Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammatory microenvironment remodelling by tumour cells after radiotherapy

Abstract

The development of immune checkpoint inhibitors (ICIs) is revolutionizing the way we think about cancer treatment. Even so, for most types of cancer, only a minority of patients currently benefit from ICI therapies. Intrinsic and acquired resistance to ICIs has focused research towards new combination therapy approaches that seek to increase response rates, the depth of remission and the durability of benefit. In this Review, we describe how radiotherapy, through its immunomodulating effects, represents a promising combination partner with ICIs. We describe how recent research on DNA damage response (DDR) inhibitors in combination with radiotherapy may be used to augment this approach. Radiotherapy can kill cancer cells while simultaneously triggering the release of pro-inflammatory mediators and increasing tumour-infiltrating immune cells – phenomena often described colloquially as turning immunologically ‘cold’ tumours ‘hot’. Here, we focus on new developments illustrating the key role of tumour cell-autonomous signalling after radiotherapy. Radiotherapy-induced tumour cell micronuclei activate cytosolic nucleic acid sensor pathways, such as cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING), and propagation of the resulting inflammatory signals remodels the immune contexture of the tumour microenvironment. In parallel, radiation can impact immunosurveillance by modulating neoantigen expression. Finally, we highlight how tumour cell-autonomous mechanisms might be exploited by combining DDR inhibitors, ICIs and radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crosstalk between cGAS–STING, inflammasome and ribonucleic acid sensing pathways.
Fig. 2: Radiation-induced micronucleus formation and the role of the DNA damage response.
Fig. 3: Tumour cell-centric immune signalling in the tumour microenvironment post radiotherapy.

Similar content being viewed by others

References

  1. Delaney, G., Jacob, S., Featherstone, C. & Barton, M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104, 1129–1137 (2005).

    Article  PubMed  Google Scholar 

  2. Formenti, S. C. et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 24, 1845–1851 (2018). This study reports the induction of systemic antitumour T cells in metastatic NSCLC by radiation therapy and CTLA4 blockade. This was observed in chemo-refractory patients where anti-CTLA4 alone failed to demonstrate significant efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Dillon, M. T. et al. Radiosensitization by the ATR inhibitor AZD6738 through generation of acentric micronuclei. Mol. Cancer Ther. 16, 25–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017). Together with Harding et al. (2017), this paper reveals that micronuclei produced in response to radiotherapy result in cytoplasmic dsDNA that is sensed by cGAS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dillon, M. T. et al. ATR inhibition potentiates the radiation-induced inflammatory tumor microenvironment. Clin. Cancer Res. 25, 3392–3403 (2019). This study profiles type I/II IFN and tumour-infiltrating lymphoid and myeloid immune populations due to the combination of ATR inhibition with radiotherapy. This study breaks down PD-L1 and cytokine expression in tumour versus immune cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chakravarthy, A. et al. Pan-cancer deconvolution of tumour composition using DNA methylation. Nat. Commun. 9, 3220 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug. Discov. 18, 197–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016). This study reports that mutations due to cytotoxic chemotherapy may reduce the efficacy of immune checkpoint blockade owing to the creation of subclonal neoantigens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barker, H. E., Paget, J. T. E., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao, X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16, 35–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014). This paper shows that STING is required for the type I IFN-dependent antitumour effects of radiotherapy. It also shows that exogenous cGAMP enhanced radiation-induced antitumour immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vance, R. E. Cytosolic DNA sensing: the field narrows. Immunity 45, 227–228 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017). This paper describes how high radiation doses above 12–18 Gy can induce TREX1, degrading cytoplasmic DNA and attenuating the immunogenicity of radiotherapy.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Francica, B. J. et al. TNFα and radioresistant stromal cells are essential for therapeutic efficacy of cyclic dinucleotide STING agonists in nonimmunogenic tumors. Cancer Immunol. Res. 6, 422–433 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carozza, J. A. et al. Extracellular cGAMP is a cancer-cell-produced immunotransmitter involved in radiation-induced anticancer immunity. Nat. Cancer 1, 184–196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abe, T. & Barber, G. N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 88, 5328–5341 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hou, Y. et al. Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity 49, 490–503.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sen, T. et al. Targeting DNA damage response promotes anti-tumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 9, 646–661 (2019). This study shows that PARP or CHK1 inhibition increases PD-L1 expression potentiating the effect of PD-L1 blockade. This is shown to be dependent on activation of cGAS–STING in tumour cells.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Wang, Z. et al. cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity. J. Clin. Invest. 130, 4850–4862 (2019).

    Article  Google Scholar 

  29. Marcus, A. et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 49, 754–763.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Diamond, J. M. et al. Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol. Res. 6, 910–920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luteijn, R. D. et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434–438 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ritchie, C., Cordova, A. F., Hess, G. T., Bassik, M. C. & Li, L. SLC19A1 is an importer of the immunotransmitter cGAMP. Mol. Cell 75, 372–381.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, L. et al. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mrowczynski, O. D. et al. Exosomes impact survival to radiation exposure in cell line models of nervous system cancer. Oncotarget 9, 36083–36101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yuan, D. et al. Extracellular miR-1246 promotes lung cancer cell proliferation and enhances radioresistance by directly targeting DR5. Oncotarget 7, 32707–32722 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Patel, S. & Jin, L. TMEM173 variants and potential importance to human biology and disease. Genes Immun. 20, 82–89 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, X. et al. Cyclic GMP–AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Konno, H. et al. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 37, 2037–2051 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, X. et al. Viral DNA binding to NLRC3, an inhibitory nucleic acid sensor, unleashes STING, a cyclic dinucleotide receptor that activates type I interferon. Immunity 50, 591–599.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Almine, J. F. et al. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat. Commun. 8, 14392 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gray, E. E. et al. The AIM2-like receptors are dispensable for the interferon response to intracellular DNA. Immunity 45, 255–266 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jønsson, K. L. et al. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat. Commun. 8, 14391 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dunphy, G. et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol. Cell 71, 745–760.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12, 959–965 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Omura, H. et al. Structural and functional analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide. Sci. Rep. 6, 34756 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, K.-G. et al. Bruton’s tyrosine kinase phosphorylates DDX41 and activates its binding of dsDNA and STING to initiate type 1 interferon response. Cell Rep. 10, 1055–1065 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Z. et al. The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat. Immunol. 14, 172–178 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Seo, G. J. et al. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat. Commun. 9, 613 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Liu, Z.-S. et al. G3BP1 promotes DNA binding and activation of cGAS. Nat. Immunol. 20, 18–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Xia, P. et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17, 369–378 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Hu, M.-M. et al. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity 45, 555–569 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, S. et al. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat. Cell Biol. 21, 1027–1040 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet. 72, 447 (2019).

    Google Scholar 

  57. Woo, S.-R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Swanson, K. V. et al. A noncanonical function of cGAMP in inflammasome priming and activation. J. Exp. Med. 214, 3611–3626 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1, aag2045 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ingram, J. P. et al. ZBP1/DAI drives RIPK3-mediated cell death induced by IFNs in the absence of RIPK1. J. Immunol. 203, 1348–1355 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Paludan, S. R., Reinert, L. S. & Hornung, V. DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nat. Rev. Immunol. 19, 141–153 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aarreberg, L. D. et al. Interleukin-1β induces mtDNA release to activate innate immune signaling via cGAS–STING. Mol. Cell 74, 801–815.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Micco, A. et al. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proc. Natl Acad. Sci. USA 113, E4671–E4680 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Ishii, K. J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, Y. et al. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection. Immunity 46, 393–404 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Banerjee, I. et al. Gasdermin D restrains type I interferon response to cytosolic DNA by disrupting ionic homeostasis. Immunity 49, 413–426.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ning, X. et al. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol. Cell 74, 19–31.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Rodriguez-Ruiz, M. E. et al. Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology 8, e1655964 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Widau, R. C. et al. RIG-I-like receptor LGP2 protects tumor cells from ionizing radiation. Proc. Natl Acad. Sci. USA 111, E484–E491 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ranoa, D. R. E. et al. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget 7, 26496–26515 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cañadas, I. et al. Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat. Med. 24, 1143–1150 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Chiu, Y.-H., Macmillan, J. B. & Chen, Z. J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parisien, J.-P. et al. RNA sensor LGP2 inhibits TRAF ubiquitin ligase to negatively regulate innate immune signaling. EMBO Rep. 19, 1193 (2018).

    Article  CAS  Google Scholar 

  76. Glück, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, S. et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555 (2018). This study identifies that defective nuclear envelope assembly in micronuclei is due to spindle microtubules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Willan, J. et al. ESCRT-III is necessary for the integrity of the nuclear envelope in micronuclei but is aberrant at ruptured micronuclear envelopes generating damage. Oncogenesis 8, 29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Paglin, S., Delohery, T., Erlandson, R. & Yahalom, J. Radiation-induced micronuclei formation in human breast cancer cells: dependence on serum and cell cycle distribution. Biochem. Biophys. Res. Commun. 237, 678–684 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Tsai, M.-H. et al. Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Res. 67, 3845–3852 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Brzostek-Racine, S., Gordon, C., Van Scoy, S. & Reich, N. C. The DNA damage response induces IFN. J. Immunol. 187, 5336–5345 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Liu, H. et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563, 131–136 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Jiang, H. et al. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 498, e102718 (2019).

    Google Scholar 

  86. Bartsch, K. et al. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum. Mol. Genet. 26, 3960–3972 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Gui, X. et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567, 262–266 (2019). This paper reports how STING, independent of interferon signalling, can facilitate LC3 lipidation and autophagosome biogenesis. The paper provides evidence that suggests autophagy is a primordial function of STING.

    Article  CAS  PubMed  Google Scholar 

  88. de Oliveira Mann, C. C. et al. Modular architecture of the STING C-terminal tail allows interferon and NF-κB signaling adaptation. Cell Rep. 27, 1165–1175.e5 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Kim, H., Sanchez, G. A. M. & Goldbach-Mansky, R. Insights from Mendelian interferonopathies: comparison of CANDLE, SAVI with AGS, monogenic lupus. J. Mol. Med. 94, 1111–1127 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Härtlova, A. et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015).

    Article  PubMed  CAS  Google Scholar 

  91. Gul, E. et al. Type I IFN-related NETosis in ataxia telangiectasia and Artemis deficiency. J. Allergy Clin. Immunol. 142, 246–257 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Gratia, M. et al. Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS. J. Exp. Med. 216, 1199–1213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16, 110–120 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Parkes, E. E. et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J. Natl Cancer. Inst. 109, djw199 (2016). This paper shows that a DDR-deficient breast cancer subtype corresponded to upregulation of interferon-related genes. This was STING-dependent and corresponded to increased T cell infiltration and PD-L1 expression.

    Article  PubMed Central  CAS  Google Scholar 

  95. Heijink, A. M. et al. BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-α-mediated cytotoxicity. Nat. Commun. 10, 100–114 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Hafsi, H. et al. Combined ATR and DNA-PK inhibition radiosensitizes tumor cells independently of their p53 status. Front. Oncol. 8, 245 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. McLaughlin, M. et al. HSP90 inhibition sensitizes head and neck cancer to platin-based chemoradiotherapy by modulation of the DNA damage response resulting in chromosomal fragmentation. BMC Cancer 17, 86 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Barker, H. E. et al. CHK1 inhibition radiosensitizes head and neck cancers to paclitaxel-based chemoradiotherapy. Mol. Cancer Ther. 15, 2042–2054 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Patel, P. et al. Enhancing direct cytotoxicity and response to immune checkpoint blockade following ionizing radiation with Wee1 kinase inhibition. Oncoimmunology 8, e1638207 (2019). This study shows that WEE1 inhibition in combination with radiotherapy enhanced the cytolytic activity of T cells and enhanced the responsiveness of tumours to PD-1 checkpoint blockade.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Friedman, J. et al. Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies. J. Immunother. Cancer 6, 59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhang, Q. et al. Inhibition of ATM increases interferon signaling and sensitizes pancreatic cancer to immune checkpoint blockade therapy. Cancer Res. 79, 3940–3951 (2019). This article demonstrates that ATM inhibition increases radiation-induced type I IFN signalling. ATM knockdown enhances tumour control and CD8 + T cell infiltration due to radiotherapy and anti-PD-L1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Reisländer, T. et al. BRCA2 abrogation triggers innate immune responses potentiated by treatment with PARP inhibitors. Nat. Commun. 10, 3143 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Chabanon, R. M. et al. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J. Clin. Invest. 129, 1211–1228 (2019). This study shows that PARP inhibition in ERCC1-defective tumour cells generates micronuclei that activate cGAS–STING and downstream type I IFN signalling.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ghosh, R., Roy, S. & Franco, S. PARP1 depletion induces RIG-I-dependent signaling in human cancer cells. PLoS One 13, e0194611 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bhattacharya, S. et al. RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Res. 45, 4590–4605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Golden, E. B., Demaria, S., Schiff, P. B., Chachoua, A. & Formenti, S. C. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol. Res. 1, 365–372 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Golden, E. B. et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 16, 795–803 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Dovedi, S. J. et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clin. Cancer Res. 23, 5514–5526 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Garnett, C. T. et al. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 64, 7985–7994 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sharma, A. et al. γ-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS One 6, e28217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sharabi, A. B. et al. Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol. Res. 3, 345–355 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Rudqvist, N.-P. et al. Radiotherapy and CTLA-4 blockade shape the TCR repertoire of tumor-infiltrating T cells. Cancer Immunol. Res. 6, 139–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Schaue, D. et al. T-cell responses to survivin in cancer patients undergoing radiation therapy. Clin. Cancer Res. 14, 4883–4890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gulley, J. L. et al. Role of antigen spread and distinctive characteristics of immunotherapy in cancer treatment. J. Natl Cancer Inst. 109, djw261 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  116. Lhuillier, C., Rudqvist, N.-P., Elemento, O., Formenti, S. C. & Demaria, S. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med. 11, 40 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Knijnenburg, T. A. et al. Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas. Cell Rep. 23, 239–254.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Burnette, B. & Weichselbaum, R. R. Radiation as an immune modulator. Semin. Radiat. Oncol. 23, 273–280 (2013).

    Article  PubMed  Google Scholar 

  122. Mondini, M. et al. Synergy of radiotherapy and a cancer vaccine for the treatment of HPV-associated head and neck cancer. Mol. Cancer Ther. 14, 1336–1345 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Chang, M.-C. et al. Irradiation enhances abscopal anti-tumor effects of antigen-specific immunotherapy through regulating tumor microenvironment. Mol. Ther. 26, 404–419 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Golden, E. B. et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3, e28518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Chao, M. P. et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl Med. 2, 63ra94 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Matsumura, S. et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol. 181, 3099–3107 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ruocco, M. G. et al. Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects. J. Clin. Invest. 122, 3718–3730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Marciscano, A. E. et al. Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy. Clin. Cancer Res. 24, 5058–5071 (2018). This study reveals how elective nodal irradiation can reduce the efficacy of radiotherapy and immunotherapy combinations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mondini, M. et al. CCR2-dependent recruitment of Tregs and monocytes following radiotherapy is associated with TNFα-mediated resistance. Cancer Immunol. Res. 7, 376–387 (2019).

    Article  PubMed  CAS  Google Scholar 

  133. O’Garra, A., Vieira, P. L., Vieira, P. & Goldfeld, A. E. IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J. Clin. Invest. 114, 1372–1378 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  134. de Leve, S., Wirsdörfer, F. & Jendrossek, V. Targeting the immunomodulatory CD73/adenosine system to improve the therapeutic gain of radiotherapy. Front. Immunol. 10, 698 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Bos, P. D., Plitas, G., Rudra, D., Lee, S. Y. & Rudensky, A. Y. Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J. Exp. Med. 210, 2435–2466 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Connolly, K. A. et al. Increasing the efficacy of radiotherapy by modulating the CCR2/CCR5 chemokine axes. Oncotarget 7, 86522–86535 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Liang, H. et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 8, 1736 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kalbasi, A. et al. Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin. Cancer Res. 23, 137–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Vendetti, F. P. et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J. Clin. Invest. 128, 3926–3940 (2018). This study profiles the impact of ATR inhibition on different T cell populations and PD-L1 expression in combination with radiotherapy.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tang, H. et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J. Clin. Invest. 128, 580–588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lin, H. et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J. Clin. Invest. 128, 805–815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Vanpouille-Box, C. et al. TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75, 2232–2242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rodríguez-Ruiz, M. E. et al. TGFβ blockade enhances radiotherapy abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. Mol. Cancer Ther. 18, 621–631 (2019).

    Article  PubMed  Google Scholar 

  144. Burnette, B. C. et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Weichselbaum, R. R. et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc. Natl Acad. Sci. USA 105, 18490–18495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Boelens, M. C. et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159, 499–513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Erdal, E., Haider, S., Rehwinkel, J., Harris, A. L. & McHugh, P. J. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev. 31, 353–369 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Post, A. E. M. et al. Interferon-stimulated genes are involved in cross-resistance to radiotherapy in tamoxifen-resistant breast cancer. Clin. Cancer Res. 24, 3397–3408 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Benci, J. L. et al. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell 178, 933–948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Stout-Delgado, H. W., Getachew, Y., Miller, B. C. & Thiele, D. L. Intrahepatic lymphocyte expression of dipeptidyl peptidase I-processed granzyme B and perforin induces hepatocyte expression of serine proteinase inhibitor 6 (Serpinb9/SPI-6). J. Immunol. 179, 6561–6567 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Chen, J. et al. Type I IFN protects cancer cells from CD8+ T cell-mediated cytotoxicity after radiation. J. Clin. Invest. 8, 26496 (2019).

    Google Scholar 

  153. Dillon, M. T. et al. PATRIOT: a phase I study to assess the tolerability, safety and biological effects of a specific ataxia telangiectasia and Rad3-related (ATR) inhibitor (AZD6738) as a single agent and in combination with palliative radiation therapy in patients with solid tumours. Clin. Transl Radiat. Oncol. 12, 16–20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Demaria, S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11, 728–734 (2005).

    CAS  PubMed  Google Scholar 

  155. Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8, 427 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Baird, J. R. et al. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res. 76, 50–61 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Arina, A. et al. Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat. Commun. 10, 3959 (2019). This study shows that tumour-resident T cells are more resistant to radiotherapy than those in the circulation or lymphoid tissue.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Khan, A. A. et al. Genetically modified lentiviruses that preserve microvascular function protect against late radiation damage in normal tissues. Sci. Transl Med. 10, eaar2041 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Huang, Y. et al. Improving immune-vascular crosstalk for cancer immunotherapy. Nat. Rev. Immunol. 18, 195–203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Al-Assar, O. et al. Contextual regulation of pancreatic cancer stem cell phenotype and radioresistance by pancreatic stellate cells. Radiother. Oncol. 111, 243–251 (2014).

    Article  PubMed  Google Scholar 

  162. Sun, Y. et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat. Med. 18, 1359–1368 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Park, C. C., Zhang, H. J., Yao, E. S., Park, C. J. & Bissell, M. J. β1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts. Cancer Res. 68, 4398–4405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hanoteau, A. et al. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. J. Immunother. Cancer 7, 10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kroon, P. et al. Radiotherapy and cisplatin increase immunotherapy efficacy by enabling local and systemic intratumoral T-cell activity. Cancer Immunol. Res. 7, 670–682 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Luo, R. et al. Cisplatin facilitates radiation-induced abscopal effects in conjunction with PD-1 checkpoint blockade through CXCR3/CXCL10-mediated T cell recruitment. Clin. Cancer Res. 25, 7243–7255 (2019).

    Article  PubMed  CAS  Google Scholar 

  167. Lecavalier-Barsoum, M. et al. Targeting CXCL12/CXCR4 and myeloid cells to improve the therapeutic ratio in patient-derived cervical cancer models treated with radio-chemotherapy. Br. J. Cancer 121, 249–256 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kim, Y. H. et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood 119, 355–363 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Frank, M. J. et al. In situ vaccination with a TLR9 agonist and local low-dose radiation induces systemic responses in untreated indolent lymphoma. Cancer Discov. 8, 1258–1269 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Rosetrees Trust, the Oracle Cancer Trust, the Anthony Long Charitable Trust, the Wellcome Trust, the Stoneygate Trust and the Royal Marsden/Institute of Cancer Research NIHR Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Martin McLaughlin.

Ethics declarations

Competing interests

A.A.M. reports research grant funding from AstraZeneca/Medimmune, Bristol Myers Squibb and Oncolytics Biotech; and advisory board membership, honoraria and/or speakers’ bureaus from Amgen, AstraZeneca, Bristol-Myers-Squibb, Merck-Serono and Turnstone Biologics. K.J.H. reports research grant funding from AstraZeneca/Medimmune, Boehringer-Ingelheim, Merck Sharp Dohme and Replimune; and advisory board membership, honoraria and/or speakers’ bureaus from Amgen, AstraZeneca, Bristol-Myers-Squibb, Boehringer-Ingelheim, Merck-Serono, Merck Sharp Dohme, Oncolys, Pfizer and Replimune. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks S. Demaria, R. Greenberg and R. Weichselbaum for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Immune checkpoint inhibitors

(ICIs). Therapeutic blockade of negative immune checkpoint signalling. Most notable of these are the clinically approved agents targeting cytotoxic T lymphocyte-associated protein 4 (CTLA4) and programmed cell death protein 1 ligand 1 (PD-L1)–programmed cell death protein 1 (PD-1).

Tumour neoantigens

Neoantigens can arise when mutations in tumour cells alter peptide fragments presented to the immune system. The immune system can recognize these as foreign versus the non-mutated self-sequence.

Subclonal neoantigens

Subclonal neoantigens are only present in a subset of tumour cells.

Cyclic GMP–AMP

(cGAMP). Mammalian 2′,3′-cyclic guanosine monophosphate–adenosine monophosphate, shortened to cGAMP, is a second messenger produced by cyclic GMP–AMP synthase (cGAS) binding to cytosolic DNA. It is frequently called an immunotransmitter owing to extensive indirect signalling.

Pattern recognition receptors

Innate immune receptors that recognize viral or microbial molecules (pathogen-associated molecular patterns (PAMPs)) or host cell molecules released during damage (damage-associated molecular patterns (DAMPs)) activating host immune signalling.

Type I interferon

(IFN). This class of interferons includes IFNα isoforms and IFNβ. IFNα/β receptor 1 (IFNAR1) and IFNAR2 form the type I IFN receptor.

Exosomes

Extracellular vesicles released from cells and shown to contain proteins, lipids, RNA and/or DNA. They are thought to act as a means of intercellular communication through transmission of bioactive macromolecules.

Gap junctions

Intercellular channels composed of connexin transmembrane proteins. They permit direct cell–cell transfer of ions and small molecules.

Ectoenzyme

An enzyme that is found on the cell surface or that is secreted and functions outside a cell.

HIN domains

DNA binding domains present on interferon (IFN)γ-inducible protein 16 (IFI16) and absent in melanoma 2 (AIM2) that facilitate recognition of cytosolic double-stranded DNA. HIN is an acronym for haematopoietic expression, interferon-inducible nature and nuclear localization.

Inflammasome

A multiprotein intracellular complex that activates the pro-inflammatory cytokines interleukin 1β (IL-1β) and IL-18. This can be due to pathogens or sterile stimuli leading to activation of caspase 1.

Pyroptosis

A highly inflammatory form of cell death resulting from inflammasome activation of caspase 1.

Micronuclei

Small nuclear structures formed by mitotic errors or chromosome breakage. They form within a nuclear envelope isolated from the primary nucleus.

Chromothripsis

Clustered chromosomal rearrangements in one or a few chromosomes, which are thought to occur through a one-step catastrophic genomic event.

STING-associated vasculopathy with onset in infancy

(SAVI). An autoinflammatory disorder driven by activating mutations in stimulator of interferon genes (STING).

Aicardi-Goutières syndrome

(AGS). An inflammatory disorder driven by numerous mutations (TREX1, SAMHD1, RNASEH2A–C, ADAR1 and IFIH1) that lead to increased activation of cytoplasmic nucleic acid sensors and type I interferon production.

Fanconi anaemia

A rare genetic disorder that results in aplastic anaemia, leukaemia and cancer susceptibility, and hypersensitivity to DNA cross-linking agents. The pathway is responsible for the repair of DNA interstrand cross-links and overlaps somewhat with homologous recombination repair.

Homologous recombination repair

(HRR). An identical or nearly identical DNA sequence from a homologous chromosome is used as a template for the repair of a DNA break.

Antigen

In this context, a major histocompatibility complex I (MHC-I)-presented peptide capable of stimulating an immune response.

Major histocompatibility complex I

(MHC-I). A complex composed of an α and β chain expressed on all nucleated cells. MHC-I presents peptide fragments of intracellular proteins to the immune system.

Radiation-upregulated neoantigens

Radiation can increase existing tumour neoantigens through either radiation-induced transcription or increased antigen presentation. It is also possible for radiotherapy to create neoantigens owing to DNA damage-induced mutations.

SIINFEKL

A peptide sequence from chicken ovalbumin presented by major histocompatibility complex I (MHC-I) and used as a model peptide to study antigen presentation.

Clonal neoantigen

A clonal neoantigen is a tumour antigen present in all tumour cells, as opposed to a subclonal neoantigen present in only a subset of tumor cells.

Damage-associated molecular patterns

(DAMPs). Stimuli released by stressed, dying or injured cells that may trigger an inflammatory response by the activation of numerous pattern recognition receptors.

Hypofractionated radiotherapy

Radiation treatment where the total dose of radiation is divided into larger doses and given over a smaller number of fractions than standard radiation therapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLaughlin, M., Patin, E.C., Pedersen, M. et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat Rev Cancer 20, 203–217 (2020). https://doi.org/10.1038/s41568-020-0246-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-020-0246-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer