Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Progress and roadmap for electro-privileged transformations of bio-derived molecules

Abstract

Biomass incorporates carbon captured from the atmosphere and can serve as a renewable feedstock for producing valuable chemicals and fuels. Here we look at how electrochemical approaches can impact biomass valorization, focusing on identifying chemical transformations that leverage renewable electricity and feedstocks to produce valorized products via electro-privileged transformations. First, we recommend that the field should explore widening the spectrum of platform chemicals derived from bio-feedstocks, thus offering pathways to molecules that have historically been derived from petroleum. Second, we identify opportunities in electrocatalytic production of energy-dense fuels from biomass that utilize water as the hydrogen source and renewable electricity as the driving force. Finally, we look at the potential in electrochemical depolymerization to preserve key functional groups in raw feedstocks that would otherwise be lost during harsh pre-treatments in traditional depolymerization routes. On the basis of these priorities, we suggest a roadmap for the integration of biomass and electrochemistry and offer milestones required to tap further into the potential of electrochemical biomass valorization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Process analysis for biomass valorization and electro-privileged transformation.
Fig. 2: An overview of certain electrochemical biomass valorization studies reported in the past decade.
Fig. 3: Electrochemical biomass valorization pathways.
Fig. 4: Roadmap to contribute to net zero.

Similar content being viewed by others

References

  1. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy. https://www.energy.gov/sites/prod/files/2016/12/f34/2016_billion_ton_report_12.2.16_0.pdf (US Department of Energy, 2016).

  2. Lucas, F. W. S. et al. Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application. ACS Energy Lett. 6, 1205–1270 (2021).

    Article  CAS  Google Scholar 

  3. Ng, K. S., Farooq, D. & Yang, A. Global biorenewable development strategies for sustainable aviation fuel production. Renew. Sustain. Energy Rev. 150, 111502 (2021).

    Article  CAS  Google Scholar 

  4. Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Vasilakou, K., Nimmegeers, P., Thomassen, G., Billen, P. & Van Passel, S. Assessing the future of second-generation bioethanol by 2030 – a techno-economic assessment integrating technology learning curves. Appl. Energy 344, 121263 (2023).

    Article  Google Scholar 

  6. Lee, J., Xu, Y. & Huber, G. W. High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates. Appl. Catal. B 140–141, 98–107 (2013).

    Google Scholar 

  7. Srifa, A., Faungnawakij, K., Itthibenchapong, V. & Assabumrungrat, S. Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel. Chem. Eng. J. 278, 249–258 (2015).

    Article  CAS  Google Scholar 

  8. Zhang, C. et al. An investigation on the aqueous-phase hydrodeoxygenation of various methoxy-substituted lignin monomers on Pd/C and HZSM-5 catalysts. RSC Adv. 6, 104398–104406 (2016).

    Article  CAS  Google Scholar 

  9. Yin, W. et al. Catalytic hydrotreatment of fast pyrolysis liquids in batch and continuous set-ups using a bimetallic Ni–Cu catalyst with a high metal content. Catal. Sci. Technol. 6, 5899–5915 (2016).

    Article  CAS  Google Scholar 

  10. Weng, Y. et al. Aqueous-phase hydrodeoxygenation of biomass sugar alcohol into renewable alkanes over a carbon-supported ruthenium with phosphoric acid catalytic system. ChemCatChem 9, 774–781 (2017).

    Article  CAS  Google Scholar 

  11. Sanna, A., Vispute, T. P. & Huber, G. W. Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts. Appl. Catal. B 165, 446–456 (2015).

    Article  CAS  Google Scholar 

  12. Lam, C. H. et al. Towards sustainable hydrocarbon fuels with biomass fast pyrolysis oil and electrocatalytic upgrading. Sustain. Energy Fuels 1, 258–266 (2017).

    Article  CAS  Google Scholar 

  13. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  Google Scholar 

  14. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  15. Meyer, T. H., Choi, I., Tian, C. & Ackermann, L. Powering the future: How can electrochemistry make a difference in organic synthesis? Chem 6, 2484–2496 (2020).

    Article  CAS  Google Scholar 

  16. Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A. & Poliakoff, M. Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, J. et al. CO2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 617, 519–523 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Fauvarque, J. The chlorine industry. Pure Appl. Chem. 68, 1713–1720 (1996).

    Article  CAS  Google Scholar 

  19. Chatenet, M. et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 51, 4583–4762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bozell, J. J. & Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s ‘top 10’ revisited. Green. Chem. 12, 539–554 (2010).

    Article  CAS  Google Scholar 

  21. Zhou, H., Li, Z., Ma, L. & Duan, H. Electrocatalytic oxidative upgrading of biomass platform chemicals: from the aspect of reaction mechanism. Chem. Commun. 58, 897–907 (2022).

    Article  CAS  Google Scholar 

  22. Rahimpour, M. R., Jafari, M. & Iranshahi, D. Progress in catalytic naphtha reforming process: a review. Appl. Energy 109, 79–93 (2013).

    Article  CAS  Google Scholar 

  23. Goetz, M. K., Bender, M. T. & Choi, K.-S. Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH. Nat. Commun. 13, 5848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bender, M. T. & Choi, K.-S. Electrochemical oxidation of hmf via hydrogen atom transfer and hydride transfer on NiOOH and the impact of NiOOH composition. ChemSusChem 15, e202200675 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goetz, M. K., Usman, E. & Choi, K.-S. Understanding and suppressing C–C cleavage during glycerol oxidation for C3 chemical production. ACS Catal. 13, 15758–15769 (2023).

    Article  CAS  Google Scholar 

  26. Akhade, S. A. et al. Electrocatalytic hydrogenation of biomass-derived organics: a review. Chem. Rev. 120, 11370–11419 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, M., Yuan, Z., Peng, R., Wang, S. & Zou, Y. Recent progress on electrocatalytic valorization of biomass-derived organics. Energy Environ. Mater. 5, 1117–1138 (2022).

    Article  CAS  Google Scholar 

  28. Dodekatos, G., Schünemann, S. & Tüysüz, H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).

    Article  CAS  Google Scholar 

  29. Li, T. & Harrington, D. A. An overview of glycerol electrooxidation mechanisms on Pt, Pd and Au. ChemSusChem 14, 1472–1495 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Taitt, B. J., Nam, D.-H. & Choi, K.-S. A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Catal. 9, 660–670 (2019).

    Article  CAS  Google Scholar 

  31. Roh, K. et al. Early-stage evaluation of emerging CO2 utilization technologies at low technology readiness levels. Green. Chem. 22, 3842–3859 (2020).

    Article  CAS  Google Scholar 

  32. Kwon, Y., Schouten, K. J. P., van der Waal, J. C., de Jong, E. & Koper, M. T. M. Electrocatalytic conversion of furanic compounds. ACS Catal. 6, 6704–6717 (2016).

    Article  CAS  Google Scholar 

  33. Li, K. & Sun, Y. Electrocatalytic upgrading of biomass-derived intermediate compounds to value-added products. Chem. Eur. J. 24, 18258–18270 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Banerjee, A., Dick, G. R., Yoshino, T. & Kanan, M. W. Carbon dioxide utilization via carbonate-promoted C–H carboxylation. Nature 531, 215–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Ramos, N. C., Manyé Ibáñez, M., Mittal, R., Janik, M. J. & Holewinski, A. Combining renewable electricity and renewable carbon: understanding reaction mechanisms of biomass-derived furanic compounds for design of catalytic nanomaterials. Acc. Chem. Res. 56, 2631–2641 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. May, A. S. & Biddinger, E. J. Strategies to control electrochemical hydrogenation and hydrogenolysis of furfural and minimize undesired side reactions. ACS Catal. 10, 3212–3221 (2020).

    Article  CAS  Google Scholar 

  37. Peng, T. et al. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J. Am. Chem. Soc. 143, 17226–17235 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y., Zou, S. & Cai, W.-B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: from reaction mechanisms to catalytic materials. Catalysts 5, 1507–1534 (2015).

    Article  CAS  Google Scholar 

  40. Posada, J. A. et al. Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products. Bioresour. Technol. 135, 490–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Bender, M. T., Lam, Y. C., Hammes-Schiffer, S. & Choi, K.-S. Unraveling two pathways for electrochemical alcohol and aldehyde oxidation on NiOOH. J. Am. Chem. Soc. 142, 21538–21547 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Tian, C. et al. Paired electrosynthesis of H2 and acetic acid at A/cm2 current densities. ACS Energy Lett. 8, 4096–4103 (2023).

    Article  CAS  Google Scholar 

  43. Zhou, Z. et al. Strain-induced in situ formation of NiOOH species on Co–Co bond for selective electrooxidation of 5-hydroxymethylfurfural and efficient hydrogen production. Appl. Catal. B 305, 121072 (2022).

    Article  CAS  Google Scholar 

  44. Bender, M. T., Yuan, X., Goetz, M. K. & Choi, K.-S. Electrochemical hydrogenation, hydrogenolysis, and dehydrogenation for reductive and oxidative biomass upgrading using 5-hydroxymethylfurfural as a model system. ACS Catal. 12, 12349–12368 (2022).

    Article  CAS  Google Scholar 

  45. Ge, R. et al. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem. Int. Ed. 61, e202200211 (2022).

    Article  CAS  Google Scholar 

  46. Kang, S., Fu, J. & Zhang, G. From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renew. Sustain. Energy Rev. 94, 340–362 (2018).

    Article  CAS  Google Scholar 

  47. Lucas, F. W. S., Fishler, Y. & Holewinski, A. Tuning the selectivity of electrochemical levulinic acid reduction to 4-hydroxyvaleric acid: a monomer for biocompatible and biodegradable plastics. Green. Chem. 23, 9154–9164 (2021).

    Article  CAS  Google Scholar 

  48. Andini, E., Bragger, J., Sadula, S. & Vlachos, D. G. Production of neo acids from biomass-derived monomers. Green. Chem. 25, 3493–3502 (2023).

    Article  CAS  Google Scholar 

  49. Zhou, H. et al. Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-faradaic transformations. Nat. Commun. 14, 5621 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shahid, E. M. & Jamal, Y. Production of biodiesel: a technical review. Renew. Sustain. Energy Rev. 15, 4732–4745 (2011).

    Article  CAS  Google Scholar 

  51. Liu, S. et al. Catalytic hydrodeoxygenation of high carbon furylmethanes to renewable jet-fuel ranged alkanes over a rhenium-modified iridium catalyst. ChemSusChem 10, 3225–3234 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, S. et al. Molybdenum oxide-modified iridium catalysts for selective production of renewable oils for jet and diesel fuels and lubricants. ACS Catal. 9, 7679–7689 (2019).

    Article  CAS  Google Scholar 

  53. Zhang, L. et al. A review of thermal catalytic and electrochemical hydrogenation approaches for converting biomass-derived compounds to high-value chemicals and fuels. Fuel Process. Technol. 226, 107097 (2022).

    Article  CAS  Google Scholar 

  54. Sanyal, U. et al. Structure sensitivity in hydrogenation reactions on Pt/C in aqueous-phase. ChemCatChem 11, 575–582 (2019).

    Article  CAS  Google Scholar 

  55. Singh, N. et al. Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metals. J. Catal. 382, 372–384 (2020).

    Article  CAS  Google Scholar 

  56. Kwon, Y., Birdja, Y. Y., Raoufmoghaddam, S. & Koper, M. T. M. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in acidic solution. ChemSusChem 8, 1745–1751 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Singh, N. et al. Electrocatalytic hydrogenation of phenol over platinum and rhodium: unexpected temperature effects resolved. ACS Catal. 6, 7466–7470 (2016).

    Article  CAS  Google Scholar 

  58. Carroll, K. J. et al. Electrocatalytic hydrogenation of oxygenates using earth-abundant transition-metal nanoparticles under mild conditions. ChemSusChem 9, 1904–1910 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Y., Xu, J., Pan, Y. & Wang, Y. Recent advances in electrochemical deoxygenation reactions of organic compounds. Org. Biomol. Chem. 21, 1121–1133 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Yuan, X., Lee, K., Bender, M. T., Schmidt, J. R. & Choi, K.-S. Mechanistic differences between electrochemical hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural and their ph dependence. ChemSusChem 15, e202200952 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma, J., Wang, Z., Majima, T. & Zhao, G. Role of ni in ptni alloy for modulating the proton–electron transfer of electrocatalytic hydrogenation revealed by the in situ Raman–rotating disk electrode method. ACS Catal. 12, 14062–14071 (2022).

    Article  CAS  Google Scholar 

  62. Tyburski, R., Liu, T., Glover, S. D. & Hammarström, L. Proton-coupled electron transfer guidelines, fair and square. J. Am. Chem. Soc. 143, 560–576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Deng, W. et al. Evolution of aromatic structures during the low-temperature electrochemical upgrading of bio-oil. Energy Fuels 33, 11292–11301 (2019).

    Article  CAS  Google Scholar 

  64. Chen, G. et al. Upgrading of bio-oil model compounds and bio-crude into biofuel by electrocatalysis: a review. ChemSusChem 14, 1037–1052 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Sanyal, U. et al. Hydrogen bonding enhances the electrochemical hydrogenation of benzaldehyde in the aqueous phase. Angew. Chem. Int. Ed. 60, 290–296 (2021).

    Article  CAS  Google Scholar 

  66. Sanyal, U., Koh, K., Meyer, L. C., Karkamkar, A. & Gutiérrez, O. Y. Simultaneous electrocatalytic hydrogenation of aldehydes and phenol over carbon-supported metals. J. Appl. Electrochem. 51, 27–36 (2021).

    Article  CAS  Google Scholar 

  67. Wang, G. et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem. Soc. Rev. 50, 4993–5061 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Awe, O. W., Zhao, Y., Nzihou, A., Minh, D. P. & Lyczko, N. A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valor. 8, 267–283 (2017).

    Article  CAS  Google Scholar 

  69. Sun, Y., Zwolińska, E. & Chmielewski, A. G. Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: a review. Crit. Rev. Environ. Sci. Technol. 46, 119–142 (2016).

    Article  CAS  Google Scholar 

  70. Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Li, C., Zhao, X., Wang, A., Huber, G. W. & Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115, 11559–11624 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, C. & Wang, F. Catalytic lignin depolymerization to aromatic chemicals. Acc. Chem. Res. 53, 470–484 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. de Gonzalo, G., Colpa, D. I., Habib, M. H. M. & Fraaije, M. W. Bacterial enzymes involved in lignin degradation. J. Biotechnol. 236, 110–119 (2016).

    Article  PubMed  Google Scholar 

  74. Akhtar, A., Krepl, V. & Ivanova, T. A combined overview of combustion, pyrolysis, and gasification of biomass. Energy Fuels 32, 7294–7318 (2018).

    Article  CAS  Google Scholar 

  75. Sikarwar, V. S. et al. An overview of advances in biomass gasification. Energy Environ. Sci. 9, 2939–2977 (2016).

    Article  CAS  Google Scholar 

  76. Garedew, M. et al. Electrochemical upgrading of depolymerized lignin: a review of model compound studies. Green. Chem. 23, 2868–2899 (2021).

    Article  CAS  Google Scholar 

  77. Zhang, C. et al. Cleavage of the lignin β-o-4 ether bond via a dehydroxylation–hydrogenation strategy over a nimo sulfide catalyst. Green. Chem. 18, 6545–6555 (2016).

    Article  CAS  Google Scholar 

  78. Ghahremani, R., Farales, F., Bateni, F. & Staser, J. A. Simultaneous hydrogen evolution and lignin depolymerization using nisn electrocatalysts in a biomass-depolarized electrolyzer. J. Electrochem. Soc. 167, 043502 (2020).

    Article  CAS  Google Scholar 

  79. Stiefel, S., Lölsberg, J., Kipshagen, L., Möller-Gulland, R. & Wessling, M. Controlled depolymerization of lignin in an electrochemical membrane reactor. Electrochem. Commun. 61, 49–52 (2015).

    Article  CAS  Google Scholar 

  80. Zhao, H. et al. Raw biomass electroreforming coupled to green hydrogen generation. Nat. Commun. 12, 2008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, C., Maldonado, S. & Stephenson, C. R. J. Electrocatalytic lignin oxidation. ACS Catal. 11, 10104–10114 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.-S.C. acknowledges the financial support provided by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Catalysis Science Program under award DE-SC0020983. A.H. acknowledges the financial support provided by the US DOE, Office of Basic Energy Sciences, Catalysis Science Program under award DE-SC0023322. N.S. acknowledges US National Science Foundation grant 2320929. This work was authored in part by the Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory for the US DOE, under contract no. DE-AC36-08GO28308//SUB-2021-10692 Mod 1. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the US DOE under contract no. DE-AC36-08GO28308. Funding provided by the US Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office, in collaboration with the Chemical Catalysis for Bioenergy Consortium. The views expressed in the article do not necessarily represent the views of the DOE or the US Government. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for US Government purposes. This work was supported, in whole or in part, by the Bill and Melinda Gates Foundation (INV-061828).

Author information

Authors and Affiliations

Authors

Contributions

E.H.S. supervised the project. C.T., R.D., J.W. and E.H.S. co-wrote the paper. All authors discussed the ideas and assisted during the preparation of the paper.

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Haohong Duan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Dorakhan, R., Wicks, J. et al. Progress and roadmap for electro-privileged transformations of bio-derived molecules. Nat Catal 7, 350–360 (2024). https://doi.org/10.1038/s41929-024-01131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01131-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing