Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Homogeneous catalysis for the production of low-volume, high-value chemicals from biomass

Abstract

The transition from petroleum to biorenewable sources of carbon to meet our energy and chemical feedstock needs is difficult, in part because these sources are so different, with petroleum being under-functionalized and biomass being over-functionalized relative to commercial chemicals. However, target lists such as the US Department of Energy’s Top 10 have converged efforts to develop the technologies needed to manufacture the most important feedstocks accessible from biorenewables. Less well defined but equally important to the economic viability of an integrated biorefinery are low-volume, high-value product streams, which would help offset the capital costs of a biorefinery. In this Review, we attempt to bring together some of the advances that could fill these niche areas, with a focus on the conversion of cellulosics into chemicals using homogeneous catalysis. The products range from high-value jet fuels to monomers for high-performance polymers and materials to pharmaceutical intermediates and cover a broad range of structural complexities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalysis is the technological linchpin that will enable a fully integrated biorefinery to produce a combination of high-volume, low-value products (likely dominated by heterogeneous catalysis) for the commodity market and low-volume, high-value products for the specialty and pharmaceutical markets.
Fig. 2: Catalytic defunctionalization of cellulosics to hydrocarbon-based secondary targets.
Fig. 3: Selective B(C6F5)3-catalysed strategies for hydrosilylation of primary C–O bonds.
Fig. 4: Selective catalytic reduction of secondary C–O bonds in a cellulosic.
Fig. 5: Protecting-group-free selective catalytic decarbonylation and heterocycle formation of cellulosics.
Fig. 6: Protecting-group-free catalytic carbonyl-based coupling of cellulosics with nucleophilic nitrogen sources.
Fig. 7: Direct catalytic addition of carbon-based nucleophiles to d-glucose.
Fig. 8: Catalytic C–C bond formations on cellulosic biorefinery primary chemicals.
Fig. 9: Selective redox neutral transformations of bio-inspired chemicals and cellulosics.

Similar content being viewed by others

References

  1. Bozell, J. J. & Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s ‘Top 10’ revisited. Green Chem. 12, 539–554 (2010).

    Article  CAS  Google Scholar 

  2. Werpy, T. & Peterson, G. Top Value Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (U.S. Department of Energy, 2004).

  3. Deuss, P. J., Barta, K. & de Vries, J. G. Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catal. Sci. Technol. 4, 1174–1196 (2014).

    Article  CAS  Google Scholar 

  4. Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411 (2007).

    Article  CAS  Google Scholar 

  5. Gilkey, M. J. & Xu, B. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal. 6, 1420–1436 (2016).

    Article  CAS  Google Scholar 

  6. Chatterjee, C., Pong, F. & Sen, A. Chemical conversion pathways for carbohydrates. Green Chem. 17, 40–71 (2015).

    Article  CAS  Google Scholar 

  7. Robinson, A. M., Hensley, J. E. & Medlin, J. W. Bifunctional catalysts for upgrading of biomass-derived oxygenates: a review. ACS Catal. 6, 5026–5043 (2016).

    Article  CAS  Google Scholar 

  8. Young, R. A. The chemistry of solid wood. Wood Sci. Technol. 19, 17–18 (1985).

    Article  Google Scholar 

  9. Román-Leshkov, Y., Chheda, J. N. & Dumesic, J. A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312, 1933–1937 (2006).

    Article  Google Scholar 

  10. Tollefson, J. Not your father’s biofuels: if biofuels are to help the fight against climate change, they have to be made from more appropriate materials and in better ways. Jeff Tollefson asks what innovation can do to improve the outlook. Nature 451, 880–884 (2008).

    Article  CAS  Google Scholar 

  11. Xiong, M., Schneiderman, D. K., Bates, F. S., Hillmyer, M. A. & Zhang, K. Scalable production of mechanically tunable block polymers from sugar. Proc. Natl Acad. Sci. USA 111, 8357–8362 (2014).

    Article  CAS  Google Scholar 

  12. Chheda, J. N., Huber, G. W. & Dumesic, J. A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. 46, 7164–7183 (2007).

    Article  CAS  Google Scholar 

  13. Huber, G. W., Chheda, J. N., Barrett, C. J. & Dumesic, J. A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308, 1446–1450 (2005).

    Article  CAS  Google Scholar 

  14. Kunkes, E. L. et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322, 417–421 (2008).

    Article  CAS  Google Scholar 

  15. Metzger, J. O. Production of liquid hydrocarbons from biomass. Angew. Chem. Int. Ed. 45, 696–698 (2006).

    Article  CAS  Google Scholar 

  16. Adduci, L. L., McLaughlin, M. P., Bender, T. A., Becker, J. J. & Gagné, M. R. Metal-free deoxygenation of carbohydrates. Angew. Chem. Int. Ed. 53, 1646–1649 (2014).

    Article  CAS  Google Scholar 

  17. McLaughlin, M. P., Adduci, L. L., Becker, J. J. & Gagne, M. R. Iridium-catalyzed hydrosilylative reduction of glucose to hexane(s). J. Am. Chem. Soc. 135, 1225 (2013).

    Article  CAS  Google Scholar 

  18. Mahdi, T. & Stephan, D. W. Enabling catalytic ketone hydrogenation by frustrated Lewis pairs. J. Am. Chem. Soc. 136, 15809–15812 (2014).

    Article  CAS  Google Scholar 

  19. Scott, D. J., Fuchter, M. J. & Ashley, A. E. Nonmetal catalyzed hydrogenation of carbonyl compounds. J. Am. Chem. Soc. 136, 15813–15816 (2014).

    Article  CAS  Google Scholar 

  20. Kamm, B., Kamm, M., Gruber, P. R. & Kromus, S. in Biorefineries — Industrial Processes and Products: Status Quo and Future Directions 1–40 (Wiley-VCH, 2008).

  21. van Putten, R.-J. et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113, 1499–1597 (2013).

    Article  Google Scholar 

  22. Zakrzewska, M. E., Bogel-Łukasik, E. & Bogel-Łukasik, R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural — a promising biomass-derived building block. Chem. Rev. 111, 397–417 (2011).

    Article  CAS  Google Scholar 

  23. Ståhlberg, T., Fu, W., Woodley, J. M. & Riisager, A. Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals. ChemSusChem 4, 451–458 (2011).

    Article  Google Scholar 

  24. Rosatella, A. A., Simeonov, S. P., Frade, R. F. M. & Afonso, C. A. M. 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem. 13, 754–793 (2011).

    Article  CAS  Google Scholar 

  25. Liu, D. & Chen, E. Y.-X. Integrated catalytic process for biomass conversion and upgrading to C12 furoin and alkane fuel. ACS Catal. 4, 1302–1310 (2014).

    Article  CAS  Google Scholar 

  26. Liu, D. & Chen, E. Y.-X. Diesel and alkane fuels from biomass by organocatalysis and metal–acid tandem catalysis. ChemSusChem 6, 2236–2239 (2013).

    Article  CAS  Google Scholar 

  27. Mou, Z. & Chen, E. Y.-X. Polyesters and poly(ester-urethane)s from biobased difuranic polyols. ACS Sustain. Chem. Eng. 4, 7118–7129 (2016).

    Article  CAS  Google Scholar 

  28. Cook, G. K. & Andrews, M. A. Toward nonoxidative routes to oxygenated organics: stereospecific deoxydehydration of diols and polyols to alkenes and allylic alcohols catalyzed by the metal oxo complex (C5Me5)ReO3. J. Am. Chem. Soc. 118, 9448–9449 (1996).

    Article  CAS  Google Scholar 

  29. Dauth, A. & Love, J. A. Reactivity by design — metallaoxetanes as centerpieces in reaction development. Chem. Rev. 111, 2010–2047 (2011).

    Article  CAS  Google Scholar 

  30. Ziegler, J. E., Zdilla, M. J., Evans, A. J. & Abu-Omar, M. M. H2-driven deoxygenation of epoxides and diols to alkenes catalyzed by methyltrioxorhenium. Inorg. Chem. 48, 9998–10000 (2009).

    Article  CAS  Google Scholar 

  31. Vkuturi, S., Chapman, G., Ahmad, I. & Nicholas, K. M. Rhenium-catalyzed deoxydehydration of glycols by sulfite. Inorg. Chem. 49, 4744–4746 (2010).

    Article  CAS  Google Scholar 

  32. Shiramizu, M. & Toste, F. D. Deoxygenation of biomass-derived feedstocks: oxorhenium-catalyzed deoxydehydration of sugars and sugar alcohols. Angew. Chem. Int. Ed. 51, 8082–8086 (2012).

    Article  CAS  Google Scholar 

  33. Boucher-Jacobs, C. & Nicholas, K. M. in Selective Catalysis for Renewable Feedstocks and Chemicals (ed. Nicholas, K. M.) 163–184 (Springer International Publishing, 2014).

  34. Furimsky, E. Catalytic hydrodeoxygenation. Appl. Catal. A Gen. 199, 147–190 (2000).

    Article  CAS  Google Scholar 

  35. Mascal, M. & Nikitin, E. B. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural. Green Chem. 12, 370–373 (2010).

    Article  CAS  Google Scholar 

  36. Mascal, M. & Nikitin, E. B. Direct, high-yield conversion of cellulose into biofuel. Angew. Chem. Int. Ed. 47, 7924–7926 (2008).

    Article  CAS  Google Scholar 

  37. Drosos, N. & Morandi, B. Boron-catalyzed regioselective deoxygenation of terminal 1,2-diols to 2-alkanols enabled by the strategic formation of a cyclic siloxane intermediate. Angew. Chem. Int. Ed. 54, 8814–8818 (2015).

    Article  CAS  Google Scholar 

  38. Drosos, N., Ozkal, E. & Morandi, B. Catalytic selective deoxygenation of polyols using the B(C6F5)3/silane system. Synlett 27, 1760–1764 (2016).

    Article  CAS  Google Scholar 

  39. Chatterjee, I., Porwal, D. & Oestreich, M. B(C6F5)3-catalyzed chemoselective defunctionalization of ether-containing primary alkyl tosylates with hydrosilanes. Angew. Chem. Int. Ed. 56, 3389–3391 (2017).

    Article  CAS  Google Scholar 

  40. Yasuda, M., Onishi, Y., Ueba, M., Miyai, T. & Baba, A. Direct reduction of alcohols: highly chemoselective reducing system for secondary or tertiary alcohols using chlorodiphenylsilane with a catalytic amount of indium trichloride. J. Org. Chem. 66, 7741 (2001).

    Article  CAS  Google Scholar 

  41. Adduci, L. L., Bender, T. A., Dabrowski, J. A. & Gagné, M. R. Chemoselective conversion of biologically sourced polyols into chiral synthons. Nat. Chem. 7, 576–581 (2015).

    Article  CAS  Google Scholar 

  42. Kottke, R. H. in Kirk-Othmer Encyclopedia of Chemical Technology (ed. Seidel, A.) (John Wiley and Sons, 2000).

  43. Ahmed Foskey, T. J., Heinekey, D. M. & Goldberg, K. I. Partial deoxygenation of 1,2-propanediol catalyzed by iridium pincer complexes. ACS Catal. 2, 1285–1289 (2012).

    Article  CAS  Google Scholar 

  44. Brentzel, Z. J. et al. Chemicals from biomass: combining ring-opening tautomerization and hydrogenation reactions to produce 1,5-pentanediol from furfural. ChemSusChem 10, 1351–1355 (2017).

    Article  CAS  Google Scholar 

  45. Wu, L., Moteki, T., Gokhale, A. A., Flaherty, D. W. & Toste, F. D. Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem 1, 32–58 (2017).

    Article  Google Scholar 

  46. Ghosh, A. K. & Brindisi, M. Achmatowicz reaction and its application in the syntheses of bioactive molecules. RSC Adv. 6, 111564–111598 (2016).

    Article  CAS  Google Scholar 

  47. Li, Z. & Tong, R. Catalytic environmentally friendly protocol for Achmatowic rearrangement. J. Org. Chem. 81, 4847–4855 (2016).

    Article  CAS  Google Scholar 

  48. Takeuchi, M., Taniguchi, T. & Ogasawara, K. Back to the Sugars: a new enantio and diastereocontrolled route to hexoses from furfural. Synthesis 1999, 341–354 (1999).

    Article  Google Scholar 

  49. Fürstner, A. & Nagano, T. Total syntheses of ipomoeassin B and E. J. Am. Chem. Soc. 129, 1906–1907 (2007).

    Article  Google Scholar 

  50. Jackson, K. L., Henderson, J. A., Morris, J. C., Motoyoshi, H. & Phillips, A. J. A synthesis of the C1–C15 domain of the halichondrins. Tetrahedron Lett. 49, 2939–2941 (2008).

    Article  CAS  Google Scholar 

  51. Nagano, T. et al. Total synthesis and biological evaluation of the cytotoxic resin glycosides ipomoeassin A–F and analogues. Chem. Eur. J. 15, 9697–9706 (2009).

    Article  CAS  Google Scholar 

  52. Prasad, K. R. & Pawar, A. B. Enantioselective formal synthesis of palmerolide A. Org. Lett. 13, 4252–4255 (2011).

    Article  CAS  Google Scholar 

  53. Prasad, K. R. & Revu, O. Total synthesis of (+)-seimatopolide A. J. Org. Chem. 79, 1461–1466 (2014).

    Article  CAS  Google Scholar 

  54. Ashmus, R. A., Jayasuriya, A. B., Lim, Y.-J., O’Doherty, G. A. & Lowary, T. L. De novo asymmetric synthesis of a 6-O-Methyl-d-glycero-l-gluco-heptopyranose-derived thioglycoside for the preparation of Campylobacter jejuni NCTC11168 capsular polysaccharide fragments. J. Org. Chem. 81, 3058–3063 (2016).

    Article  CAS  Google Scholar 

  55. Monrad, R. N. & Madsen, R. Rhodium-catalyzed decarbonylation of aldoses. J. Org. Chem. 72, 9782–9785 (2007).

    Article  Google Scholar 

  56. Fagan, P. J., Voges, M. H. & Bullock, R. M. Catalytic ionic hydrogenation of ketones by {[Cp*Ru(CO)2]2(μ-H)}+. Organometallics 29, 1045 (2010).

    Article  CAS  Google Scholar 

  57. Liguori, F., Moreno-Marrodan, C. & Barbaro, P. Environmentally friendly synthesis of β-valerolactone by direct catalytic conversion of renewable sources. ACS Catal. 5, 1882–1894 (2015).

    Article  CAS  Google Scholar 

  58. Goulas, K. A. & Toste, F. D. Combining microbial production with chemical upgrading. Curr. Opin. Biotechnol. 38, 47–53 (2016).

    Article  CAS  Google Scholar 

  59. Cabrele, C. & Reiser, O. The modern face of synthetic heterocyclic chemistry. J. Org. Chem. 81, 10109–10125 (2016).

    Article  CAS  Google Scholar 

  60. Marson, C. M. New and unusual scaffolds in medicinal chemistry. Chem. Soc. Rev. 40, 5514–5533 (2011).

    Article  CAS  Google Scholar 

  61. Llevot, A. et al. Renewability is not enough: recent advances in the sustainable synthesis of biomass-derived monomers and polymers. Chem. Eur. J. 22, 11510–11521 (2016).

    Article  CAS  Google Scholar 

  62. Foster, R. W., Tame, C. J., Bucar, D.-K., Hailes, H. C. & Sheppard, T. D. Sustainable synthesis of chiral tetrahydrofurans through the selective dehydration of pentoses. Chem. Eur. J. 21, 15947–15950 (2015).

    Article  CAS  Google Scholar 

  63. Koh, P.-F., Wang, P., Huang, J.-M. & Loh, T.-P. Biomass derived furfural-based facile synthesis of protected (2S)-phenyl-3-piperidone, a common intermediate for many drugs. Chem. Commun. 50, 8324–8327 (2014).

    Article  CAS  Google Scholar 

  64. Veits, G. K., Wenz, D. R. & Read de Alaniz, J. Versatile method for the synthesis of 4-aminocyclopentenones: dysprosium(III) triflate catalyzed aza-piancatelli rearrangement. Angew. Chem. Int. Ed. 49, 9484–9487 (2010).

    Article  CAS  Google Scholar 

  65. Bloom, P. D. & Venkitasubramanian, P. Monomers and polymers from bioderived carbon. US Patent US20090018300A1 (2008).

  66. Hammond, W., East, A., Jaffe, M. & Feng, X. Isosorbide-derived epoxy resins and methods of making same. US Patent US20150307650A1 (2015).

  67. Tachdjian, C., Karanewsky, D. S., Adamski-Werner, S. L., Yamamoto, J. M. & Servant, G. Isosorbide derivatives and their use as flavor modifiers, tastants, and taste enhancers. US Patent US20130295261A1 (2013).

  68. Bähn, S. et al. The catalytic amination of alcohols. ChemCatChem 3, 1853–1864 (2011).

    Article  Google Scholar 

  69. Yang, Q., Wang, Q. & Yu, Z. Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chem. Soc. Rev. 44, 2305–2329 (2015).

    Article  CAS  Google Scholar 

  70. Pera-Titus, M. & Shi, F. Catalytic amination of biomass-based alcohols. ChemSusChem 7, 720–722 (2014).

    Article  CAS  Google Scholar 

  71. Fink, J. K. in High Performance Polymers (ed. Fink, J. K.) 449–474 (William Andrew Publishing, 2008).

  72. Young, I. S. & Baran, P. S. Protecting-group-free synthesis as an opportunity for invention. Nat. Chem. 1, 193–205 (2009).

    Article  CAS  Google Scholar 

  73. Baran, P. S., Maimone, T. J. & Richter, J. M. Total synthesis of marine natural products without using protecting groups. Nature 446, 404–408 (2007).

    Article  CAS  Google Scholar 

  74. Wei, X.-F., Shimizu, Y. & Kanai, M. An expeditious synthesis of sialic acid derivatives by copper(I)-catalyzed stereodivergent propargylation of unprotected aldoses. ACS Cent. Sci. 2, 21–26 (2016).

    Article  CAS  Google Scholar 

  75. Richter, C., Krumrey, M., Bahri, M., Trunschke, S. & Mahrwald, R. Amine-catalyzed cascade reactions of unprotected aldoses — an operationally simple access to defined configured stereotetrads or stereopentads. ACS Catal. 6, 5549–5552 (2016).

    Article  CAS  Google Scholar 

  76. Bartoli, G. et al. SiO2-supported CeCl3·7H2O−NaI Lewis acid promoter: investigation into the Garcia Gonzalez reaction in solvent-free conditions. J. Org. Chem. 72, 6029–6036 (2007).

    Article  CAS  Google Scholar 

  77. Calter, M. A., Zhu, C. & Lachicotte, R. J. Rapid synthesis of the 7-deoxy zaragozic acid core. Org. Lett. 4, 209–212 (2002).

    Article  CAS  Google Scholar 

  78. Paterson, I., Feßner, K., Finlay, M. R. V. & Jacobs, M. F. Studies towards the synthesis of the zaragozic acids: a novel epoxide cyclisation approach to the formation of the bicyclic acetal core. Tetrahedron Lett. 37, 8803–8806 (1996).

    Article  CAS  Google Scholar 

  79. Liu, J.-H. & Long, Y.-Q. Studies toward the total synthesis of cyclodidemniserinol trisulfate. Part II: 3,5,7-Trisubstituted 6,8-dioxabicyclo [3.2.1] octane core structure construction via I2-mediated deprotection and ring closure tandem reaction. Tetrahedron Lett. 50, 4592–4594 (2009).

    Article  CAS  Google Scholar 

  80. Shing, T. K. M. & Cheng, H. M. Intramolecular direct aldol reactions of sugar 2,7-diketones: syntheses of hydroxylated cycloalka(e)nones. Org. Biomol. Chem. 13, 4795–4802 (2015).

    Article  CAS  Google Scholar 

  81. Bauer, J. & Osborn, H. M. I. Sialic acids in biological and therapeutic processes: opportunities and challenges. Future Med. Chem. 7, 2285–2299 (2015).

    Article  CAS  Google Scholar 

  82. Bender, T. A., Dabrowski, J. A., Zhong, H. & Gagné, M. R. Diastereoselective B(C6F5)3-catalyzed reductive carbocyclization of unsaturated carbohydrates. Org. Lett. 18, 4120–4123 (2016).

    Article  CAS  Google Scholar 

  83. Hazra, C. K., Gandhamsetty, N., Park, S. & Chang, S. Borane catalysed ring opening and closing cascades of furans leading to silicon functionalized synthetic intermediates. Nat. Commun. 7, 13431 (2016).

    Article  CAS  Google Scholar 

  84. Wong, H. N. C. et al. Use of cyclopropanes and their derivatives in organic synthesis. Chem. Rev. 89, 165–198 (1989).

    Article  CAS  Google Scholar 

  85. Böhm, C. et al. A new strategy for the stereoselective synthesis of 1,2,3-trisubstituted cyclopropanes. Eur. J. Org. Chem. 2000, 2955–2965 (2000).

    Article  Google Scholar 

  86. Kalidindi, S. et al. Enantioselective synthesis of arglabin. Angew. Chem. Int. Ed. 46, 6361–6363 (2007).

    Article  CAS  Google Scholar 

  87. Mix, K. A., Aronoff, M. R. & Raines, R. T. Diazo compounds: versatile tools for chemical biology. ACS Chem. Biol. 11, 3233–3244 (2016).

    Article  CAS  Google Scholar 

  88. Li, W., Niu, Y., Xiong, D.-C., Cao, X. & Ye, X.-S. Highly substituted cyclopentane–CMP conjugates as potent sialyltransferase inhibitors. J. Med. Chem. 58, 7972–7990 (2015).

    Article  CAS  Google Scholar 

  89. Quintard, A., Lefranc, A. & Alexakis, A. Highly enantioselective direct vinylogous michael addition of γ-butenolide to enals. Org. Lett. 13, 1540–1543 (2011).

    Article  CAS  Google Scholar 

  90. Wu, B., Yu, Z., Gao, X., Lan, Y. & Zhou, Y.-G. Regioselective α-addition of deconjugated butenolides: enantioselective synthesis of dihydrocoumarins. Angew. Chem. Int. Ed. 56, 4006–4010 (2017).

    Article  CAS  Google Scholar 

  91. Mäki-Arvela, P., Simakova, I. L., Salmi, T. & Murzin, D. Y. Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chem. Rev. 114, 1909–1971 (2014).

    Article  Google Scholar 

  92. Chen, K., Li, X., Zhang, S.-Q. & Shi, B.-F. Synthesis of chiral α-hydroxy acids via palladium-catalyzed C(sp3)-H alkylation of lactic acid. Chem. Commun. 52, 1915–1918 (2016).

    Article  CAS  Google Scholar 

  93. Ansari, A. A., Lahiri, R. & Vankar, Y. D. The carbon-Ferrier rearrangement: an approach towards the synthesis of C -glycosides. Arkivoc, 316–362 (2013).

  94. Dechert-Schmitt, A.-M. R., Schmitt, D. C. & Krische, M. J. Protecting-group-free diastereoselective C–C coupling of 1,3-glycols and allyl acetate through site-selective primary alcohol dehydrogenation. Angew. Chem. Int. Ed. 52, 3195–3198 (2013).

    Article  CAS  Google Scholar 

  95. Ulbrich, K., Kreitmeier, P. & Reiser, O. Microwave- or microreactor-assisted conversion of furfuryl alcohols into 4-hydroxy-2-cyclopentenones. Synlett 2010, 2037–2040 (2010).

    Article  Google Scholar 

  96. Dobler, D. & Reiser, O. Synthesis of 6-substituted 2-pyrones starting from renewable resources: total synthesis of sibirinone, (e)-6-(pent-1-en-1-yl)-2h-pyran-2-one, and (e)-6-(hept-1-en-1-yl)-2h-pyran-2-one. J. Org. Chem. 81, 10357–10365 (2016).

    Article  CAS  Google Scholar 

  97. Zheng, X.-Y. et al. Selective formation of chromogen I from N-acetyl-D-glucosamine upon lanthanide coordination. Inorg. Chem. 56, 110–113 (2017).

    Article  CAS  Google Scholar 

  98. Brovetto, M., Gamenara, D., Saenz Méndez, P. & Seoane, G. A. C−C bond-forming lyases in organic synthesis. Chem. Rev. 111, 4346–4403 (2011).

    Article  CAS  Google Scholar 

  99. Nestl, B. M., Hammer, S. C., Nebel, B. A. & Hauer, B. New generation of biocatalysts for organic synthesis. Angew. Chem. Int. Ed. 53, 3070–3095 (2014).

    Article  CAS  Google Scholar 

  100. Matsubara, K. et al. One-step synthesis of 2-keto-3-deoxy-d-gluconate by biocatalytic dehydration of d-gluconate. J. Biotechnol. 191, 69–77 (2014).

    Article  CAS  Google Scholar 

  101. Van de Vyver, S., Odermatt, C., Romero, K., Prasomsri, T. & Román-Leshkov, Y. Solid Lewis acids catalyze the carbon–carbon coupling between carbohydrates and formaldehyde. ACS Catal. 5, 972–977 (2015).

    Article  Google Scholar 

  102. Wheeldon, I., Christopher, P. & Blanch, H. Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass. Curr. Opin. Biotechnol. 45, 127–135 (2017).

    Article  CAS  Google Scholar 

  103. Luo, H. Y., Consoli, D. F., Gunther, W. R. & Román-Leshkov, Y. Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meerwein–Ponndorf–Verley reduction of methyl levulinate to γ-valerolactone. J. Catal. 320, 198–207 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the US Department of Energy Office of Basic Energy Sciences for their support of this work (DE-FG02-05ER15630). J.A.D. thanks Elon University for teaching relief during manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of content and writing and reviewing of the manuscript before submission.

Corresponding authors

Correspondence to Jennifer A. Dabrowski or Michel R. Gagné.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Biorefinery

Infrastructure that converts biomass or biomaterials into value-added products.

Cellulosics

Materials that are derived from cellulose, typically C6 sugars.

Stereoablative

A process that removes the stereochemistry within a molecule, often by transforming a stereogenic centre to an achiral centre.

Redox neutral

A chemical reaction in which the overall oxidation state of the molecule does not change. Although these transformations are powerful, their utilization in the field of cellulosic derivatization is underexplored.

Catalyst control

A reaction in which the product outcome is dictated by the nature of the catalyst, which supersedes any biases imposed by the substrate. This may be in the form of differences in reactivity or selectivity. The pre-existing stereochemical complexity of cellulosics makes imposing control of both site-selectivity and stereoselectivity in a transformation challenging.

Substrate control

A paradigm wherein the inherent nature of the reactant dictates the product outcome. In cellulosics, the existing stereochemistry of the alcohols can often control how reactions proceed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bender, T.A., Dabrowski, J.A. & Gagné, M.R. Homogeneous catalysis for the production of low-volume, high-value chemicals from biomass. Nat Rev Chem 2, 35–46 (2018). https://doi.org/10.1038/s41570-018-0005-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0005-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing