M. Attosecond probing of vibrational dynamics with high-harmonic generation. Phys. Rev. Lett. 94, 053004 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Haessler, S. et al. Attosecond imaging of molecular electronic wavepackets. Nat. Phys. 6, 200–206 (2010).

    Article  CAS  Google Scholar 

  56. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Vozzi, C. et al. Generalized molecular orbital tomography. Nat. Phys. 7, 822–826 (2011).

    Article  CAS  Google Scholar 

  58. Wo¨rner, H. J., Niikura, H., Bertrand, J. B., Corkum, P. B. & Villeneuve, D. M. Observation of electronic structure minima in high-harmonic generation. Phys. Rev. Lett. 102, 103901 (2009).

    Article  CAS  Google Scholar 

  59. Shiner, A. D. et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nat. Phys. 7, 464–467 (2011).

    Article  CAS  Google Scholar 

  60. Kraus, P. M., Baykusheva, D. & Wörner, H. J. Two-pulse field-free orientation reveals anisotropy of molecular shape resonance. Phys. Rev. Lett. 113, 023001 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Kraus, P. M. et al. Observation of laser-induced electronic structure in oriented polyatomic molecules. Nat. Commun. 6, 7039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wörner, H. J., Bertrand, J. B., Kartashov, D. V., Corkum, P. B. & Villeneuve, D. M. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Tehlar, A. & Wörner, H. J. Time-resolved high-harmonic spectroscopy of the photodissociation of CH3I and CF3I. Mol. Phys. 111, 2057–2067 (2013).

    Article  CAS  Google Scholar 

  64. Wörner, H. J. et al. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).

    Article  CAS  Google Scholar 

  65. Kraus, P. M. et al. Time-resolved high-harmonic spectroscopy of nonadiabatic dynamics in NO2. Phys. Rev. A 85, 043409 (2012).

    Article  CAS  Google Scholar 

  66. Kraus, P. M. & Wörner, H. J. Time-resolved high-harmonic spectroscopy of valence electron dynamics. Chem. Phys. 414, 32–44 (2013).

    Article  CAS  Google Scholar 

  67. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  CAS  Google Scholar 

  68. Vampa, G. et al. All-optical reconstruction of crystal band structure. Phy. Rev. Lett. 115, 193603 (2015).

    Article  CAS  Google Scholar 

  69. Silva, R., Blinov, I. V., Rubtsov, A. N., Smirnova, O. & Ivanov, M. High harmonic imaging of ultrafast many-body dynamics in strongly correlated systems. Preprint arXiv 1704.08471 (2017).

    Google Scholar 

  70. Beck, A. R., Neumark, D. M. & Leone, S. R. Probing ultrafast dynamics with attosecond transient absorption. Chem. Phys. Lett. 624, 119–130 (2015).

    Article  CAS  Google Scholar 

  71. Attar, A. R. et al. Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Pertot, Y. et al. Time-resolved X-ray absorption spectroscopy with a water window high- harmonic source. Science 355, 264–267 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Bressler, C. et al. Femtosecond xanes study of the light-induced spin crossover dynamics in an iron(ii) complex. Science 323, 489–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. van der Veen, R. M. et al. Structural determination of a photochemically active diplatinum molecule by time-resolved EXAFS spectroscopy. Angew. Chem. Int. Ed. 48, 2711–2714 (2009).

    Article  CAS  Google Scholar 

  75. Bergmann, U. & Glatzel, P. X-ray emission spectroscopy. Photosynth. Res. 102, 255 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Haumann, M. et al. Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 310, 1019–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Vaida, M. E. & Leone, S. R. Femtosecond extreme ultraviolet photoemission spectroscopy: observation of ultrafast charge transfer at the n-TiO2/p-Si (100) interface with controlled TiO2 oxygen vacancies. J. Phys. Chem. C 120, 2769–2776 (2016).

    Article  CAS  Google Scholar 

  78. Marsh, B. M., Vaida, M. E., Cushing, S. K., Lamoureux, B. R. & Leone, S. R. Measuring the surface photovoltage of a Schottky barrier under intense light conditions: Zn/p-Zi (100) by laser time-resolved extreme ultraviolet photoelectron spectroscopy. J. Phys. Chem. C 121, 21904–21912 (2017).

    Article  CAS  Google Scholar 

  79. Siefermann, K. R. et al. Atomic-scale perspective of ultrafast charge transfer at a dye–semiconductor interface. J. Phys. Chem. Lett. 5, 2753–2759 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Arion, T. et al. Site-specific probing of charge transfer dynamics in organic photovoltaics. Appl. Phys. Lett. 106, 121602 (2015).

    Article  CAS  Google Scholar 

  81. Neppl, S. & Gessner, O. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics. J. Electron. Spectrosc. Related Phenomena 200, 64–77 (2015).

    Article  CAS  Google Scholar 

  82. Gray, A. et al. Probing bulk electronic structure with hard X-ray angle-resolved photoemission. Nat. Mater. 10, 759–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Mathias, S. et al. Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer. Rev. Sci Instruments 78, 083105 (2007).

    Article  CAS  Google Scholar 

  84. Eich, S. et al. Time-and angle-resolved photoemission spectroscopy with optimized high- harmonic pulses using frequency-doubled Ti: Sapphire lasers. J. Electron. Spectrosc. Related Phenomena 195, 231–236 (2014).

    Article  CAS  Google Scholar 

  85. Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Hellmann, S. et al. Time-domain classification of charge-density-wave insulators. Nat. Commun. 3, 1069 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, H. et al. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV. Nat. Commun. 6, 7459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Belshaw, L. et al. Observation of ultrafast charge migration in an amino acid. J. Phys. Chem. Lett. 3, 3751–3754 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Wernet, P. et al. Orbital-specific mapping of the ligand exchange dynamics of Fe(Co)5 in solution. Nature 520, 78–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nat. Photon. 7, 608 (2013).

    Article  CAS  Google Scholar 

  93. Charalambidis, D. et al. in The European Conference on Lasers and Electro-Optics CG_4_1 (Munich, Germany, 2013).

  94. Kühn, S. et al. The eli-alps facility: the next generation of attosecond sources. J. Phys. B Atom. Mol. Opt. Phys. 50, 132002 (2017).

    Article  CAS  Google Scholar 

  95. Young, L. et al. Roadmap of ultrafast X-ray atomic and molecular physics. J. Phys. B Atom. Mol. Opt. Phys. 51, 032003 (2018).

    Article  CAS  Google Scholar 

  96. [No authors listed.] In Comparison. The European XFEL in international comparison. European XFEL https://www.xfel.eu/facility/comparison/index_eng.html (2018).

  97. Arnold, C., Vendrell, O. & Santra, R. Electronic decoherence following photoionization: full quantum-dynamical treatment of the influence of nuclear motion. Phys. Rev. A 95, 033425 (2017).

    Article  Google Scholar 

  98. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Scholes, G. D. et al. Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647 (2017).

    Article  CAS  Google Scholar 

  100. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995).

    Article  CAS  Google Scholar 

  102. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).

    Article  CAS  Google Scholar 

  103. Cederbaum, L. & Zobeley, J. Ultrafast charge migration by electron correlation. Chem. Phys. Lett. 307, 205–210 (1999).

    Article  CAS  Google Scholar 

  104. Breidbach, J. & Cederbaum, L. S. Migration of holes: formalism, mechanisms and illustrative applications. J. Chem. Phys. 118, 3983 (2003).

    Article  CAS  Google Scholar 

  105. Remacle, F. & Levine, R. D. An electronic time scale in chemistry. PNAS 103, 6793–6798 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Breidbach, J. & Cederbaum, L. S. Universal attosecond response to the removal of an electron. Phys. Rev. Lett. 94, 033901 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Sansone, G., Pfeifer, T., Simeonidis, K. & Kuleff, A. I. Electron correlation in real time. ChemPhysChem 13, 661–680 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Kuleff, A. I., Lünnemann, S. & Cederbaum, L. S. Electron-correlation-driven charge migration in oligopeptides. Chem. Phys. 414, 100–105 (2013).

    Article  CAS  Google Scholar 

  109. Kuleff, A. I. & Cederbaum, L. S. Ultrafast correlation-driven electron dynamics. J. Phys. B Atom. Mol. Opt. Phys. 47, 124002 (2014).

    Article  CAS  Google Scholar 

  110. Bhattacherjee, A., Pemmaraju, C. D., Schnorr, K., Attar, A. R. & Leone, S. R. Ultrafast intersystem crossing in acetylacetone via femtosecond X-ray transient absorption at the carbon K-edge. J. Am. Chem. Soc. 139, 16576–16583 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Lackner, F. et al. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy. J. Chem. Phys. 145, 234313 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Chatterley, A. S., Lackner, F., Neumark, D. M., Leone, S. R. & Gessner, O. Tracking dissociation dynamics of strong-field ionized 1,2-dibromoethane with femtosecond XUV transient absorption spectroscopy. Phys. Chem. Chem. Phys. 18, 14644–14653 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Chatterley, A. S. et al. Dissociation dynamics and electronic structures of highly excited ferrocenium ions studied by femtosecond XUV absorption spectroscopy. J. Phys. Chem. A 120, 9509–9518 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Attar, A. R., Bhattacherjee, A. & Leone, S. R. Direct observation of the transition-state region in the photodissociation of CH3I by femtosecond extreme ultraviolet transient absorption spectroscopy. J. Phys. Chem. Lett. 6, 5072–5077 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Biegert, J. Attosecond dispersive soft x-ray absorption fine structure spectroscopy. APS Physics http://meetings.aps.org/Meeting/DAMOP18/Session/K05.2 (2017).

  117. Cavalleri, A. et al. Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption. Phys. Rev. Lett. 95, 067405 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. McCusker, J. K. et al. Subpicosecond 1MLCT5T2 intersystem crossing of low-spin polypyridyl ferrous complexes. J. Am. Chem. Soc. 115, 298–307 (1993).

    Article  CAS  Google Scholar 

  119. Monat, J. E. & McCusker, J. K. Femtosecond excited-state dynamics of an iron(ii) polypyridyl solar cell sensitizer model. J. Am. Chem. Soc. 122, 4092–4097 (2000).

    Article  CAS  Google Scholar 

  120. Gawelda, W. et al. Ultrafast nonadiabatic dynamics of [FeII(bpy)3]2+ in solution. J. Am. Chem. Soc. 129, 8199–8206 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Létard, J.-F., Guionneau, P. & Goux-Capes, L. in Spin Crossover in Transition Metal Compounds III (eds Gütlich, P. & Goodwin, H. A.) 221–249 (Springer Berlin, 2004).

  122. Brady, C., McGarvey, J. J., McCusker, J. K., Toftlund, H. & Hendrickson, D. N. in Spin Crossover in Transition Metal Compounds III (eds Gütlich, P. & Goodwin, H. A.) 1–22 (Springer Berlin, 2004).

  123. Khalil, M. et al. Picosecond X-ray absorption spectroscopy of a photoinduced iron(ii) spin crossover reaction in solution. J. Phys. Chem. A 110, 38–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Van Kuiken, B. E. et al. Probing the electronic structure of a photoexcited solar cell dye with transient X-ray absorption spectroscopy. J. Phys. Chem. Lett. 3, 1695–1700 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Kim, C. D., Pillet, S., Wu, G., Fullagar, W. K. & Coppens, P. Excited-state structure by time-resolved X-ray diffraction. Acta Crystallograph. A 58, 133–137 (2002).

    Article  CAS  Google Scholar 

  126. Yasuda, N., Kanazawa, M., Uekusa, H. & Ohashi, Y. Excited-state structure of a platinum complex by X-ray analysis. Chem. Lett. 31, 1132–1133 (2002).

    Article  Google Scholar 

  127. Ozawa, Y. et al. Photoexcited crystallography of diplatinum complex by multiple-exposure IP method. Chem. Lett. 32, 62–63 (2002).

    Article  Google Scholar 

  128. Yasuda, N., Uekusa, H. & Ohashi, Y. X-ray analysis of excited-state structures of the diplatinum complex anions in five crystals with different cations. Bull. Chem. Soc. Japan 77, 933–944 (2004).

    Article  CAS  Google Scholar 

  129. Novozhilova, I. V., Volkov, A. V. & Coppens, P. Theoretical analysis of the triplet excited state of the [Pt2(H2P2O5)4]4− ion and comparison with time-resolved X-ray and spectroscopic results. J. Am. Chem. Soc. 125, 1079–1087 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Lockard, J. V. et al. Triplet excited state distortions in a pyrazolate bridged platinum dimer measured by X-ray transient absorption spectroscopy. J. Phys. Chem. A 114, 12780–12787 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Haldrup, K. et al. Bond shortening (1.4 Å) in the singlet and triplet excited states of [Ir2(dimen)4]2+ in solution determined by time-resolved X-ray scattering. Inorg. Chem. 50, 9329–9336 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Marinellia, A. et al. Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise. Appl. Phys. Lett. 111, 151101 (2017).

    Article  CAS  Google Scholar 

  133. Elkins, M. H., Williams, H. L., Shreve, A. T. & Neumark, D. M. Relaxation mechanism of the hydrated electron. Science 342, 1496–1499 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Faubel, M., Schlemmer, S. & Toennies, J. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D Atoms Mol. Clusters 10, 269–277 (1988).

    Article  CAS  Google Scholar 

  135. Faubel, M., Steiner, B. & Toennies, J. P. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 106, 9013–9031 (1997).

    Article  CAS  Google Scholar 

  136. Faubel, M., Siefermann, K. R., Liu, Y. & Abel, B. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets. Acc. Chem. Res. 45, 120–130 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Siefermann, K. R. & Abel, B. The hydrated electron: a seemingly familiar chemical and biological transient. Angew. Chem. Int. Ed. 50, 5264–5272 (2011).

    Article  CAS  Google Scholar 

  138. Fattahi, H. et al. Third-generation femtosecond technology. Optica 1, 45–63 (2014).

    Article  CAS  Google Scholar 

  139. Bostedt, C. et al. Ultrafast X-ray scattering of xenon nanoparticles: Imaging transient states of matter. Phys. Rev. Lett. 108, 093401 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Rupp, D. et al. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source. Nat. Commun. 8, 493 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bordiga, S., Groppo, E., Agostini, G., van Bokhoven, J. A. & Lamberti, C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev. 113, 1736–1850 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photon. 8, 543–549 (2014).

    Article  CAS  Google Scholar 

  143. Fan, T. et al. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism. Proc. Natl Acad. Sci. 112, 14206–14211 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Beaulieu, S. et al. Attosecond-resolved photoionization of chiral molecules. Science 358, 1288–1294 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Kfir, O. et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci. Adv. 3, eaao4641 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    Article  CAS  Google Scholar 

  148. Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Kuleff, A. I., Kryzhevoi, N. V., Pernpointner, M. & Cederbaum, L. S. Core ionization initiates subfemtosecond charge migration in the valence shell of molecules. Phys. Rev. Lett. 117, 093002 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Cao, W., Warrick, E. R., Fidler, A., Leone, S. R. & Neumark, D. M. Near-resonant four-wave mixing of attosecond extreme-ultraviolet pulses with near-infrared pulses in neon: detection of electronic coherences. Phys. Rev. A 94, 021802 (2016).

    Article  CAS  Google Scholar 

  152. Cao, W., Warrick, E. R., Fidler, A., Neumark, D. M. & Leone, S. R. Noncollinear wave mixing of attosecond XUV and few-cycle optical laser pulses in gas-phase atoms: toward multidimensional spectroscopy involving XUV excitations. Phys. Rev. A 94, 053846 (2016).

    Article  Google Scholar 

  153. Ding, T. et al. Time-resolved four-wave-mixing spectroscopy for inner-valence transitions. Opt. Lett. 41, 709–712 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Glover, T. et al. X-ray and optical wave mixing. Nature 488, 603 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Lam, R. K. et al. Soft X-ray second harmonic generation as an interfacial probe. Phys. Rev. Lett. 120, 023901 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Takahashi, E., Nabekawa, Y., Otsuka, T., Obara, M. & Midorikawa, K. Generation of highly coherent submicrojoule soft X-rays by high-order harmonics. Phys. Rev. A 66, 021802 (2002).

    Article  CAS  Google Scholar 

  157. Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nat. Photon. 5, 655 (2011).

    Article  CAS  Google Scholar 

  158. Goulielmakis, E. et al. Attosecond control and measurement: lightwave electronics. Science 317, 769–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Timmers, H. et al. Polarization-assisted amplitude gating as a route to tunable, high-contrast attosecond pulses. Optica 3, 707–710 (2016).

    Article  CAS  Google Scholar 

  160. Hädrich, S. et al. Single-pass high harmonic generation at high repetition rate and photon flux. J. Phys. B Atom. Mol. Opt. Phys. 49, 172002 (2016).

    Article  CAS  Google Scholar 

  161. Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Reid, D. T. et al. Roadmap on ultrafast optics. J. Opt. 18, 093006 (2016).

    Article  Google Scholar 

  163. Bressler, C. & Chergui, M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Kraus, P. M. & Wörner, H. J. Perspectives of attosecond spectroscopy for the understanding of fundamental electron correlations. Angew. Chem. Int. Ed. 57, 5228-5247 (2018).

  165. Buades, B. et al. Dispersive soft x-ray absorption fine-structure spectroscopy in graphite with an attosecond pulse. Optica 5, 502–506 (2018).

  166. Wörner, H. J. et al. Charge migration and charge transfer in molecular systems. Struct. Dyn. 4, 061508 (2017).

Download references

Acknowledgements

We acknowledge funding from the Air Force Office of Scientific Research (AFOSR) (grant nos. FA9550-15-1-0037 and FA9550-14-1-0154), the Army Research Office (ARO) (WN911NF- 14-1-0383), the Office of Assistant Secretary of Defense for Research and Engineering through a National Security Science and Engineering Faculty Fellowship (NSSEFF), the W. M. Keck Foundation, the Defense Advanced Research Projects Agency PULSE program through grant W31P4Q-13-1-0017 and the National Science Foundation (NSF) through grants CHE-1361226 and CHE-1660417, and through a Foundation Major Research Instrumentation (NSF MRI) grant #1624322. Further funding was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Atomic, Molecular and Optical Sciences Program, Physical Chemistry of Inorganic Nanostructures Program and Gas Phase Chemical Physics Program under contract no. DE-AC02-05-CH11231. P.M.K. acknowledges support from the Swiss National Science Foundation (grant nos. P2EZP2 165252 and P300P2 174293). M.Z. acknowledges support from the Humboldt Foundation. S.K.C. is supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Solar Energy Technologies Office.

Reviewer information

Nature Reviews Chemistry thanks G. Cerullo and L. X. Chen for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed, reviewed and edited the manuscript. P.M.K., M.Z., S.K.C. and S.R.L. researched data and discussed the content of the manuscript. P.M.K. and S.R.L wrote the manuscript.

Corresponding authors

Correspondence to Peter M. Kraus, Daniel M. Neumark or Stephen R. Leone.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European XFEL facilities comparison: https://www.xfel.eu/facility/comparison/index_eng.html

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, P.M., Zürch, M., Cushing, S.K. et al. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat Rev Chem 2, 82–94 (2018). https://doi.org/10.1038/s41570-018-0008-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0008-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing